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Abstract—Current component reusability is not as high as 
previously expected. Although third-party component 
providers are in present, large quantity of reduplicative 
programming effort is still needed in system development 
process. As conventional component technologies are not 
flexible enough to deal with requirement diversity and 
variability, a new type of Application-Level Component 
(ALC) approach is proposed. The functional granularity of 
ALC is larger than that of previous components, thus 
lowering the effort for reusing a component. By separating 
the stable and instable part of domain requirement, a 
collection of stable requirement elements can be 
summarized and implemented by ALCs. The instable part 
can then be described with a formal language according to 
the differences in various user cases. A novel reuse process 
of “selection and description” is established. The description 
language covers overall aspects of application system 
requirements, including user interface, computation logic, 
and database access. The description content for a system is 
parsed and executed by ALC to fulfill corresponding 
requirement. By providing different description contents, 
ALC can be reused in environments full of differences and 
changes. Evaluations reveal that the reusability of ALC is 
enhanced to a higher degree of 92.5~95.7%. 
 
Index Terms—Application-level Component; Reusability; 
Component Granularity; Requirement Description 
Language; UI patterns 
 

I.  OVERVIEW 

Component technology plays an important role in 
software reuse research. As expected in Component-
Based Software Development (CBSD) methodology, one 
can develop a system simply by selecting and assembling 
current-existing components. However, this goal is far 
from reality. In real development environments, large 
amount of reduplicated programming effort is still needed, 
because of the lack of appropriate components [1]. In Ref. 
[2], an investigation is undertook in 2005 aiming at 25 
software projects form NASA, and the average 
reusability is measured at a degree of just 32%. Peer 
results can also be found in Ref. [3], which investigates 
the current situation of software reusability in China. The 
result is no better than the former. A significant 
conclusion is that, different styles of components have 
different degrees of reusability. The fundamental 
computation components have the highest degree of 
99.5%, but the business-oriented UI components only 

have a degree of 8.4%. In average, the reusability reaches 
only 27.7%, which means almost 3/4 components in 
systems are not able to be implemented by direct reuse 
and are needed to be created by the developers 
themselves. 

There can be many reasons for such phenomena. An 
important point is observed that, components are always 
prevented from being reused because of the differences 
between its predefined function and the system 
requirements. In this paper, we focus on two natures of 
requirement which frequently cause such differences. 
Those are diversity and variability. According to the 
nature of diversity, different organizations are running 
various business rules. It’s theoretically impossible to 
provide a finite component repository covering all the 
business rules around the world. Even in the relatively 
matured domains, like ERP and OA, there are 
unavoidable differences which are hard to be unified in a 
foreseeable period. The second nature means that the 
business rules of an organization is changing all the time, 
to cope with the external influences originated by 
variable economic circumstance, new marketing trends, 
etc. Once the requirement changes, the software system 
must change its function in parallel to fulfill new business 
rules.  

Research efforts are not made enough to provide 
flexibility in software components, resulting in the lack of 
power to handle requirement diversity and variability. 
More sufficient reasons can be shown by comparing the 
following three typical component technologies.  

1. UML/Catalyst method [4]. UML is a representation 
tool extensively incorporated in Object-Oriented Analysis 
& Development (OOA/OOD) processes like Catalyst. 
The design processes all start from the observation 
towards the functional requirements of an object system. 
Since the system is likely to serve the business rules of a 
dedicated organization, it is usually hard to directly reuse 
parts of the system for other organizations. As 
requirement changes, the design documents and the 
components implemented are all forced to be modified. 
This prevents the components to be “reused without 
modification”. 

2. Feature-Oriented Component Model (FOCM) [5]. 
FOCM is a typical method for domain requirement 
modeling. With FOCM, requirements of different 
application systems can be combined to one model via a 
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series of modeling elements which represents differences 
and variations. Compared with UML, FOCM effectively 
extends the knowledge scale of the modeling tool to a 
business domain, which causes the components to be able 
to be reused in different organizations instead of just one 
organization. But, problems remain that it does not 
provide flexibility to handle future requirement changes.  
Using FOCM, designers have to endlessly catch the 
requirement changes, but always lag behind requirement 
changes. 

3. Framework-based Development (FBD) [6]. FBD 
attempts to enlarge the representation ability towards 
requirement differences at the level of software 
architecture. FBD utilizes FOCM as its description tool 
for software components, so it has the same problem with 
FOCM, e.g., lacking of ability to support unforeseen 
requirements probably emerging in the future. 

As current component technologies do not provide 
effective supports for requirement differences and 
changes, third-party components cannot be reused 
straightforwardly as expected by researchers. To reuse a 
component, modification effort makes up most of the cost 
to eliminate the difference between its predefined 
function and actual object requirement. Furthermore, the 
modification frequency is judged by different stability 
degrees of requirement elements. Observation shows that 
the components with the highest reusability lie in the 
levels adjacent to computer implementation [3]. Such 
components include conventional computing routines, 
basic UI controls, etc. The components fall into this 
category usually take up a smaller functional granularity 
compared with the high-level business-oriented 
components assembling the ultimate system, and their 
abstract level is lower than that of the latter. When one 
needs to create an ERP or OA system, and there is 
probably lack of appropriate components supporting his 
specific requirement (this is a frequently-seen phenomena 
in application development), he has no choice but to 
create his own business-oriented components by 
assembling the small-granularity components with 
programming codes. Such is a kind of “selection and 
programming” reuse process. Since the programming 
codes are usually designed for solving his private needs 
instead of being reused in public situations, they form the 
non-reusable part of software systems. The reusability 
cannot be enhanced until new technology tackles this 
problem. 

A novel design process named Application-level 
Component (ALC) is proposed to enhance software 
reusability. By utilizing new design methods, ALC is 
responsible for implementing the stable elements and 
construction mechanisms of domain requirements. 
Customization ability is also equipped to support future 
requirement variations. Compared with conventional 
components, ALC takes up a higher degree of reusable 
functional granularity, thus lowering the effort for dealing 
with requirement diversity and variability. 

 
 

II.  PROBLEM IN EXISTING CBSD PROCESSES 

Being focused on the common natures, different kinds 
of current CBSD processes can be summarized as a 
unified process, as shown in Fig. 1. In Ref. [4], [5] and 
[6], different kinds of design processes based on UML, 
FOCM or FBM are proposed. They all comply with the 
unified process discussed as follows. A completed 
process cycle consists of four steps. First is Requirement 
Modeling, in which developers investigates the 
requirement of a system or an application domain, and 
define it as R1; Second is Component Analysis, where R1 
is separated into a series of functional modules, and 
specifications for each module’s function and interfaces 
are defined; Third is Component Implementation, where 
all the components are developed according to the 
specifications, resulting in a component repository C1. In 
the final step of System Assembling, C1 can then be used 
to assemble a system A1, the function of which is exactly 
equivalent to the original requirement. 

For two reasons, the reusability of components is 
limited by such a process. 

1. From the perspective of time, the requirements of 
the components are relatively stable instead of absolutely 
stable. As the system requirement will change forever, R1 
is only a snapshot at a dedicated time t1. Suppose the 
requirement changes to R2 when it comes to t2. Since R1 

≠ R2, it cannot be guaranteed theoretically that the 
components designed according to R1 can 
straightforwardly be reused in the new situation. So, 
some items in C1 need to be modified, and new items 
need to be appended into C1. As time goes, this appears at 
any time and never stops. One can never provide a 
component repository that can fit all the requirements in 
the future. 

2. From the perspective of organization domain, the 
requirements of the components are relatively complete 
instead of absolutely complete. Because of the natural 
limitation of human’s far-sight and the economical 
constraints of development cost, any component 
repository can only cover a part of the whole organization 
space. By contrast with the openness and diversity of 
requirement space, the function of any component 
repository is incomplete. 
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Figure 1. Problem of Existing CBSD Processes
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As a result, only when the predefined function fits 
exactly in the object requirement can the components be 
reused. This only reflects a small portion of the real 
situations in system development. It also brings a side-
effect, that the reusability of components is decided by 
the stableness of different requirement levels [4]. In the 
level adjacent to computer implementation, the stableness 
of requirement elements gains a high degree. The 
components at this level, including mathematical routines 
and UI controls, form the most frequently reused part of 
software resource in reality. But, as the abstract level 
rises, the probability of requirement changes increases 
proportionately due to the enlargement of business scale 
and complexity, and the reusability gradually drops to a 
low degree. Just because of this, the business-oriented 
components residing at this level, including ERP and OA 
components, gain a low reuse degree of only 32%, as Ref. 
[2] claimed. 

As far as granularity is concerned, the business-
oriented components are usually in larger scale than the 
low level components. When developing systems, great 
amount of effort is needed to program assembling codes 
for grouping small components into larger business-
oriented components. In actual circumstances, the total 
efforts made to reuse the components may even exceed 
the benefit gained through reuse. Meanwhile, as such 
effort is usually specific to cope with private requirement 
and not conducted according to the principle of “design 
for reuse”, such single-time efforts are reduplicated in 
each time of development. Our goal is to transform such 
efforts into once-for-all software resources, so as to 
effectively enhance the potential of reuse. 

III.  APPLICATION-LEVEL COMPONENT APPROACH 

The starting point of Application-level Component 
(ALC) approach is to enlarge the functional scale of 
reusable software module, while at the same time 
decreasing the effort for providing business-oriented 
components. In this way, the reusability of software 
resources can be enhanced. To enlarge the scale of 
reusable software module, ALC approach investigates the 
commonness in high-level business-oriented components. 
Then, such commonness is undertaken by ALC 
components, which cover a larger part of reusable 
constitutions in systems. As the result of the approach, 
the scale of reusable components is finally enlarged to the 
peer level of business-oriented user cases. 

Definition 1. Application-level Component (ALC). 
Application-level component is a kind of reusable 
software module, the functional scale of which is 
equivalent with that of business- oriented user cases. 

As the definition claims, ALC can provide reusable 
modules at a larger granularity and higher abstract level 
than conventional components. These are exactly the 
granularity and level of business-oriented components 
that are in short of in systems like ERP and OA. As the 
reusable functional scale increases, the effort for reuse 
could definitely be lowered. The key point is how to 

increase the reusability of components at this granularity 
and level. For two reasons, the feasibility of the approach 
can be guaranteed. 

1. Although the requirements differ in various 
organizations and at different time, there exists a finite set 
of stable elements and construction mechanism among 
them. These form the commonness of different system 
instances within a domain. The set of elements includes 
the three aspects of system constitutions, e.g., UI 
elements, computing logic elements, and data access 
elements. Such elements reside at a high abstract level, 
e.g., the requirement level. The abstract degree is far 
higher than that of the implementation level, where the 
fundamental small components exist. Based on the stable 
elements, every system instance can be constructed via 
the common construction mechanism, by conducting 
different behaviors of elements and communications 
among the elements. This ensures the feasibility that a 
finite set of common features can be summarized from 
present system instances, and can be utilized to construct 
all the system requirements in the future. 

2. Once the set of common features are summarized, 
ALC components can be developed to implement the 
functions of requirement elements. They actually take on 
the commonness of requirements. When constructing a 
system, the only effort needed is to provide the 
information of the way that a dedicated system is 
constructed from the requirement elements. Since the set 
of common elements is finite, a formal language can be 
established to describe the construction information. An 
instance described by the language can be parsed and 
automatically executed by the ALC components to fulfill 
the corresponding requirement. In this way, the functions 
of ALC components are aimed at requirement level, and 
their granularity is enlarged to capsule a set of basic 
elements, which are capable of constructing a complete 
business-oriented user case, or even a whole system. 

According to the process, the requirement of a system 
is separated into two parts. One part contains the stable 
and common requirement elements, which are undertaken 
by ALCs; the other part is described in a kind of 
Requirement Description Language (RDL), which 
represents the dedicated construction way of a system. A 
standard ALC, along with a piece of description instance, 
make an ALOC, which has the granularity of business-
oriented user cases and can be assembled in the final 
system. 

Definition 2. Application-level Object Component 
(ALC). Application-level object component is a standard 
ALC as well as a requirement description instance DESC 
which represents the function of a business-oriented user 
case. So 

ALOC ::= <ALC, DESC> 
In an ALOC, the ALC part is a component directly 

reused; the DESC part is necessary for describing the 
differences among various systems, including the 
activities that the elements performed, and the 
communication actions occurred among elements. 
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A novel reuse process of “selection and description” is 

then formed and shown in Fig. 2. The RDL uses 
predefined requirement elements as its syntax symbols. 
Each element has a set of attributes and actions 
representing different business semantics. A user case can 
then be described by a sequence of element behaviors and 
communications. The ALCs are responsible for parsing 
the RDL syntax and transforming the element behaviors 
into software semantics. The whole description instance 
can thus be mapped into computer implementation. 

IV.  ANALYSIS OF ALC’S REUSABILITY 

Enhanced component reusability can be gained from 
the new ALC-style “selection and description” process. 
Compared with the conventional reuse style of “selection 
and programming”, there is no need for reduplicated 
programming work In ALC-style process. Instead, only 
the requirement description content is needed to be 
provided to create business-oriented components. The 
ALC components have the same granularity with object 
user cases, which is larger than that of conventional 
components, thus reducing the scale of additional 
information needed for use. Furthermore, as RDL is 
oriented at the business level, it is much more concise 
than traditional programming language, and requires 
smaller description scale when describing the same 
requirement. These simultaneously form the basis of 
ALC's reusability enhancement effect. 

Here we analysis the reusability of ALC with a semi-
quantitative method. To compare the degrees induced by 
different design processes, a unified reusability criterion 
is defined. 

Definition 3. Component Reusability. r(U)refers to 
the proportion of functional scale reused from 
components in a user case U, 

 %100)( ∗=
u

c

E
EUr  (1) 

 
where Ec is the functional scale reused, and Eu is the 
whole functional scale of user case U. 

When creating a business-oriented component 
responsible for a dedicated user case, benefits can be 
gained by reusing some appropriate components. Apart 
from the functions reused, other functions exist which 
cannot be borrowed from existing components, due to the 
nature of requirement diversity and variability. Therefore, 
unavoidable efforts should be made to provide remain 
information supporting those functions. For these two 
parts, suppose Ec is the function scale reused from 
components and Ee is the scale of additional information 
provided, so the scale of overall functions Eu is the sum of 
these two parts,  

 Eu =Ec + Ee (2) 

From (1) and (2), 

 %100)( ∗
+

=
ec

c

EE
E

Ur  (3) 

The nature of reusability is revealed in (3) that, the 
more effort we need to create a user case, the lower the 
reusability of the components is; on the other hand, 
keeping the effort Ee at a certain level, the larger scale of 
functions can be reused from existing components, the 
higher the reusability is gained. 

For a whole system A, Eq. (3) can be slightly extended 
to measure the overall reusability reflected in the system. 
When calculating r(A), Ec is calculated by summing up 
the function scale that is reused in each user case, and Ee 
is the sum of the function scale of the remaining portion. 
Considering the apparent common nature between r(U) 
and r(A), we will focus on r(U) for simplicity in the 
following discussions. 

In conventional component design processes shown in 
Fig. 1, assuming there exists a component C which 
exactly matches the requirement of user case U, only a 
small quantity of customization effort is needed for 
reusing the component. According to Eq. (3), Ee can be 
ignored against Ec, therefore r(U) reaches the theoretical 
upper bound of 100%. 

However, things are different in reality. Due to the 
enormous diversity of user requirements, there is a great 
chance that such “perfect” component cannot be found in 
the market. To avoid developing a component from 
scratch, one should usually undertake modification work 
based on an “approximately suitable” component. In 
general, two kinds of modifications can be performed. 
First, developers may directly modify some business-
oriented components which are distributed along with 
their source codes; second, developers can create new 
business-oriented components by reassembling some 
low-level fundamental components. According to Eq. (3), 
we get 

 Ee = Emodification+ Eassembling (4) 

e.g., the reuse effort Ee consists of two parts, where 
Emodification stands for the effort for modification work, and 
Eassembling stands for the effort for assembling existing 
low-level components. The reusability of conventional 
components can be defined by combining Eq. (3) and (4). 
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Figure 2. Reuse process of ALC 
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Definition 4. Reusability of Traditional Component 
(RT). The reusability of components through 
conventional processes is measured as rt(U), which is 
defined as 

 ( ) %100)( ∗
++

=
assemblingonmodificatic

c

EEE
EUrt  (5) 

For ALC approach, the measurement method differs 
due to the different reuse process utilized. Based on the 
principles adopted by ALC approach, all the common 
elements and constructing mechanism in a domain 
requirement are supported by a collection of ALC 
components C. Such a collection C covers the 
requirements of current and future systems in the domain. 
For any user case U in a system A, there exists a couple 
of components in C which provide some functions 
capable of being reused in C. Benefited from the reuse 
style of “selection and description”, only the effort of 
describing the requirement instead of modifying the 
component is needed. As a result, the reusability of ALC 
components can be defined. 

Definition 5. Reusability of Application-level 
Component (RA). The reusability of components 
defined and reused through ALC process is measured as 
ra(U), which is defined as 

 %100)( ∗
+

=
ndescriptioc

c

EE
E

Ura  (6) 

where Edescription is the effort for describing the 
requirements of object-oriented components 
corresponding to each user case. 

By comparing Eq. (5) with (6), it can be seen that the 
difference between two kinds of reusability lies only in 
Emodification + Eassembling and Edescription. In the next analysis, 
it is proved that the latter is smaller than the former 
because of three qualitative reasons. 

1. The technical complexity of ALC-style reuse process 
is lower. In the conventional reuse process of “selection 
and modification”, developers should be familiar with the 
technical details of both existing components and current 
requirements; the modification work is primarily done 
through a long-period streamline consisting requirement 
planning, implementation design, code programming, 
verification, and maintaining. Whereas in ALC process, 
the developing streamline contains only one stage of 
“describing”; the style of developing work is changed 
into a more concise way of “what you describe is what 
you get”. The time cost of requirement description work 
is significantly lower than that of conventional processes. 

2. The requirement of developers’ technical skill is 
lowered in ALC process. In conventional reuse processes, 
developers perform modification activities using some 
kind of traditional programming language. In ALC 
process, the language utilized changes to RDL. As RDL 
is a tool aiming at straightforwardly describing ultimate 
requirements, such high-level language is easier for 
developers to comprehend and manipulate than general-
purpose programming languages. In our experiences, 
even some business users can be taught using RDL to 

create relatively preliminary software tools independently. 
Furthermore, there can be fewer chances for developers 
to misunderstand the users’ requirements by using RDL 
as a communication tool, which is more precise and can 
be understood by both sides. With this more effective 
language, development task can always be accomplished 
in a shorter period.  

3. The scale of information provided for reuse is 
reduced by ALC approach. RDL is characterized by its 
problem-oriented and business-oriented features. It aims 
at a higher abstract level than programming languages. 
As a result, when implementing the same requirement of 
a user case, small description scale is needed by using 
RDL than traditional programming languages. As the 
scale of description information decreases, the reuse 
effort is accordingly lowered. The following two 
examples are presented to aid this opinion. 

Example 1. A basic instruction of “SUM(array A)” 
is provided in RDL, which implements the semantic of 
“counting the sum of elements within an array A”. With 
programming languages, at least a looping structure 
should be coded to represent the execution details of the 
traversing logic, which may occupy approximately 
several code lines. 

Example 2. Consider more complex requirements 
emerge in user interfaces. It is well recognized that 
developers are obliged to make enormous effort to deal 
with the complicated coupling logic among small UI 
controls and dialogues. References claim that 70% scale 
of code lines in a system are occupied by UI requirements 
[7]. Owing to the UI description language discussed in 
Section 5, such UI requirements can be expressed in a 
much more concise style, and considerable scale of 
description lines is saved. 

The above three aspects of analysis jointly give 
evidences that, when developing a business-oriented 
component for a dedicated user case, the ALC process 
reduces the effort for reuse. 

 Edescription < Emodification + Ecomposition (7) 

An essential conclusion can be drawn by combining 
Eq. (5), (6), (7) that, the reusability of ALC components 
is enhanced. 

Conclusion 1. The advantage of reusability 
enhancement through ALC approach. For the 
construction of a user case U, the reusability gained in 
ALC process is higher than that in conventional processes. 

 ra(U) > rt(U) (8) 

Considering the common nature between a user case 
and a system, Eq. (8) can be extended to form the next 
conclusion applied to system scale. 

Conclusion 2. The advantage of reusability 
enhancement through ALC approach. For the 
construction of a system A, the reusability gained in ALC 
process is higher than that in conventional processes. 

 ra(A) > rt(A) (9) 
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V.  REQUIREMENT DESCRIPTION LANGUAGE 

RDL aids the ALC process by providing an approach 
to formalizing the requirements of common elements and 
the construction mechanism in an application domain. 

Definition 6. Requirement Description Language 
(RDL). RDL is a formal language which is capable of 
describing the requirement of application systems within 
a domain. RDL is defined as a 2-tuple <RE, CM>, where 

1. RE is a finite collection of elements, say, 
Requirement Elements. Each re ∈RE corresponds to a 
reusable entity constituting the requirements in a domain. 
A requirement element is given a specific name, and is 
characterized by its other two parts, that is, P and M. P is 
a collection of data properties and M is a collection of 
behaviors. Therefore re=<Name, P, M>. 

2. CM is the construction mechanism for creating 
system instances based on the requirement elements. 
Generally, the requirement of a system can be described 
as an executing sequence of all the elements participating 
in it. Such a sequence is composed of flows of element 
behaviors as well as communications among elements, 
and CR is defined as the mechanism to establish a 
sequence of elements behaviors. By referring to the 
context-free grammar structures of conventional 
programming languages, the sequence can be described 
using three basic control structures: sequential executing, 
conditional branching, and looping. 

The design process for an applicable RDL is based on 
extensive observation of in-existing systems. Several 
types of commonness in requirements are summarized, 
and the collection of reusable elements RE is derived 
from such commonness reflected in a large amount of 
particular instances. The common characters investigated 
involve at least the following types of commonness 1~8. 

Commonness 1. The commonness of function 
specifications for user cases. Treating a user case as a 
black box, developers can understand its function only 
through the data items it manipulates and the functions it 
implemented. Using RDL as the description tool, all user 
cases’ external requirements can be described as <D, 
Actions>, where D is the collection of input/output data 
items, and Actions is the executing sequence of element 
behaviors involved in the user case. 

Commonness 2. The commonness of requirement 
parameterization. There exists in requirement an 
inherent character of parameterization. Taking user 
interface for example, it is common to see that a couple 
of dialogs can be parameterized from a common UI 
pattern [8], such as table-like pattern, navigation pattern, 
explore-like pattern, etc. By customizing appropriate 
attribute values of the pattern, a particular dialog instance 
can be created. For the elements in RDL, the data 
property collection P provides the mechanism of 
customization. The common function of an element is 
conducted by property values to perform distinct 
behaviors according to diverse requirement instances. 

Commonness 3. The commonness of information 
structures. There exist the same structure styles of 
information in requirements. Consider a dialog receiving 
the user’s input of his birth place, where three cascaded 

pull-down menus jointly represent the input items of 
“country - state - city”. Such cascaded structure can be 
copied, and the contents can be slightly modified to 
represent the input item of the user’s organization, 
displayed as “company - department - team - workgroup”. 
Only the contents displayed in each menu are different. 
Regarding this commonness, a UI element named 
“cascaded input” is derived from these two instances. 
This element gains a larger granularity by grouping 
multiple pull-down menus, and provides properties which 
can be customized to adjust the levels and contents for a 
dedicated instance. 

Commonness 4. The structural commonness of 
behavior sequences. Common structures exist in the 
executing flows of different requirement instances. 
Considering the UI validating task generally used to 
check the validation of users’ input, a typical logic 
structure is: “At the moment of [a dialog’s submission], 
check [each control] to see whether its content is validate; 
if there exists a control whose [value] doesn’t matching a 
predefined [condition], cancel the submission and display 
some [error message] at [somewhere]”. Regarding this 
commonness in diverse instances, the UI validating task 
can be derived as a common structure plus some 
attributes for customizing the structure. This structure is 
assigned as a standard logic all UI elements. 

Commonness 5. The structural commonness of 
elements assembling. There exist common structures of 
the ways low-level elements are grouped into larger 
elements. For example, a typical UI structure of “pull-
down menu + textbox” is frequently used for receiving 
approval results, where the pull-down menu provides 
several options for choice, and the textbox is used to fill 
in additional comments. This grouping structure is 
commonly seen in other requirements such as document 
review, application management, etc, therefore a UI 
element named “approval input” can be derived, which 
groups several small items to provide a pattern of user 
interface. 

Commonness 6. The commonness of moments at 
which specific requirements are handled. In different 
requirement instances, some kinds of functions are 
usually performed at the same moments and by the same 
elements. For the example of UI validating task discussed 
above, it is usually handled at the moment of dialog 
submission; moreover, in dialog initialization, it is always 
the appropriate moment for loading initial data and 
preparing for display. Considering such commonness, 
specific functions are assigned as standard logic to be 
executed by an element at some moment. 

Commonness 7. The commonness of object 
relationships. A series of common patterns can be 
derived to represent different kinds of relationships 
among requirement elements. The approach utilized in 
design patterns for object-oriented programming [4] gives 
a strong hint to the design of relationship patterns among 
business objects. For example, “Master-details” 
relationship extensively exists in business objects like 
product orders, which consists of a master record and 
several detailed records. Each detailed record represents a 
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product attached to the order. Such a pattern can be 
derived as an element representing the relationship of 
different requirement elements, which can be easily 
customized to represent business objects at a larger 
granularity. 

Commonness 8. Mixed types of different 
commonness. Some requirements may have several types 
of above-mentioned commonness at the same time. 
Consider the dialogs displaying product orders in 
different systems. Although the attributes of orders can be 
different due to diverse business rules, all of them comply 
with a common “Master-detailed” relationship pattern. 
Meanwhile, the dialogs are usually designed according to 
an approximately the same layout style, that is, an area of 
controls displaying the master record plus a table 
displaying multiple detailed records. By summarizing 
such mixed types of commonness, requirement elements 
can be derived to take on larger granularity of reusable 
requirements. 

According to above commonness, the common 
constitutions of system requirements are summarized, and 
a collection of requirement elements RE is derived. RE is 
composed of elements covering common features among 
domain systems. Considering the different abstract levels 
of elements, RE can be basically divided into two parts. 
The first part consists of fundamental elements which are 
atomic and rest in the lowest level of requirement; the 
second part consists of higher-level elements that are 
constructed by assembling the atomic elements in the first 
part through various types of requirement patterns. 

A.  Fundamental Requirement Elements 
The collection of fundamental elements summarizes 

the basic constitutions at the lowest level of system 
requirements.  In this level, each element is atomic and 
cannot be divided into other lower-level elements. As 
application systems can generally be separated into three 
distinct aspects, e.g. user interface, computational logic 
and external data access, the collection of fundamental 
elements can also be divided into three kinds. 

1. UI elements: this kind of elements defines common 
constitutions which represents the interaction logic 
between users and systems. Each element acts as a 
displaying item or an interaction item, which has a larger 
granularity than conventional graphical controls, as 
shown in the previous examples of “cascaded input” and 
“approval input”.  

2. Computational elements: defining the common 
elements representing computation and calculation logic 
in system requirements. A series of large-granularity 
elements aiming at business data types along with 
corresponding operating rules are summarized in this 
collection, including multiple-attribute list, relational 
record set, structured documents, etc. Furthermore, a 
series of business-oriented computational instructions are 
equipped, including relational calculus, finance/statistics 
algorithms, traversing/iteration, etc. 

3. Data access elements: defining the constitutions 
supporting data access logic occurring between systems 
and data sources. For generality, a series of data access 
primitives are defined. The requirements of access to 

several types of standard data sources can be described, 
such as relational databases and structured documents. 

B.  Requirement Patterns 
Requirement patterns are a method to further promote 

the advantages of RDL. The patterns are derived based on 
the inherent commonness of different constructing styles 
in system instances. Such commonness refers to the 
previous Commonness 3~8. Each pattern characterizes a 
dedicated cooperating style of multiple fundamental 
elements. According to the three aspects of systems, three 
kinds of requirement patterns are derived, e.g., UI 
patterns, computational patterns, and data access patterns. 

By grouping the fundamental elements, the scale of a 
pattern is naturally larger than that of each element it 
contains. As the functional scale is enlarged, the effort 
needed for reuse decreases. Therefore, patterns generally 
gain a higher degree of reusability than that of the 
fundamental elements. 

It is notable that the collection of patterns has no 
absolute boundary. Due to the opening nature of 
requirements, higher level of patterns can be constructed 
at the basis of existing lower-level patterns. Therefore, 
new patterns can be appended to RDL in an incremental 
style, providing a method to hieratically expand RDL as 
needed. Plus the fundamental elements at the lowest 
level, the collection of all requirement elements are 
organized in a layering architecture. An architecture 
prototype and actual description instances can be found in 
Section 8 of this paper. 

VI.  SYSTEM ASSEMBLING 

System assembling mechanism is supported in ALC 
process through composition of multiple user cases. As 
the user cases can each be implemented by a large-
granularity component, say, application-level component, 
a whole system can be constructed by assembling the 
group of ALC components implementing the 
corresponding user cases.  

The user cases in a system may not be absolutely 
independent with each other. Instead, there may be 
couplings and interactions among some user cases; a 
higher-level user case may be composed by a series of 
lower-level user cases, where the latter provides 
functional services being requested by the former. This 
kind of relationships forms an aspect of application 
requirement at the level of system assembling, and is 
necessary to be supported by ALC. 

Several current-existing methods for assembling of 
components can be referred to, such as framework [6] and 
connector [9]. The methods based on frameworks require 
additional assembling platforms aside from the 
component repositories; the methods based on connectors 
rely on specific representation elements to express the 
composition relationships and coupling details. They can 
all be classified into the category of heavy-weight 
assembling methods. In ALC process, a distinct 
assembling mechanism is utilized in a relatively lighter-
weight style. This mechanism is aided by only one 
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description primitive in RDL, which describes the calling 
logic between each pair of two components. 

Definition 7. Component Calling Primitive (CCP). 
CCP is a basic primitive provided in RDL to describe the 
assembling relationships of user cases within a system. In 
the DESC which describes the requirement of a user case, 
a calling primitive may appear in the executing sequence 
as the form of 

CCP = <Invoked_ALOC, DM> 
where Invoked_ALOC indicates a component to be called 
by the current-running component, and DM describes the 
data mapping relationship between the caller and the 
invoked component. DM is a series of 2-typle 
<Caller_Data, Invoker_Data>. 

Generally, the executing semantic of CCP is as follows: 
when a CCP is parsed and executed by the current-
running component, it first launches the component 
indicated by Invoked_ALOC into a ready-to-run state; 
second, the caller prepares initial input data for the 
invoked component according to DM, delivers the data to 
it, and triggers its running; next, the caller suspends itself 
and waits for the invoked component’s completion of 
running; then, when the invoked component ends up, the 
caller takes over its output data; the data are finally 
transformed back to the caller as the service result of one 
request. 

Such process provides a unified service-requesting 
mechanism which is business-independent. In this way, 
all kinds of couplings and relationships among user cases 
can theoretically be described with CCP. In RDL, CCP is 
designed as a shared instruction which is supported by all 
the requirement elements. Therefore, all user cases 
implemented by ALOCs gain the ability of assembling 
higher-level compound modules. 

Because there are different types of requirement 
aspects in systems, the semantic of calling logic is 
slightly different according to the types of the caller and 
the invoked components. There are totally six supported 
calling types, shown in Fig. 3. The applicable occasions 
and semantic rules for each type are as follows. 

Calling Type 1. UI → UI. Requesting lower-level UI 
service from a higher-level UI component. In this type, a 
portion of requirements in a business-oriented UI 
component can be fulfilled by invoking another UI 
component. The UI of the invoked component is entirely 
embedded the caller’s UI. In this way, the invoked 
component’s UI is reused as a whole, at the granularity of 
an user case. This mechanism enhances the reusability 
degree of UI resources which cannot be achieved by 
conventional small-grained graphical controls such as 
“textbox” and “button”. 

Calling Type 2. UI →  Computation. Requesting 
service of computation logic from a UI component. In 
application systems, it is frequently required to execute 
computational operations inside user interfaces. As many 
computational operations are self-contained and have the 
potential of being reused in different occasions, this 
calling type enables components responsible for 
computational logic to be called by UI components, to 
fulfill the requirements as requested. 

Calling Type 3. UI → Data Access. Providing data 
access services for UI components. By invoking data 
access components, data loading and persisting logic can 
be reused inside user interfaces. 

Calling Type 4. Computation →  UI.  Calling UI 
components during computational logic, to provide 
necessary interaction interfaces as needed. 

Calling Type 5. Computation → Computation. In a 
computation component, lower-level computation 
components can be called. This calling type can be used 
in a nesting style, which enables components to 
encapsulate computation requirements at different 
abstract levels. 

Calling Type 6. Computation →  Data Access. 
Loading and saving business data in computation 
operations whenever needed. 

The above six calling styles jointly provide the ability 
to describe the assembling requirements for systems. By 
indicating the calling activities between each two 
components, the relationships among all user cases can be 
described in a bottom-up way. All the user cases can be 
assembled increasingly, and the whole system can 
eventually be constructed. 

VII.  ALC STRUCTURE MODEL 

Application-level components have a common 
structure with which to realize their tasks. The basic task 
of ALC is declared in previous sections as parsing and 
implementing the requirement described in DESC, by 
executing the behaviors of requirement elements 
involved. All components implemented in the prototype 
comply with a structure model represented in Fig. 4. As 
discussed in Section 3, an ALOC consists of two parts 
which are separately defined as 

ALC = <D, A, C, Cm, If> 
DESC = <D’, A’, Actions> 

1. The data properties of a requirement element is 
defined as two parts, e.g., D and A. D is the collection of 
data, and A is the collection of attributes. For each data 
property of a requirement element, if its value can be 
determined at the design time, it should be put into A; 
otherwise, if its value can only be determined at run time, 
it should be put into D. In accordance with this rule, the 
values of all the members in A should be tuned by 
developers at describing stage, according to the known 
requirement of the user case; whereas the members of D 
are generally treated as input/output data whose values 
are passed through from their calling components at 
runtime. 

Computation 

UI 

Data Access 

(2) 
(3) 

(4) (5) 

(6) 

(1) 

Figure 3. Component Calling Types 
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2. The behaviors of a requirement element are defined 
as C. Each member in C is implemented an executable 
routine, which performs the equivalent software activity 
of a corresponding behavior. 

3. Cm is a collection of executable routines which 
implements the standard running mechanism of the 
structure model. Four kinds of tasks are carried out by 
Cm: booting and establishing runtime environments at 
startup moment; responding to interface requests during 
runtime; parsing and executing DESC to implement the 
desired requirement; executing component calling 
primitives appearing in DESC. 

4. If is the definition table of interface commands. 
Each command defines a kind of communication service 
which is supplied by the component. In practice, a 
minimum collection of If is shared by all the components, 
providing interface commands to supply declaration 
information for the developers. By invoking such 
commands, developers can inquire the contents of D, A 
and DESC from the component. 

5. DESC is the essential part which implements 
description mechanism. The requirement of a user case is 
described by three parts. First, D’ is used for describing 
the collection of data which is not publicly defined in D 
but is manipulated by a dedicated user case. Second, A’ 
contains the values of all the members in A indicated by 
developers, according to the requirement of the user case. 
Finally, Actions describes the executing behavior of the 
user case by defining a sequence of executable routines 
selected from Cm. 

The above constitutions each take different 
responsibilities in different development stages: the 
mechanism provided by Cm is shared by all the 
components based on the structure; D, A, C and If are 
specialized in each ALC, implementing the reusable 
function of a requirement element; DESC provides the 
description mechanism for implementing a dedicated user 
case, by providing requirement description information 
which is parsed by ALC. They jointly accomplish the 
task of creating business-oriented components by reusing 
existing ALCs. 

The assembling mechanism discussed in Section 6 is 
supported by a portion of routines in Cm, that is, the 
routines executing CCP. As the semantic of CCP is 
basically defined from the viewpoint of running behavior, 
a collection of routines is adequate for completing the 
component invoking and data exchanging tasks. In this 
way, no additional constitution is needed for the 
assembling mechanism. This verifies the simplicity and 
light-weight nature of CCP method. 

 
 
 

VIII.  EXPERIMENTS AND EVALUATION 

A.  The Prototype of ALC Repository 
To evaluate the practicability of ALC approach, an 

ALC repository prototype is established, shown in Fig.5. 
The prototype is reused in several system development 
processes, where measurements are carried out 
simultaneously. 

Although the proposed repository is oriented to the 
domain of information application systems, efforts are 
currently being made to extend the reuse scope of ALC 
approach to more diverse domains, including operating 
systems, embedded systems, distributed middleware 
systems, etc. Preliminary evidences have been obtained, 
which reveal the promising effectiveness of utilizing 
ALC approach in various domains. 

By observing the commonness of a large scope of 
practical system instances, a finite collection of basic 
requirement elements are summarized, and a series of 
patterns are derived subsequently. 

B.  System Construction 
A medium-scale enterprise management system is 

selected to be built with the repository. The system 
consists of 85 user cases. Developers implement each 
user case by reusing an appropriate ALC and describing 
the desired function requirement with RDL. 

Two user cases implemented by reusing the same ALC 
are shown in Fig. 6. The default interface of “Master-
Detailed Pattern” is shown in Fig. 6(a). This pattern 
summarizes the commonness of “1:N” object relationship 
in systems, and provides a frequently seen UI framework 
supporting the necessary operations such as 
displaying/editing the master object, appending a new 
detailed object, selecting and deleting detailed objects, etc. 
By customizing the attributes of the pattern, more 
concrete business-oriented components can be created. 
The values of the attributes provide differentiated 
information for the two user cases. As shown in Fig. 6(b) 
and Fig. 6(c), the interfaces of two user cases, e.g., 
“document submitting” and “order entering” are all 

D A C Cm If 

DESC 

D’ A’ Actions 

Figure 4. ALC Structure Model 
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Figure 5. Prototype of an ALC Repository

382 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER



created by reusing and customizing the same “Master-
Detailed Pattern” component. 

Revealed by the above example, at least two 
advantages are embodied by ALC approach: 

1. Only one component is needed to create a user case, 
which means the enlarged scale of granularity in ALC 
components. Therefore, a majority part of the user case’s 
requirement has been implemented by a component, 
resulting in the sharp decrease of the description effort. It 
can be seen from the description content shown in Table 

1 that, only 64 text lines are needed to create a user case, 
which can easily be done in several minutes. 

2. Not only the effort for creating user cases decreases, 
the effort of modifying existing components to deal with 
requirement changes are also reduced. The effort for 
maintaining dozens lines of description content is 
definitely lower than the effort for maintaining 
complicated programming codes which are needed in 
conventional reuse processes. 

 

Table 1. Description Instance of “Document Submitting” User Case 
/* System: Enterprise Management System  

* User case: Document submitting 
* Base component: Master-Detailed */ 
 

.args { 
  Master_Title=Order Submitting 
  Detail_Table_Title=Documents: 
  Add_Detail_Title=Add Document 
  Del_Detail_Title=Remove Document 
  
  Master_Form={ 
    <Table rows="4" cols="4" align="R,L,R,L"> 
      (0,0)Document No.: 
      (0,1)<Input id="DocumentNo" readonly> 
      (1,0)Category: 
      (1,1){CascadedInput "Category", ITEMS("Design specifications, 
Meeting notes, Test reports, Applications, References")} 
      (1,2)Enter new category if not provided in the list: 
      (1,3)<Input id="NewCategory"> 
      (2,0)Name: 
      (2,1)<Input id="Name"> 
      (2,2)Version: 
      (2,3)<Input id=" Version" text="1.0"> 
      (3,0)Date: 
      (3,1){DateInput "SubmissionDate"} 
    </Comp:Table> 
 
    Comments:<p> 
    <Input id="Comments" rows="6" cols="70"> 
  } 
 
  DetailTableColumns=<File Name> 
  Item_Add_Form={ 
    Select File: {File "FileName" SIZE(80)} 
  } 

  FormPreprocessor={ 
      SubmissionDate := $FULL_DATE 
      DocumentNo := CALL_COMP(‘SerialGenerator’, 
‘DOC_$DATETIME’) 
      NewVersion := CALL_COMP(‘VersionGenerator’, 
$OriginVersion) 
  } 
  FormPostprocessor={ 
      Category := $NewCategory IF strlen($NewCategory) > 0 
      Documents := PACK_FILES($DetailTable) 
      CALL_COMP(‘IO_SR_Writer’, ‘INSERT files@db, 
<$DocumentNo, $NewVersion, $Category, $SubmissionDate, 
$Documents>’) 
  } 
 
  FormChecks={ 
      strlen("$Name") == 0 ? Alert(“Document name must not be 
empty”) 
      $Version <= $OriginVersion ? Alert(“New version must be 
larger than the initial version”) 
      db_num_rows("$DetailTable") == 0 ? Alert(“At least one file 
should be choosn”) 
  } 
}.args 
 
.data { 
  OriginVersion, String, I 
  NewVersion, String, O 
  
  DocumentNo, String, O 
  Category, String, O 
  NewCategory, String, L 

Name, String, L 
SubmissionDate, String, O 
Comments, String, O 
 

FileName, File, L 
 

  Documents, Files, O 
}.data 

 

 
(a) Default UI of Master-Detailed Pattern 

 
(b) UI of “Document Submitting” User Case 
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(c) UI of “Order Entering” User Case 

Figure 6. Reuse Examples of “Master-Detailed” Component 

C.  Reusability Measurements 
Four kinds of measurements are carried out along with 

the development cycle. 
1. Practicability of the ALC repository. As families of 

commonness in a domain are summarized and 
implemented by the ALC repository, the development 
task of the enterprise management system is successfully 
accomplished by reusing the repository. Following the 
same way, future systems in the same domain can 
promisingly be built at a low cost. The diversity nature of 
requirements will never be an unbreakable obstacle for 
reuse. 

2. Entity Reusability. This kind of reusability reveals 
the degree of reuse benefits obtained in system building 
stage. When creating a user case, the reusability of the 
component is measured according to Eq. (6) in Section 3. 
In practice, the efforts of Ec and Edescription are measured 
respectively according to the lines of ALC source code 
and the lines of description instance DESC, so the entity 
reusability is measured as 

 100%
LOC(DESC)LOC(ALC)

LOC(ALC)er(U) ∗
+

=  (10) 

3. Alternation Reusability. This kind of reusability 
reveals the degree of reuse benefits obtained during 
system maintaining stage. When modifying a user case to 
fit the changed requirements, as there is no need to 
modify the ALC, the reuse effort lies only in the 
modification scale of DESC, so the alternation reusability 
is measured as 

 100%
)LOC(DESCLOC(ALC)

)LOC(DESCLOC(ALC)
ar(U)

nAlternatioAfter

unchanged ∗
+

+
=

_
 (11) 

These two kinds of reusability are measured at each 
time of reuse, and the degrees revealed are shown in Fig. 
7. The entity reusability of ALC reaches a high degree of 
91.4~93.8%, while the alternation reusability reaches 
92.5~95.7%. Compared with the average reusability of 
17~32% from NASA [2] (or 81.9% at the maximum level), 
our method effectively gains a higher degree. 

Another feature can be noticed in Fig. 7 that, the reuse 
degrees of different types of components are 
approximating balanced. This reflects the enhancement of 

reusability for all the components composing different 
aspects of requirements. This is once a problem not 
resolved in existing methods, as revealed by the data CC 
from Ref. [3]. 

4. Cross-domains system development. Aside from the 
enterprise management system, we put the repository into 
development for more domains, including ERP, OA, etc. 
Because such domains are all sub-domains of information 
systems, the repository can straightforwardly be reused in 
those domains. The reusability is measured at the peer-
level with Fig. 7. 

 
(a) Entity Reusability 

 
(b) Alternation Reusability 

Figure 7. Measurements of ALC Reusability 

IX.  COMPARISONS WITH RELATED METHODS 

Software reuse has long been a research focus in 
software engineering. Reference [4], [5] and [6] each 
proposes a kind of reuse process along with a 
corresponding component model. Although these models 
are extensively used in long-term development practice, 
the reusability of components is limited at a low level. 
Other literatures such as [10], [11] and [12] all emphasize 
different opinions on this phenomenon, but the problem 
remains. 

With ALC approach proposed in this paper, a new kind 
of reuse process is established. Benefited from the 
enlarged granularity and the description ability, the 
degree of reusability obtained by ALC approach is 
enhanced to a higher level. Overall, developers can take 
two advantages from the new approach: 

1. The granularity of ALC components is larger than 
that of conventional components. As the abstract level of 
both the basic requirement elements and the requirement 
patterns is upgraded to business-oriented level, the 
functional scale of such constitutions is larger than a low-
level component. As a result, a user case can be 
implemented by only one ALC component. The effort 
needed for reusing an ALC component is decreased.  

2. ALC approach provides higher flexibility to deal 
with requirement diversity and variability. An ALC 
component repository provides a completed collection of 
reusable elements for an application domain. Therefore, 
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an unbounded collection of diverse systems can be built 
by reusing such repository. Particularly, unforeseen 
system requirements can also be supported without 
modifying the repository. Once the requirement changes, 
the alternation effort for ALC approach is lower than 
conventional methods. Related methods concerning 
requirement describing language can be found in Ref. 
[13], [14] and [15]. 

The reusability is enhanced because of a combination 
of above factors. The ALC approach has the advantage of 
enlarging the reusable granularity while at the same 
lowering reuse effort. By incorporating ALC approach in 
development practice, systems can be built in a more 
efficient and lower-cost way. 

X.  CONCLUSION 

A new kind of reuse process named application-level 
component approach is proposed and proved to gain 
higher reusability than existing methods.  The process is 
characterized by the new reuse style of “selection and 
modification”. Compared with current methods, ALC 
provides the ability to cope with diverse and variable 
requirements on its own initiative, thus making it feasible 
to provide a repository which can be reused for 
implementing future unforeseen requirements. The 
detailed process of the approach is discussed, including 
the design of a requirement description language, the 
summarization of requirement patterns, the assembling 
mechanism, as well as the standard structure model. 
Measurements reveal the enhanced reusability at 
92.5~95.7%, which verify the effectiveness of the 
approach. 
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