
Study and Metric on Macro-Topology
Characteristic Values of Software Networks

Zheng Liu, Hai Zhao

College of Information Science and Engineering, Northeastern University, Shenyang, China
Email: liuzheng@mail.neu.edu.cn

Qian Zhang

Department of TSD, NeuSoft Company, Shenyang, China
Email: zhangqian@neusoft.com

Abstract—According to the research progress of software
networks in these years, the software structural networks
show the same characteristics with complex networks and
the software topological structure has an effect on the
quality characteristics of software systems. The research
work begins with the statistics analysis of three
characteristic values, which can reflect the efficiency,
complexity and orderliness of software systems separately,
of 500 open source software systems. Then D(AP), D(AD)
and D(E) are presented for measuring the quality
characteristics of software systems refer to the definition of
deviation of characteristic value and quality characteristics
relative to software scale. By testing on seven Linux kernels
of different versions, the metrics on software networks
based on deviation of characteristic values is validated
effective.

Index Terms—Deviation of characteristic value,
Metrics of software, Macro-topology, Software
network

I. INTRODUCTION

Nowadays, the software scale is increasing at a rapid
rate in order to fit the more complex application, which
results in the quality of software system beyond control.
Those software metric sets applied for several years
cannot deal with the enormous complexity of a software
system. So how to find an adequate metric set for large-
scale software systems is a challenge for software
engineers. Some researchers have studied on a great deal
of orient-object software networks and found the
structure of these software systems are not random and
out of order, instead, most of them present the global
statistical features such as “small world” property and
“scale free” property. According to massive experiment
data, Myers pointed out that large-scale software systems
represent a class of artificial complex networks, and this
point are approved by more and more researchers. Since
then, more and more study on the characters of software
networks has shown that the statistic characteristics can
reflect the quality of software system factually. So
measuring the complexity of a large-scale software
structure based on software networks provides the
foundation for our research works.

According to the statistic characteristics of software
networks macro-topology characteristic values, the
definitions of deviation of characteristic values of
software networks and relative quality characteristics of
software on scale are presented in this paper. Then from
this perspective, we evaluate the average shortest path
length deviation, the average degree deviation as well as
the standard structure entropy deviation to measure the
efficiency, structural complexity and orderliness of
software system. These new measure methods lay a good
foundation for building an effective metrics set for large-
scale software system in the future.

II. RELATED WORKS

In the later 1990s, the configuration, design and
development method of a software system had changed
from oriented-object paradigm to oriented-network
paradigm along with the rise and development of
technique of web service, SOA and semantic web [1].
The particle size of software object is becoming larger,
the topology is getting more and more complex, and the
coupling relation between objects is looser than before,
which lead to the rapid increase of the scale and
complexity of software systems. During this period, some
mainstream metrics for OO software are recognized and
applied extensively [2, 3]. Meanwhile, some new
measure methods were proposed in succession, such as
the property-based software engineering measurement
proposed by Briand [4], the method using function points
by Furey [5], the measurement on software size and
productivity rating by Arnold and Pedross [6], and the
method of using combinations of metrics by Bauer [7].
Later at the end of 20th century, Fenton et al summarized
and evaluated all the methods presented above and
considered that these methods modified Chidamber &
Kemerer metrics (CK) and Metrics for OO design
(MOOD) and enrich the metrics for OO software, but
there were still limitation in predicting the quality of
software system that due to the inadequate understanding
of the complexity of software system.

Recently, researchers began to study the complexity of
software system appearing in global aspect using theory
of complex networks, which can describe the global

460 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.3.460-467

structure and actions of software systems more exactly.
Started from the change of software structure, Vasa et al
[8, 9] predicted the scale and constructed cost of a
software system by the relation between the numbers of
arcs and vertexes in software network and proposed a
metrics set for the stability of software structure. This
method plays a guiding role in software development.
Girolamo et al [10] detected the structural faults using
some properties of software network such as betweenness
from class-level, network-level and design-level
separately for evaluating the quality of software system.
Ma et al [11] proposed a multi-level metrics set which
gathered all the available methods and applied them
measure a whole software system on code-level, class-
level and system-level according to their characteristics.
Li et al [12] introduced network evolution model into
complexity metrics of software system, and proposed an
evolution model CN-EM to describe the process of
evolution that the properties of complex networks
appearing in practical software system. Melton et al [13]
studied the dependent relation between classes in 81 open

source software systems, and revealed one of the causes
of creating dependent cycle so that guide programmers to
improve their work. Until now, studying the
characteristics of macro-topology characteristic values in
software network is starting for a while and there isn’t
integrated system to support such theory. So it is
important to continue this research work further.

III. MACRO-TOPOLOGY CHARACTERISTIC VALUES OF
SOFTWARE NETWORK

A. Static structure of software network
Static structure of software network is a network

model in which the function, class or model in source
code is abstracted as vertex and the relation (including
calling, inheritance and reference etc) between code
blocks mentioned above is abstracted as arc. It is always
called software network. Analyzing on such structure got
by the method of re-engineering can help us obtain the
global characteristics of software system.

Figure 1. The analysis method of open-source software system architecture

Figure 2. The analysis method of open-source software system

architecture for undirected graph

The static macro-topology characteristic values of
software network studied in this paper are based on
undirected networks. So we should do more abstract
work on the abstracted result shown as Figure 1 that is
transforming the directed relation such as calling,
inheritance and reference etc to simple undirected
relation and then gaining undirected networks. This
course is shown as Figure 2.

B. Macro-topology characteristic values
In order to evaluate large-scale software systems,

they are always treated as networks. By analyzing
macro-topology characteristic values of complex

networks in software networks, researchers can get the
global characteristics of them and then give exact
evaluation of quality of software systems. In this paper,
three characteristic values of them are used to measure a
large-scale OO software system, which are average
shortest path length, average degree of each vertex and
the standard structural entropy.

Average shortest path length is also called
characteristics path length, which presents the average
value of the shortest distance between any pair of
vertexes through a graph. This characteristic value
describes the degree of separation of vertexes, which is
called network diameter. Most of the large-scale
networks are found that their diameters are much shorter
than expectation, and this phenomenon is called “small
world”.

Degree of a vertex is defined as the number of
neighbors connecting with it, and the average value of
all the vertexes’ degree is called average degree. Degree
distribution, describing statistical property of system

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 461

© 2011 ACADEMY PUBLISHER

structure, indicates the connectivity of each vertex in
graph. On the other hand, degree of a vertex reflects the
importance of this vertex in graph. The larger the in-
degree is, the higher the possibility of being reused may
be; and the larger the out-degree is, the more complex
the vertex will be.

Entropy is a state function whose value keeps
invariant when the state of a system is determined. For
information entropy is a metrics for orderliness of
systems that is larger when the system is in disordered
state while is smaller when the system orderliness is
improved. The evolution of systems can be described by
the relation between entropy and orderliness of systems.

The network structure entropy is defined as follows
[14]:

∑
=

−=
n

k

kpkpH
1

2)(log)((1)

p(k) is degree distribution, n is the whole number of
vertexes in graph. According to the extreme value of
information entropy, the network structure entropy
reaches its maximum when the structure of network is
uniform, and nH 2max log= ; when the structure of
network is star-shaped, the entropy is minimum and

)1(log)]1([log 22min −−−= nnnnH . It is known from the
analysis above that the network structure entropy and
both of its maximum and minimum values all associate
with the number of vertexes in software network. In
order to eliminate the influence of different software
samples, standard structure entropy of software network
is defined as follows [14]:

minmax

min

HH
HHH s −

−
= (2)

Hs is independent of the scale of software system and
it has the same changing trend with network structure
entropy. So we can study the evolution of network
macro-topology structure by the variation of Hs.

IV. METRICS METHOD BASED ON DEVIATION OF
CHARACTERISTIC VALUES

A. related definitions
Measuring the quality of software systems by

quantifying the characteristics of software static macro-
topology characteristic values is a metrics method
discussed in this paper, and the main metrics parameters
called deviation of characteristic values of software
network is defined as follows:

Definition 1. Deviation of characteristic values of
software network. It describes the deviation between the
characteristic values of software measured and the
average characteristic values of all the software widely
used at present which have the same size, and it is
marked as D.

According to the macro-topology characteristic
values of software network, there are deviation of
average shortest path length, deviation of average degree
and deviation of standard structure entropy used for
measuring the quality of software systems in this paper.

It is known that the scale of a software system
determines if its quality level can be accepted. For
example, the same complexity accepted by a large-scale
software system with more than 5000 classes may not be
accepted by a small-scale one with only 100 classes. So
the quality characteristics of a software system discussed
here is a value relative to the software scale, and its
definition is as follows:

Definition 2. Quality characteristics relative to
software scale. It indicates the quality characteristics that
can be accepted for a software system with given scale.

According to the deviation of characteristic values of
software network discussed, three quality characteristics
relative to software scale are used for measuring a
software system, which are efficiency, complexity and
orderliness. We select 500 software systems from
different open-source web as sample data for all the
following statistical experiments.

B. Metrics on deviation of average shortest path length
(1) Average shortest path length and the efficiency of

software relative to its scale
 The average shortest path length means the average

shortest path length between any pair of vertexes in
software networks, which reflects the average minimum
depth of function call in code structure. Because of the
negative correlation between functions nesting depth and
efficiency of software, the average shortest path length is
the metrics for software efficiency: The longer the
average shortest path length is the deeper the functions
nesting are, and the efficiency of software will be
affected negatively in the meantime.

 (2) Deviation of average shortest path length
 First, we do some statistical jobs on the sample

software systems to obtain the distribution of average
shortest path length, and the result is in table 1 shown as
follows.

Table 1. Statistics of the average shortest path length

Stat. Value
Average 2.4085457875
Median 2.3371044040
Minimum 1.0333333333
Maximum 5.6090730700

It is shown from table 1 that the distribution interval
of the average shortest path length is from
1.0333333333 to 5.6090730700, and most of the path
length values are around 2.35. Then, the changing trend
of the average shortest path length along with increasing
of the number of nodes is analyzed.

Figure 3 describes that the average shortest path
length increases with the number of nodes increasing,
and after the number of nodes reaches 4000, the
increasing trend of the average shortest path length slow
down. The fitting equation of the curve in Fig.3 is

X9388391.69117523345628660.68586705 ×=LY (3)
The fitting coefficient R=0.895.

462 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Figure 3. Average shortest path length and the number of nodes

According to the definition of deviation of

characteristic value and the characteristics of average
shortest path length, the deviation of average shortest
path length in software networks is defined as follows:

Definition 3: Deviation of average shortest path
length in software networks is the difference between
the average shortest path length of given software
system and its average level of those open-source
software systems with the same scale which are used
widely at present. It is marked as D (AP), and there is

LYLAPD −=)(. Among them, L is the average shortest
path length of software system being measured and YL is
the average level of average shortest path length
calculated by formula (3).

Because the average shortest path length has negative
influence on efficiency of software system, we draw the
conclusion that if D(AP)>0, the average shortest path
length of given software system is longer than the
average level of other software systems with the same
scale, that means there is still improvement room on
efficiency by reducing the function nesting depth; while,
if D(AP)≤0, the average shortest path length of this
software system is shorter or equal to the average level,
that means this eigenvalue has little negative influence
on its efficiency.

C. Metrics on deviation of average degree
(1) Average degree and complexity of software

relative to its scale
Software networks are abstracted from software

structure directly, so according to the definition and
characteristics of average degree of software networks,
average degree of a software system can reflect the
structural complexity of this system: the larger the
average degree is, the more complex the system is, and
on the contrary, a system with lesser average degree
always has lower complexity.

 (2) Deviation of average degree
By analyzing on the average degree of all the software

samples, we get the statistics data of average degree as
table 2 listing.

Table 2. Statistics of the average degree
Stat. Value
Average 2.4085457875
Median 2.3371044040
Minimum 1.0333333333
Maximum 5.6090730700

As it is shown from table 2 that the average degree
distributes from 0.942 to 3.986, the span is a little wide.
But the average value and median value of it are 1.97055
and 1.99620, which means the average degree of most
software networks is around 1.98. Then in order to
analyze on the relationship between the number of nodes
and the average degree, plotting and fitting the change
trend of average degree with the increasing of the
number of nodes in Figure 4.

Figure 4. Average degree and the number of nodes

From the picture above, it is found the average degree

of software networks concentrating on the interval from
1 to 3, and its value becomes larger along with the
increase of the number of nodes. Especially when the
logarithm of number of nodes is beyond 3.5, the value
increases more rapidly. In order to analyze the
relationship between average degree and the number of
nodes, we do some fitting job on the distribution of
average degree. The fitting equation in Figure 4 is

32 X4716834270.04886675X206035310.28476394

-X0283171.15578778196751220.20639100

×+×

×+=><

　　　

kY

(4)
The fitting coefficient R=0.801

According to the definition of deviation of
characteristic value and the characteristics of average
degree, the deviation of average degree of software
networks is defined as follows:

Definition 4: Deviation of average degree of software
networks is the difference between the average degree of
given software system and its average level of those
open-source software systems with the same scale which
are used widely at present. It is marked as D(AD), and
there is ><>< −= kk YKADD)(. Among this, ><kK is the
average degree of the software system being measured,
and ><kY is the average level of that calculated by
formula (4).

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 463

© 2011 ACADEMY PUBLISHER

Because of the relation between average degree in
software networks and the complexity of this system, we
can draw some conclusions that if D (AD)>0, the
average degree of given software network is lager than
the average level of other software systems with the
same scale, which means the complexity of this software
structure is too high and there is still improvement room
to reduce it by decreasing average degree; on the
contrary, the complexity of software structure is
acceptable if D (AD)≤0.

D. Metrics on deviation of standard structure entropy
(1) Standard structure entropy and the orderliness of

software structure
According to the definition of standard structure

entropy of software networks, the standard structure
entropy is metric for the orderliness of software
networks, and further, the orderliness of software
networks can reflect the orderliness of software code
structure. So we can draw a conclusion that the lesser the
standard structure entropy is, the more orderly the
software code structure and on the contrary, the larger
the standard structure entropy is, the more complex and
disorderly the software structure is. On the other hand,
the maintainability of software system is affected by the
complexity of software structure, so the standard
structure entropy also bring effect on the maintainability.

(2) Deviation of standard structure entropy
Analyzing on standard structure entropy of all the

sample software networks, we obtain the statistical data
about the standard structure entropy shown in table 3 as
follow:

Table 3. Statistics of the standard structure entropy
Stat. Value
Average 0.3263393388
Median 0.326334383
Minimum 0.208619728
Maximum 0.52204386

It is shown in table 3 that the standard structure
entropy distribute in a large span interval of
[0.208619728 ， 0.52204386], which indicates the
orderliness of software systems are difference greatly.
But according to the average and median values, the
entropy values are determined concentrating around
0.32633. In order to observe the change trend of
standard structure entropy along with the increasing of
the number of nodes, we plot the relationship between
these two parameters in Figure 5.

It is shown in Figure 5 that along with the increase of
the number of nodes, standard structure entropy turns to
lesser and lesser till the number reaches 2000. The curve
fitting equation in Fig.5 is

)X 149006926-0.2371493(803423250.55448373 ××= eY
SH (5)

The fitting coefficient R=0.845.
According to the definition of deviation of

characteristic value and the characteristics of standard
structure entropy, the deviation of standard structure
entropy of software networks is defined as follows:

Figure 5 Standard structure entropy and the number of nodes

Definition 5: Deviation of standard structure entropy

of software networks is the difference between the
standard structure entropy of given software system and
its average level of those open-source software systems
with the same scale which are used widely at present. It
is marked as D(E), and Hs YHED −=)(. Among this, HS
is the standard structure entropy of the software system
being measured, and YH is the average level of that
calculated by formula (5).

Some conclusions can be drawn based on the
characteristics of standard structure entropy and the
relationship between the entropy and the number of
nodes as follows: If D(E)>0, the entropy value is larger
than the average level, which means the code structure is
complex and disorderly, and there is still room for
improving it. On the contrary, if D(E)≤0, it is means the
orderliness of code structure of the given software
system is acceptable.

V. EXPERIMENT AND ANALYSIS
In order to validate the metrics for software static

structure based on deviation of characteristic value can
reflect the effect on quality characteristics of software
brought by macro-topology characteristic values
authentically, we measure several software systems
using metrics mentioned above and then do more
analysis work on the result data.

We choose Linux kernel, one of the famous operation
systems, as our test sample to carry out the experiment.
Firstly, the characteristic values of different edition
Linux kernels are calculated, and the statistical results
are shown in table 4.

Table 4. Data of Linux kernel static structure macro-topology
characteristic values in metric

Version Nodes
number

Arcs
number

Average
degree

Average
shortest

path
length

Standard
structure
entropy

1.2.13 552 347 1.26 2.1674 0.1773
1.3.64 961 617 1.28 2.4188 0.1674
2.0.37 1776 1182 1.33 2.0411 0.1577
2.1.36 1989 1374 1.38 2.6518 0.1585
2.2.11 3593 2662 1.48 2.7243 0.1521
2.3.50 5056 4055 1.60 2.85 0.1511
2.4.36 9453 8452 1.79 2.74 0.1456

464 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Table 5. Metric results of Linux kernel static structure

Version Node number D(AP) D(AD) D(E)
1.2.13 552 0.0180650014 0.2705953274 -0.0620938333
1.3.64 961 -0.1370829018 0.1313174998 -0.0559318627
2.0.37 1776 -0.3019109596 -0.4093739719 -0.0488784093
2.1.36 1989 -0.2943446907 -0.2292642494 -0.0451026064
2.2.11 3593 -0.4323069234 -0.4717456914 -0.0365178303
2.3.50 5056 -0.4636572138 -0.5182726067 -0.0292689539
2.4.36 9453 -0.5810855087 -0.6288507335 -0.0203903776

Furthermore, according to the metrics based on

deviation of characteristic values, these Linux kernels
are measured in this way. The result is shown as table 5.

Then we plot the metric results of D(AP), D(AD) and
D(E) as Fig.6, Fig.7 and Fig.8 separately, and discuss
the efficiency of the static structure metrics based on
deviation of characteristic values.

(1) analysis on deviation of average shortest path
length

Figure 6. D(AP) of Linux kernels of different version

It can be found from the curve change that the
deviation of average shortest path length presents
descending tendency as a whole along with the increase
of version. Because D(AP) has negative correlation with
the efficiency of software system, the efficiency of
Linux kernel is improved, which is consistent with the
testing result announced by Linux official website. The
Stat. data indicates that the execution efficiency would
improve with the degree from 10% to 23% when kernel
of latest version appeared [15], just as what Fig.6 shows.

Although D(AP) presents descending tendency as a
whole, there are still some abnormal change we can find
during the development of Linux kernel. Firstly, the
value of D(AP) decreases greatly from the version
1.3.64 to 2.0.37. By consulting related references about
the development of Linux kernel and analyzing related
data, the reasons can be obtained: one of them is there
are several different version kernels existing in the
interval from 1.3.64 to 2.0.37, so the accumulative value
is a little larger; another is large quantities of
professional programmers attended the development of
Linux kernel after Linux was well known as operation
system, which made the structure designed more
properly.

Secondly, the value of D(AP) increases from the
version 2.0.37 to 2.1.36 instead of decreasing that is
because from the version 2.1.XX, Linux system began to
march on high-end market and expand server market,
which demanded it can support various hardware
including CPU and mainboard, etc. Massive function
modules were added into existing system in this
condition, and it lead to the average function calling
depth of the kernel increasing greatly. Therefore, the
average shortest path length increases greatly and D(AP)
is larger than that of previous version.

(2) analysis on deviation of average degree

Figure 7. D(AD) of Linux kernels of different version

The evolution curve in Figure 7 indicates that the

deviation of average degree D(AD) decreases obviously
along with the increase of version, that is the complexity
of software static structure is declined. According to the
information from Linux official website, it is known the
core team that is responsible for modifying and
optimizing the kernel code before version 1.0 is only
consist of five members. But after version 1.0, Linux
kernel issued accordance with GPL protocol. From then
on, many professional senior programmers attend the
core team, especially after version 2.1, quantities of
laboratories and companies began to participate in the
development of Linux kernel (such as the foundation of
Redhat Lab, the investment by Intel and Netscape, etc).
All of above impelled the optimization of code and
modules, which leads to the decrease of complexity of
code structure eventually.

The light increase of D(AD) from version 2.0.37 to
2.1.36 shown in Fig.7 is because of the addition of
massive modules supporting various hardware in order

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 465

© 2011 ACADEMY PUBLISHER

to improve the portability of Linux kernel between
different platforms.

(3) analysis on standard structure entropy

Figure 8. D(E) of Linux kernels of different version

It can be seen from Figure 8 that change trend of D(E)

is opposite to that of D(AP) or D(AD), that is the value
of D(E) increases gradually along with the increase of
kernel version, which means the orderliness of Linux
kernel is decreasing. But up till now this result is still
acceptable because the value of D(E) is less than average
level. According to reference [15], it is found code
amount, such as the number of code line in Linux kernel,
has changed greatly with the development of Linux
kernel. The increasing speed of code amount is so high
that the amount of kernel code will be two times than
that of previous version at least when a new version
Linux kernel is issued. For example, there are about 400
thousand code lines in kernel of version 2.0.37, while
the number of code lines in kernel of version 2.1.36 is
nearly one million. The explosion of code amount leads
to the decrease of orderliness of Linux kernel, which can
also be validated by study the source code of different
version kernels.

Based on these test results and analyses, it can be
concluded the static structure metrics of software based
on deviation of characteristic values can really reflect the
effects of static topology characteristic value on the
quality characteristics of software systems and evolution
a software system by their efficiency, complexity and
structural orderliness effectively.

VI. CONCLUSIONS

Along with the rapid increase of software scale,
complexity becomes a natural property of each software
system, and how to measure the quality of a software
system has been a challenge for software engineers.
Many research results indicate that software systems
presents significant characteristics of complex networks,
so our study started with the characteristic values of
complex networks and propose static structure metrics
on software based on deviation of characteristic values.
First, static topology characteristic values of software
networks are analyzed and studied refer to the research
idea and methods in complex networks by means of

statistics. The results show the average shortest path
length, the average degree and the standard structure
entropy present high correlation with the number of
nodes, which provides important theoretical basis for the
following research work. Then, deviation of
characteristic values including D(AP), D(AD) and D(E)
are discussed based on the conceptions of deviation of
characteristic value and quality characteristics relative to
software scale. The metrics on the deviation of
characteristic values between the given software and
average level of the open-source software widely used
with the same scale is used to reflect the effective of
characteristic values of software networks on the
efficiency, complexity and orderliness of software
systems. In the latter part, seven Linux kernels of
different versions are measured by the metrics proposed
in this thesis which is validated through analyzing the
test results. The metrics on software networks based on
static structure characteristic values lay a foundation for
the establishment of large-scale software metrics set by
quantifying the characteristic values of software
networks which can reflect the quality characteristics of
software systems, and provide references for the
measure methods of software based on quantification
being proposed in the future.

But because the research of software networks is still
in its primary stage and more research methods are being
explored, the metrics on static structure of software
proposed in this thesis is not perfect. For example, not
all the characteristic values of software networks are
used in our research work and the metrics on different
characteristic value are the same and simple. In next
research, more characteristic values will be studied for
measuring the quality of software systems and the
metrics will more refined according to the different
characteristics of each characteristic value.

ACKNOWLEDGEMENT

This work is supported by the National Natural
Science Foundation of China under grant No. 60973022,
the Cultivation Fund of the Key Scientific and Technical
Innovation Project，Ministry of Education of China
under grant No.708026. Thanks for anonymous
reviewers’ valuable comments!

REFERENCES

[1] C. V. Ramamoorthy, W.-T. Tsai, T. Yamaura, et al..
Metrics Guided Methodology[C]. In Proceedings of 9th
Annual International Computer Software and
Applications Conference, 1985, 111-120.

[2] Y. T. Ma, J. X. Chen, and J. H. Wu. Research on the
phenomenon of software drift in software processes [C].
In Proceedings of 8th International Workshop on
Principles of Software Evolution, Lisbon, 2005, 195-198.

[3] M. Alshayeb and W. Li. An Empirical Validation of
Object-Oriented Metrics in Two Different Iterative
Software Processes [J]. IEEE Transactions on Software
Engineering, 2003, 29(11): 1043-1049.

[4] L. C. Briand, S. Morasca, V. R. Basili. Property-Based
Software Engineering Measurement [J]. IEEE

466 JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011

© 2011 ACADEMY PUBLISHER

Transaction on Software Engineering, 1996, 22(1): 68-
86.

[5] S. Furey. Why we should use function points [J]. IEEE
Software, 1997, 14(2): 28.

[6] M. Arnold and P. Pedross. Software Size Measurement
and Productivity Rating in a Large-Scale Software
Development Department[C], In Proceedings of 1998
International Conference on Software Engineering,
Kyoto, 1998, 503-506.

[7] M. Bauer. Analysing Software Systems by Using
Combinations of Metrics[C]. In Proceedings of
ECOOP’99 Workshops, Springer-Verlag LNCS 1743,
Lisbon, 1999, 170-171.

[8] Vasa R, Schneider J G, Woodward C, et al. Detecting
structural changes in object oriented software
systems[C].In proceeding of International Symposium on
Empirical Software Engineering. Noosa Heads, Australia.
2005:479-486

[9] Vasa R, Schneider J G, Nierstrasz O. The inevitable
stability of software change[C]. In proceeding of The
23nd IEEE International Conference on Software
Maintenance. Paris, France, 2007:4-13

[10] Girolamo A, Newman L I. Rao R. The structure and
behavior of class networks in object-oriented software
design.
www.eecs.umich.edu/~leenewm/documents/classnetwork
s.pdf, 2005

[11] Ma Y T, He K Q, Du D H, et al. A complexity metrics set
for large-scale object-oriented software systems[C]. In
proceeding of The 6th IEEE International Conference on
Computer and Information Technology. Seoul, Korea,
2006:189-194

[12] Li B, Wang H, Li Z Y, et al. Software Complexity Metric
s Based on Complex Networks[J]. Chinese Journal of
Electronic, 2006, 34(12A):2371-2375

[13] Melton H, Tempero E. Static members and cycles in java
software[C]. In proceeding of the first International
Symposium on Empirical Software Engineering and
Measurement. Madrid, Spain, 2007:136-145

[14] Zhang W B. Research on the Life Characteristic of
Internet Macroscopic Topology [D]. Shenyang:
Northeastern University,2006

[15] Fan L. Source Code of Linux Kernel [M]. Beijing:
Posts& Telecom Press,2002

Zheng Liu is a lecturer at college of
Information Science and Engineering,
Northeastern University, Shenyang, P.
R. China. She received B.S. degree in
Computer Science and Technology and
M.S. degree in Computer Application
Technology at Northeastern University.
Now, she is working for PH.D degree in
Computer System Architecture. Her
main research interests are complex

network and software engineering.

Hai Zhao is a professor at college of
Information Science and Engineering,
Northeastern University, Shenyang, P.
R. China. His current interests includes
complex network, real-time system,
sensor network.

Qian Zhang is a senior software
engineer at Neusoft. He receive M.S.
degree and PH.D degree in Computer
Application Technology, Northeastern
University , Shenyang, P. R. China. His
current interest is software engineering.

JOURNAL OF SOFTWARE, VOL. 6, NO. 3, MARCH 2011 467

© 2011 ACADEMY PUBLISHER

