
 

 

Figure 1. Combining the FSMs of the software components 

Test Sequence Generation for Distributed 

Software System 
 

 

Shuai Wang 
1. Department of Automation, Tsinghua University 

2. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China 

wangshuai81@gmail.com 

 

Yindong Ji 
1. Department of Automation, Tsinghua University 

2. Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China 

jyd@tsinghua.edu.cn 

 

Shiyuan Yang 
Department of Automation, Tsinghua University 

ysy-dau@tsinghua.edu.cn 

 

 

 
Abstract— This paper considers the test case generation for 

distributed software (a test case contains one or more test 

sequences). Applying the single finite state machine (FSM) 

test approach to distributed software, we will suffer from 

some problems: 1) the state combinatorial explosion 

problem; 2) some unexecutable test cases may be generated; 

3) some fault may be masked and cannot be isolated 

accurately. This paper proposed a new test case generation 

method based on the FSM net model. Instead of testing the 

global transitions of product machine, the generated test 

cases are used to verify the local transitions. We discuss the 

detailed methods of verifying the outputs and the tail states 

of the local transitions. Moreover, we prove that if all the 

local transitions are right, the transition structure of the 

distributed software is right. The tests are generated on the 

local transition structure of components, so we will not meet 

the state combinatorial explosion problem. All the outputs 

of the local transitions are checked, so the fault isolation 

results may be more accurate. 

 

Index Terms—Distributed software, finite state machine net, 

output identifying sequence, extended unique input/output 

sequence, test case generation 

 

I.  INTRODUCTION 

Distributed software system is usually composed of 

several components. These components are distributed in 

different computers and connected through network. As a 

result, testing becomes an important work for the validity 

and reliability of distributed software.  

The presence of a formal model or specification, which 

defines the required behaviors of the software, introduces 

the possibility of automating or semi-automating much of 

the testing process, especially the generation of test case. 

This can lead to more effective and efficient testing. 

There are many approaches to formally modeling or 

specifying a software system. Some formal methods have 

been used in software testing [1-7]. The formal methods 

based on finite state machine (FSM) model are widely 

studied and applied [2-14]. 

In this paper, we will study how to extend the FSM 

model on the test generation for distributed software. The 

distributed software may be more naturally and simply 

modeled by a set of FSMs, rather than a single FSM, 

which operate concurrently and may interact by changing 

messages. Then the behaviors of the software can be 

described by a product machine which is the equivalent 

single FSM constructed from the set of FSMs through 

product operation 
[15]

. 

Tests can be generated from the product machine using 

standard FSM test techniques. It is assumed that the 

model of certain distributed software consists of FSMs 

1, nA A . Then the number of the product machine states 

is | |i iA , where | |iA  means the number of states of 

FSM 
iA . Thus we may suffer from the state 

combinatorial explosion problem when computing the 

product machine.  

Take the software in Fig. 1 for example. We suppose 

that the software is composed of two components, and 

each is modeled as a FSM,
1 2,A A . The transitions and 

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 175

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.2.175-183



states for each FSM are shown in Fig. 1.A1 and Fig. 1.A2. 

The product machine get through product operation is 

shown in Fig. 1.A, too. Each component FSM contains 

three states, and the product machine contains nine states. 

From this example, we can see that if the software has 

many components or each component contains many 

states, the state number of product machine may be too 

large to handle. 

When applied to complex distributed system, the 

traditional test approach for single FSM mainly has the 

following problems: 

1) State combinatorial explosion problem
 [16]

. 

2) Unexecutable test sequence: The test sequence 

combining the local transitions may be unexecutable. 

If the specification of software constrains that the 

component 
1A  can trigger transition 

12t  only after it 

receives the output of transition
21t , then the 

transition path 
11 12 21 22, , ,t t t t   cannot be carried out. 

Generally, the unexecutable test sequences are 

caused by the unreachable state of the product 

machine.  

3) Fault isolation between synchronous transitions: In 

Fig.1, it is assumed that the output of 
11t is sent to 

21t  

and triggers it executing. Then the two transitions are 

defined as synchronous transitions. Only the output 

of 
21t  can be observed by the tester and the two 

transitions compose a global transition, thus the 

output of 
11t is not checked. The fault isolation 

therefore may be a problem. Sometime the fault may 

be masked. 

To solve these problems, Hierons proposed a method 

in [16]. His main idea is verifying the local transitions 

instead of the global transitions. But when we generate 

the verifying sequences, some parts of the product 

machine still need to be computed. Meanwhile, how to 

check the output of the transition when the output is sent 

to other component was not discussed in his study. 

In this paper, we proposed a novel test case generation 

method for distributed software. By extending the FSM 

model, we set up the FSM net model as the formal test 

model for distributed software. We proved that if all the 

local transitions are right, the transition structure of the 

software is right. In order to verify the output of the local 

transition that will be sent to other component, a 

construction method of the output identifying sequence is 

proposed. We extend the unique input/output sequence to 

multiple components to verify the tail state of local 

transition. 

Because we do not need to compute the product 

machine, we will not meet the state combinatorial 

explosion problem. All the test sequences are generated 

from the transition structure of software component, so 

they are all executable. Since all the outputs of the local 

transitions are checked, the fault isolation may be more 

accurate. 

The rest of this paper is organized as follows. The 

basic idea of testing with FSM is introduced in Section 2 

and the FSM net model are also presented in this section.  

How to check the local transition is introduced in Section 

3. The verification of distributed software is discussed in 

Section 4. An example is given in Section 5. Finally, 

conclusion is presented in Section 6. 

II. BASIC PRINCIPLES 

For the sake of convenience, in this section we will 

recall the basic idea of testing with finite state machine 

(FSM), and then introduce the formal model which we 

will use to model the distributed software. At the end of 

this chapter, the concept of product machine will be 

introduced. 

A. Testing with FSM 

Usually the software under test can be modeled by a 

FSM or a set of FSMs that produce the outputs on its 

state transitions after receiving the inputs. When the 

software is modeled as a FSM, the testing of software can 

be taken as checking the output value of several 

sequences of input values. Usually, an input is given at an 

input port, and the outputs associated with the input can 

be observed at the output ports. The outputs will then be 

compared with the expected outputs corresponding with 

the inputs. 

 

Definition 1: A finite state machine is a six-tuple[17] 

0( , , , , , )FSM Q q                       (1) 

1) Q  is the finite set of states; 

2)   is the finite set of inputs; 

3)   contains all outputs; 

4) : Q Q   is the set of state transition functions; 

5) 
0q  is the initial state; 

6) : Q    is the set of output functions. 

A FSM can be represented by a directed graph 

( , )G V E , where the set 
1{ , }nV v v  of vertices 

represents the set of specified states Q  of the machine 

and directed edges represents transitions from one state to 

another in it. An edge in G  is fully specified by a triple 

( , ; )i jv v L , where /k lL i o , ( )i

kL i and ( )o

lL o . In this 

paper, it is assumed that G  is strongly connected. 

 

The verification of software is implemented through 

checking the output and the tail sate of every transition. 

The procedure for testing a specified transition from state 

iq  to state jq  with input/output /k li o  takes place in 

three steps: 

1) The implementation is leaded into state 
iq ; 

2) Input 
ki  is applied and the output is checked to see 

whether it is 
lo  as expected, or not. 

3) The new state of implementation is checked to verify 

that if the tail state of the specified transition is jq  as 

expected, or not.  

It is assumed that there exist a reset action which is 

applied to make the software return to its initial state. 

This ensures that each test is applied in the same state of 

the implementation. The reset action might be a certain 

176 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER



 

Figure 2. The FSM net model for a distributed software system. 

sequences of the inputs or a single action such as a reset, 

or the system being closed off and then powered on again.  

We also suppose that this implementation has a status 

message. For each state 
iq Q , this message denotes the 

state uniquely, such as the unique input/output (UIO) 

sequence [6]. The tail state is verified by checking this 

message. 

The test case for transition ( , ; / )i j k lq q i o  is constructed 

based on the U-method introduced in [14] as follows: 

1) Constructing the reset action r  to implementation I  

so that I  can be reset to its initial state. 

2) Generating the shortest transition sequence that can 

lead the implementation from state 
0q  to state 

iq , 

namely preamble sequence. 

3) Applying the input 
ki  which can enable the transition 

to be tested. 

4) Generating the verifying sequence of tail state jq , 

namely postamble sequence. 

B. FSM Net Model 

The distributed software usually consists of several 

components and has multi-thread, distributed and parallel 

properties. Thus we should model such software as a set 

of FSMs, and each of components behaves as a FSM that 

may interact with other components. We call this set of 

FSMs a FSM net. 

Definition 2: An finite state machine net is formally 

defined by a two-tuple ( , )FSMnet A C .  

1) 
1 2{ , , }nA A A A  is the finite set of component finite 

state machines; 

2) ,{ : , }i jC c i j n i j    is the set of finite channel 

finite state machine, and  ,i jc is the channel FSM 

between software component 
iA  and component jA . 

A component FSM 
iA A  is a classical FSM that is 

defined in the definition 1. Its states are called local states 

and its transitions are named local transitions, which are 

in contrast to global transition and global state that are 

defined on the product machine of component FSMs. 

We define channel FSMs to describe the message 

transporting behaviors between FSMs. The behaviors of 

,i jc  are decided by the channel properties. 

Definition 3: A channel FSM is a four-tuple 

, ,0( , , , )i j c c c ijc Q q M , where: 

1) 
cQ  is the set of finite channel states, its number is 

decided by the properties and the buffer limit of 

communication channel; 

2) 
c  is the state transition function set of 

communication channel; 

3) ,0cq  is the initial state of communication channel; 

4) ,i jM  is the set of finite messages transporting through 

channel ,i jc . ijm M  is one of the messages sent 

from 
iA  and jA . 

Since this paper focuses on the testing of the transition 

to verify the correctness of software, the properties of 

channel will not be discussed here. 

According to its properties, the local transition of 

component FSM can be divided into three types: 

1) Non-communication transition: the input of this type 

transition will be applied at the input port of this 

component and output can be observed at the output 

port. It is formally defined as ( , ; / )i j k lq q i o . 

2) Sending message transition: the input of this type 

transition will be applied at the input port of this 

component, but the output will be sent to other 

components. This output is called internal output and 

cannot be observed by the tester. It is formally 

defined as ( , ; / ! )i j k j ijq q i A o . 

3) Receiving message transition: the input of this type 

transition is received from output of other component, 

but output can be observed at the output port of this 

component. When testing, the input of this type 

transition can be applied by both the tester and other 

component. It is defined as  ( , ; ? / )i j i ij kq q A o o . 

Where !j ijA o  means sending message ijo to component 

jA , and ?i ijA o means receiving message ijo  from 
iA . 

 

Example 1: A distributed software system is modeled as 

FSM net ( , )FSMnet A C  shown in Fig. 2, where 

1 2 3 4 1,2 1,3 2,3 2,4 3,4

12 13 23

24 34

{ , , , }; { , , , , };

{ , }; { , }; { , };

{ , }; { }.

A A A A A C c c c c c

M c e M x e M f h

M d g M f

 

  

 

. 

C. The Product Machine 

This paper deals with the problem of generating tests 

for the transition structure and thus shall only consider 

testing transitions from stable states. If input values will 

only be received in stable states, the full behavior of 

software is equivalent to a product machine [15]. 

We use ( )P A  to denote the product machine generated 

from A , and we use X  and Y  to denote the input and 

output sets of  ( )P A . 
1 2 nS Q Q Q     is used to 

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 177

© 2011 ACADEMY PUBLISHER



denote the set of stable global states. ( )S k  denotes the 

state of the kth component when global state is S . 

Clearly some elements in S  may be unreachable.  We 

therefore use 
rS  to denote the reachable state in S . The 

initial state of ( )P A  is 1 2 3

0 0 0 0( , , )s q q q . The state 

transition functions and the output functions are also 

denoted as   and  . Thus ( )P A  is defined by 

0( ) ( , , , , , )rP A S s X Y   .                (2) 

Given an input 
k   and the current global state 

i rs S , next state and functions   and   for the product 

machine are defined by the following ways.  

If ( ( ), )i ii
s k    , the next state is  

1 ( , )i is s                              (3) 

where 
1 1, ( ) ( )and ( ) ( ( ), )i i i im k s m s m s k s k      .  

The output is 

( , ) ( ( ), )i is s k                         (4) 

And this is called the first class global transition. 

If ( ( ), )i ii
s k    , and the output will be sent to 

component 
hA , such that the next state is  

 '

1 ( , ( ( ), ))i i is s s k                        (5) 

where ' ', ( ) ( ) and ( ) ( ( ), )i i i im k s m s m s k s k     . 

The output is  

( , ) ( ( ), ( ( ), ))i i is s h s k                   (6) 

And this is called the second class global transition. 

The first case defines the behavior when the input 

triggers a non-communication transition and thus this 

transition forms a global transition. The second case 

defines the behavior when a sending message transition t  

is triggered (this is simply the behavior produced if t  is 

executed and the output from t  is fed back into A  as an 

input). This process will be executed until a non-

communication transition is triggered. 

In the second case, the global transition is composed of 

the local transitions through the synchronous operation 

between sending message transition and receiving 

message transition.  

Definition 6 synchronous operation: it defined as a 

transition will send a message to another transition. And 

we use  to denote this operation. 

Before execute synchronous operation, we apply an 

admissible preamble sub-sequence to the component that 

will receive message. Then this component can be leaded 

to the state that certain massage can be accepted. 

 

Example 2: If we compute the product machine of the 

distributed software in example 1, its state number is 400. 

Although some of these states are unreachable, the 

reachable state number will be very large. The attempt of 

drawing the state transition graph is impossible. This state 

combinatorial explosion problem causes the traditional 

test approaches for single FSM fail for complex 

distributed software system. In this example, 
1 2 3 4

0 0 0 0( , , , )q q q q  is the global initial state. 
1 1( ) / ( )I a O c  is a 

first class global transition and 

1 2 1 1 2 2 1 2( ) / ( ) | ( ( ) / ( ! )) ( ( ? ) / ( ))I a O d I a O A c I A c O d  

is a second class global transition by the synchronous 

operation between transition
1 1 2( ) / ( ! )I a O A c and transition 

2 1 2( ? ) / ( )I A c O d . 

III. VERIFICANTION OF LOCAL TRANSITION 

This section shall consider the problem of verification 

of local transitions.  

For the sake of convenience, we first introduce the 

fault model of transition. A general survey on a variety of 

fault models in testing was given in [18]. We use 

0( , , , , , )i

i i i iA Q q      to represent the required 

behaviors of component i  and 0( ', , , ', ', ')i

i i i i i iI Q q      

to represent the implementation behaviors of this 

component. We define the following two faulty types as 

the major faults that may be encountered when testing a 

transition:  

1) Output fault: We say that a transition in 
iI  has a 

output fault if for , ' ' ,i i iq Q q Q a    , following 

equation holds, 

' ( , ) '( ', ) ( , ) '( ', )i i i iq q q a q a q a q a        .  (7) 

2) Transfer fault: We say that 
iI  has a transfer fault if 

for , ' ' ,i i iq Q q Q a    , following equation holds, 

' ( , ) '( ', ) ( , ) '( ', )i i i iq q q a q a q a q a        .  (8) 

Certainly, the two type faults can happen simultaneously. 

A local transition is said to be a correct implementation 

when its output and tail state are all right. The verification 

of local transition is carried out based on the following 

hypothesis:  

Hypothesis 1: The inputs will be applied at the stable 

state. This means that the inputs are applied when no 

internal events can occur.  

Hypothesis 2: We assume that message transporting time 

is zero, then !i ijs m , ?i ijs m , !j ijs m  and ?j ijs m are 

synchronous. This means that the behaviors of channel 

between two components are modeled as empty channel. 

Hypothesis 3: It is assumed that when testing a transition, 

all the other transitions are correct. 

Hypothesis 4: We suppose that the ports of different 

components can be distinguished by tester, so the same 

inputs applied to different components and same outputs 

observed from different components can be distinguished 

by tester and were seen as different inputs and outputs. 

A. Verification of Local Transition 

The verification of local transition is implemented 

through checking its output and its tail sate. Then the 

procedure for testing a specified local transition of 
iA  

from state 
i

mq  to state 
i

nq  with input/output /k li o  takes 

place in three steps: 

1) The implementation of software component 
iA is 

leaded to state 
i

mq ; 

2) Input 
ki  is applied and the output is checked to see 

whether it is 
lo  as expected, or not. 

178 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER



3) The new state of implementation is checked to verify 

that if the tail state of the specified transition is i

nq  as 

expected, or not.  

This procedure is the same as that for transition of single 

FSM verification, but its operations in each step are 

different. We also assume that there exist a reset action 

which is applied to make the software return to its initial 

state.  

The local transition sequence that can lead 
iA  from the 

state 0

iq  to the state i

mq  is named the local preamble 

sequence. If the test cost is assigned to every transition, 

the least test cost preamble sequence can be obtained 

from the sub-graph of FSM 
iA . Especially, the required 

inputs for the receiving message transitions are applied 

by tester not the corresponding component. Taking the 

testing of transition 
2 2 3( ) / ( ! )I a O A f  in 

2A  for instance, 

the local preamble sequence 
2 2( ) / ( )I c O d  is constructed 

for its verification. After the input 
ki  is applied, the 

output and tail state will be checked. The construction of 

the output checking sequence and the tail state verifying 

sequence will be discussed in following two sections 

respectively. 

B. Checking the Output 

The checking for the output of a local transition can be 

divided into two cases based on the type of transition. 

The outputs of the receiving message transitions and 

the non-communication transitions can be observed by 

the tester and it is seen as a global output of system. Then 

the check of them is easy to be implemented through 

comparing them with required outputs. 

The outputs of the sending message transition will be 

applied to other components and cannot be observed by 

the tester. We have assumed that when checking a 

transition all the other transitions are correct. Then we 

can observe that if the output of sending message 

transition is right, it will trigger another local transition 

belonging to other FSM jA . This output can be denoted 

uniquely by the flowing input/output sequence. For 

example, the output of local transition 
2 2 1( ) / ( ! )I b O A e  

can be denoted by the sequence 

1 2 1 1 1( ) ( ? ) / ( ), ( ) / ( )u t I A e O d I x O y . When we input b  to 

2A , d  is observed at 
1A  (

1A  has been leaded to 
1

1q ) and 

when we input x  to 
1A , y  is observed at 

1A . These 

observations mean the output of transition 
2 2 1( ) / ( ! )I b O A e  

must e , because when other output is generated by this 

transition, sequence 
1 1 1( ), ( ) / ( )O d I x O y  cannot be 

observed by tester.  ( )u t  is an output identifying 

sequence (OIS) for local transition, if the following holds. 
* *

1 1{ { , }, ( )) | ( ) } { { , }, '( )) | '( ) }j j

m m m mq u i u i O q u i u i O    (9) 

where ( )u i is the input sequence of ( )u t ; 
1( )u i  is first 

input of this sequence which is the output of transition 

belonging to 
iA . 

So the verification of output of a sending message 

transition can be carried out through checking the OIS. 

The OIS is constructed as possible as by the transitions 

belonging to jA . If the transition sequence belonging to 

jA  cannot denote the output uniquely, we can combine 

the transitions belonging to other components, such as the 

sequence
2 3 2 2 2 4 4 2 4( ? ) / ( ), ( ) / ( ! ) ( ? ) / ( )I A h O c I h O A d I A d O f  

for output 
3 2
( ! )O A h  verifying of transition 

3 3 2
( ) / ( ! )I g O A h . 

C. Checking the Tail State 

This section shall consider the problem of checking the 

tail state of a local transition. 

The UIO sequence method was proposed in [6] to 

check the tail state of the transition in the single FSM. It 

is possible to extend it for the verification of the tail state 

of local transition in this paper. An local input sequence 

( )u i  in 
iA  is capable of verifying a local state i

mq , if the 

following holds: 
* *{ ( , ( ))} { ( , ( )) | }i i i i

m n m nq u i q u i q q    . 

Unfortunately, not every state in component 
iA  has a 

status message that is composed of the local transitions 

belonging to 
iA . We extend the UIO sequence to 

multiple components, and then the UIO sequence can be 

composed of the local transitions belonging to different 

components. We noted this sequence extended unique 

input/out sequence (EUIO). It is the “status message” for 

local state. 

An extended input sequence ( )u i  is capable of 

verifying a local state i

mq , if the following holds: 
* *{ ({ , }, ( ))} { ({ , }, ( )) | }i i i i

m n m nq u i q u i q q    .(10) 

Let us see the software in example 1. The local state 
3

4q  in 
3A  does not have UIO sequence composed of the 

local transitions belonging 
3A , but EUIO sequence 

3 3 3 3 1 1 3 1( ) / ( ),( ( ) / ( ! )) ( ( ? ) / ( ))I a O b I e O A x I A x O h (11) 

can denote the state 3

4q  uniquely. This means 3

4q  is the 

unique state after 
3 3( ), ( )I a I e is applied 

3 1( ), ( )O b O h is 

observed by tester. 

D. Test Sequences for Lcal Transition 

Based on previous discussions, the test case for local 

transition ( , ; / )i i

m n k lq q i o  contains two test sequences, and 

is constructed in following ways:  

The test sequence for the output checking (required 

only when the outputs are sent to other component and 

cannot be observed by tester): 

1) Constructing the reset action r  to implementation I  

so that the software under test can be reset to its 

initial state; 

2) Generating the least test cost preamble sequence for 

local transition to be tested; 

3) Generating the preamble sequence for the 

synchronous transition of the transition to be tested 

which has the least test cost; 

4) Applying the input 
ki  which can enable the local 

transition to be tested; 

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 179

© 2011 ACADEMY PUBLISHER



5) Generating the OIS for output 
lo . (if it contains 

some  synchronous operations in it, the admissible 

preamble sequences for all operations are needed) 

The test sequence for the tail state verifying: 

1) Constructing the reset action r  to implementation I  

so that I  can be reset to its initial state. 

2) Generating the shortest transition sequence that can 

lead the machine from state 
0q  to state 

iq , namely 

preamble sequence. 

3) Applying the input 
ki  which can enable the transition 

to be tested. 

4) Generating the verifying sequence of tail state i

nq . 

For the I  with the extended status message feature, 

the test case for local transition in 
iA  is of the form 

1

2

: , ;

: , , .

, ,

, ,

test state

pre post

test synchronous output

pre pre post

ts r ts t ts

ts r ts ts t ts
             (12) 

where r  is the reset action; test

prets is the preamble 

sequence for the transition t ; ( , ; / )i i

m n k lt q q i o  is the 

local transition to be tested; state

postts  is the postamble 

sequence to check the tail state of transition t ; synchronous

prets  

is the preamble sequence for synchronous operation; 
output

postts  is the postamble sequence to check the output of 

transition t . 

IV. VERIFICATION OF DISTRIBUTED SOFTWARE 

As discussed in [6], the verification of software can be 

implemented through verifying all transitions. Therefore, 

the verification of distributed software can be carried out 

through checking of outputs and tail states of all global 

transitions. 

In this section, we will prove that the checking of all 

local transitions has the same ability to validate the 

correctness of software by checking of all the global 

transitions. 

Lemma 1: If all the local transitions are right, all the 

global transitions are right. 

Proof. 

Given a global transition ( , )j is s  , and we let 

k X   and  

1 2 3 1 2 3, | ( , , , ), ( , , , )i j i i i i j j j js s S s q q q s q q q   . 

We consider the two class global transitions.  

1) For the first class, a non-sending message transition 

forms a global transition. Given a local transition 

( , ; / )m m

i j k lq q i o  of 
mA , then the global transition is 

( , ; / )i j k ls s i o , where (1, ), , ( ) ( )i jk n k m s k s k     

and ( ) ,m

i is m q  ( ) m

j js m q .  

Now, we prove that for this class, if the local transition 

is right, the global transition is right. We will use apagoge 

to prove it. 

When the local transition has an output fault, 'l lo o , 

the global output is 'lo . So there is an output fault of 

global transition. When the local transition has a tail state 

fault, ( , ' ), 'm m m m

i j j jq q q q , the global state transition is 

( , ' ), 'i j j js s s s . So there is a tail state fault of the global 

transition. Thus a global transition is right only if the 

local transition is right.  

Then we show that the faults of global transition can be 

detected by checking the local transition.  

Obviously, the output fault can be checked through 

checking the output of the local transition which forms 

this global transition. If the tail state fault is 

( , ' ), ' , '( ) ( )i j j j j js s s s s m s m  , this fault can be detected 

through checking the tail state of the local transition 

which forms this global transition. If the tail state fault is 

' , '( ) ( ),j j j js s s n s n n m   , this means a transition of 

other component has been triggered. This must be caused 

by an output fault of local transition. The non-

communication local transition might send a message to 

component 
nA . This can be detected by checking the 

output of local transition. 

Up to here, we prove that for the first class global 

transition, the verification of global transition can be 

implemented through checking corresponding local 

transition. 

2) For the second class, more than one communication 

transitions form the global transition through 

synchronous operation. We only need to prove the 

situation in which the global transition is composed of 

two transitions. The situation having more two 

transitions can be proved recursively by the situation 

of two transitions. 

 Given a sending message transition 

( , ; / ! )m m

i j k j mnq q i A o  in 
mA  and a receiving message 

transition ( , ; ? / )n n

i j n mn lq q A o o  in 
nA  then the global 

transition is ( , ; / )i j k ls s i o , where ( ) ,m

i is m q  ( ) m

j js m q , 

( ) ,n

i is n q ( ) n

j js n q and (1, ),k n   ,k m ,k n  

( ) ( )i js k s k . 

First, we prove that if the two local transitions are all 

right, the global transition is right. We also use apagoge 

to prove it. 

When any of the local transitions has an output fault, 

the global output is not 
lo . So there is an output fault of 

global transition. When any of the local transitions has a 

tail state fault, ( , ' ), 'm m m m

i j j jq q q q or ( , ' ), 'n n n n

i j j jq q q q , 

the global state transition is ( , ' ), 'i j j js s s s . So there is a 

tail state fault of global transition. Thus a global 

transition is right only if the two local transitions are all 

right.  

Second, we show the fault of global transition can be 

detected by checking the local transitions. 

Obviously, the output fault can be checked the output 

of local transition ( , )m m

i jq q  and ( , )n n

i jq q . If the tail state 

fault is ( , ' ),i js s  ' | '( ) ,m

j j j js s s m q   the fault can be 

detected through checking the tail state of local transition 

( , )m m

i jq q . If the tail state fault is ( , ' ),i js s  

180 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER



' | '( ) ,n

j j j js s s n q   the fault can be detected through 

checking the tail state of local transition ( , )n n

i jq q . If the 

tail state fault is ' ,j js s  '( ) ( ) | ,j js k s k k m k n   , 

this means a transition of other component has been 

triggered. This must be caused by the output fault of the 

local transition. The destination of sending message 

transition in 
mA  is then wrong or the receiving message 

transition in 
nA  sends a message to other component. 

This can be detected by checking the outputs of the two 

local transitions, too. 

In short, we prove that for the second class global 

transition, the verification of global transition can be 

implemented through checking all the corresponding 

local transitions. 

Based on the above discussions, we can conclude that 

the verification of global transition can be implemented 

by checking of local transitions. In other words, if all the 

local transitions belonging to software system are all right, 

the implementation of the distributed software system is 

right. 

V. EXPERIMENTS 

In this section, we will discuss the test case generation 

for the software in Example 1 to exam our approach. 

A. Test Cases 

Using the proposed test case generation method, we 

first indentify the EUIO sequences for all the local states 

and the results are shown in Table I. More than one EUIO 

can denote the state uniquely and we only list the shortest 

one in the table. The OISs for all communication outputs 

are listed in Table II. Then the generated test cases for all 

local transitions are shown in Table III. 

B. Discussions 

In the introduction chapter, we have pointed out the 

potential problems when the traditional test method for 

single FSM is applied to the complex distributed software 

system. In this section we will discuss if our method can 

benefit these problems. 

1) State combinatorial explosion problem: it is not 

necessary to compute the product machine using our 

method when generating test cases, so we will not 

meet the state combinatorial explosion problem. 

2) Unexecutable test sequence: all the test sequences 

are generated based on the transition structure of the 

local component and synchronous operation, so all of 

them are executable. 

3) Test cost: a local transition can form more than one 

global transitions, such as : 
1 2 3 4 1 2 3 4

0 0 0 0 1 0 0 0 2(( , , , ), ( , , , ); / ! )q q q q q q q q a A c and  

1 2 3 4 1 2 3 4

0 2 0 0 1 2 0 0 2(( , , , ), ( , , , ); / ! )q q q q q q q q a A c  

are both formed by local transition 
2/ !a A c . With 

our method, only one local transition needs to be 

verified, but using traditional methods for single 

product machine, more than one global transition 

need to be verified. So the test cost of our method 

may be less than traditional methods. 

4) Fault isolation between synchronous transitions: the 

outputs of sending message transitions can be 

checked by the OIS, but this cannot be implemented 

by the product machine method. 

In summary, our method is an efficient method to solve 

the problems that encountered by the single product 

machine method. 

VI. CONCLUSION 

When we use traditional test methods for distributed 

software testing through computing the product machine, 

we will suffer from the state combinatorial explosion 

problem and some generated test sequences may be 

unexecutable. Besides, some outputs of the sending 

TABLE I.   
EXTENDED UNIQUE INPUT/OUTPUT 

State EUIO 
1

0
q  1 1 2 2 1 2

( ( ) / ( ! )) ( ( ? ) / ( ))I a O A c I A c O d  

1

1
q  1 1

( ) / ( )I e O d  

1

2
q  1 1

( ) / ( )I x O y  

1

3
q  1 1

( ) / ( )I x O h  

2

0
q  2 2

( ) / ( )I c O d  

2

1
q  2 2 3 3 2 3

( ( ) / ( ! )) ( ( ? ) / ( ))I a O A f I A f O e  

2

2
q  2 2

( ) / ( )I h O c  

2

3
q  2 2 4 4 2 3

( ) / ( ! ) ( ? ) / ( )I h O A d I A d O f  

2

4
q  2 2

( ) / ( )I g O k  

3

0
q  3 3 1 1 3 1

( ( ) / ( ! )) ( ( ? ) / ( ))I e O A x I A x O y  

3

1
q  3 3

( ) / ( )I e O c  

3

2
q  3 3 4 3 34( ) / ( ) ( ? ) / ( )!I c O A f I A f O b  

3

3
q  3 3 2 2 3 2

( ) / ( ! ) ( ? ) / ( )I g O A h I A h O c  

3

4
q  3 3 3 3 1 1 3 1

( ) / ( ), ( ( ) / ( ! )) ( ( ? ) / ( ))I a O b I e O A x I A x O h  

4

0
q  4 4

( ) / ( )I f O b  

4

1
q  4 4 4 4

( ) / ( ), ( ) / ( )I e O x I d O f  

4

2
q  4 4

( ) / ( )I d O f  

4

3
q  4 4 2 2 4 2

( ( ) / ( ! )) ( ( ? ) / ( ))I e O A g I A g O k  

 

TABLE II.   
OUTPUT VERIFYING SEQUENCE 

Internal 
output 

OIS 

1 2
( ! )O A c  

2 1 2
( ? ) / ( )I A c O d  

1 3
( ! )O A e  

3 1 3
( ? ) / ( )I A e O c  

2 1
( ! )O A e  

1 2 1 1 1( ? ) / ( ), ( ) / ( )I A e O d I x O y  

2 3
( ! )O A f  

3 2 3
( ? ) / ( )I A f O e  

2 4
( ! )O A d  

4 2 3
( ? ) / ( )I A d O f  

3 1
( ! )O A x  

1 3 1( ? ) / ( )I A x O y  

3 4
( ! )O A f  

4 3 3
( ? ) / ( )I A f O b  

3 2
( ! )O A h  

2 3 2 2 42 4 4 2( ? ) / ( ), ( ) / ( ) ( ) / ( )! ?I A h O c I h O A I A Od d f  

4 2
( ! )O A g  

2 4 2
( ? ) / ( )I A g O k  

 

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 181

© 2011 ACADEMY PUBLISHER



message transition cannot be checked. In this paper, we 

proposed a new test case generation method based on 

FSM net model. The construction of the output 

identifying sequence is used to verify the output of the 

local transition. Considering the limitation of the UIO 

sequence, we extend it to multiple components. Then the 

EUIO sequence can be composed of the local transitions 

belonging to different components, and this makes more 

TABLE III.               
TEST CASES 

 Transition Test case 

1 
1 1 2
( ) / ( ! )I a O A c  

1 1 2 1 1 1 1 2 2 1 2

1 1

1 2( ) / ( ! ), ( ) / ( ); ( ) / ( ! ) ( ? ) / ( );: :Ts I a O A c I e O Ts I a O A c I A c O dd  

2 
1 2 1
( ? ) / ( )I A e O d  

1 1 2 1 1 1 1

2

1 ( ) / ( ! ), ( ) / ( ), ( ) / ( );:Ts I a O A c I e O I x O yd  

3 
1 3 1( ? ) / ( )I A x O y  

1 1 2 1 1 1 1

3

1 ( ) / ( ! ), ( ) / ( ), ( ) / ( );:Ts I a O A c I e O I x O yd  

4 
1 1 3
( ) / ( ! )I c O A e  

1 1 2 1 1 1 1 1 1

1 1 2 1 1 3 1 1 3 3 1 1 1 3 3 1 3

4

1 3

4

2

( )

( )

( ) / ( ! ), ( ) / , ( ) / ( ! ), ( ) / ( );

( ) / ( ! ), ( ) / , ( ) / ( ! ), ( ) / ( ! ), ( ) / ( ! ) ( ? ) / ( )

:

:

Ts I a O A c I e O d I c O A e I x O h

Ts I a O A c I e O d I e O A x I e O A x I c O A e I A e O c
 

5 
1 3 1( ? ) / ( )I A x O h  

1 1 2 1 1 1 1 1 1

5

1 3( ) / ( ! ), ( ) / ( ), ( ) / ( ), ( ) / ( );: !Ts I a O A c I e O I c O A I x O hd e  

6 
1 1
( ) / ( )I a O d  

1 1 2 1 1 1 1 1 1

6

1 3( ) / ( ! ), ( ) / ( ), ( ) / ( ), ( ) / ( );: !Ts I a O A c I e O I c O A I a O dd e  

7 
2 1 2
( ? ) / ( )I A c O d  

2 2 3 3 1 2 2 3 3 2 3

7

1 ( ) / ( ), ( ) / ( ), ( ( ) / ( ! )) ( ( ? ) / ( ));: !Ts I c O I e O A I a O A f I A f O ed x  

8 
2 2
( ) / ( )I a O c  

2 2 2 2

8

1 ( ) / ( ), ( ) / ( );:Ts I a O I h O cc  

9 
2 2 1
( ) / ( )!I b O A e  

2 2 2 2 1 2 2

2 2 1 1 2 2 2 1 1 2 1 1 1

9

1

9

2

( ) / ( ), ( ) / ( ! ), ( ) / ( );

( ) / ( ), ( ) / ( ! ), ( ) / ( ! ) ( ? ) / ( ), ( ) / ( )

:

: ;

Ts I c O d I b O A e I c O d

Ts I c O d I a O A c I b O A e I A e O d I x O y
 

10 
2 2 3
( ) / ( )!I a O A f  

2 2 2 2 3 2 2

2 2 3 3 1 2 2 3 3 2 3

10

1

10

2

( ) / ( ), ( ) / ( ! ), ( ) / ( );

( ) / ( ), ( ) / ( ! ), ( ) / ( ! ) ( ? ) / ( )

:

: ;

Ts I c O d I a O A f I h O c

Ts I c O d I e O A x I a O A f I A f O e
 

11 
2 3 2
( ? ) / ( )I A h O c  

2 2 2 2 4 3 2 2 4 4 2 3

11

1 ( ) / ( ), ( ) / ( ), ( ) / ( ), ( ) / ( ! ) ( ? ) / ( );:Ts I a O I h O c I e O x I h O A d I A d O fc  

12 
2 2 4( ) / ( )!I h O A d  

2 2 2 2 2 2 4 2 2

2 2 2 2 4 3 2 2 4 4 2 3

12

1

12

2

( ) / ( ), ( ) / ( ), ( ) / ( ! ), ( ) / ( );

( ) / ( ), ( ) / ( ), ( ) / ( ), ( ) / ( ! ) ( ? ) / ( );

:

:

Ts I a O I h O c I h O A d I g O k

Ts I a O I h O c I e O x I h O A d I A d O f

c

c
 

13 
2 4 2
( ? ) / ( )I A g O k  

2 2 2 2 2 2 4 2 2 2 2

13

1 ( ) / ( ), ( ) / ( ), ( ) / ( ! ), ( ) / ( ), ( ) / ( );:Ts I a O I h O c I h O A d I g O k I c O dc  

14 
3 3 1
( ) / ( )!I e O A x  

3 3 1 3 3 1 1 2 1 1 3 3 1 1 3 1

14 14

1 2( ) / ( ! ), ( ) / ( ); ( ) / ( ! ), ( ) / ( ), ( ( ) / ( ! )) ( ( ? ) / ( ));: :Ts I e O A x I e O c Ts I a O A c I e O I e O A x I A x O yd  

15 
3 1 3
( ? ) / ( )I A e O c  

3 3 1 3 3 3 3 4 3 3

15

1 4( ) / ( ! ), ( ) / ( ), ( ) / ( ) ( ? ) / ( );: !Ts I e O A x I e O c I c O A f I A f O b  

16 
3 2 3
( ? ) / ( )I A f O e  

3 3 1 3 3 3 3

16

1 ( ) / ( ! ), ( ) / ( ), ( ) / ( );:Ts I e O A x I f O e I a O b  

17 
3 3 4
( ) / ( )!I c O A f  

3 3 1 3 3 3 3 3 3

3 3 1 3 3 3 3 4 3 3

17

1 4

17

2 4

( ) / ( ! ), ( ) / ( ), ( ) / ( ), ( ) / ( );

( ) / ( ! ), ( ) / ( ), ( ) / ( ) ( ? ) / ( )

: !

: !

Ts I e O A x I e O c I c O A f I a O

Ts I e O A x I e O c I c O A f I A f O b

b
 

18 
3 3

3 3

4 0 ( ) / ( ), ;q q I a O b  
3 3 1 3 3 3 3 3 3 4 3 3

18

1 4( ) / ( ! ), ( ) / ( ), ( ) / ( ), ( ) / ( ) ( ? ) / ( );: !Ts I e O A x I f O e I a O I c O A f I A f O bb  

19 
3 3 2
( ) / ( )!I g O A h  

3 3 1 3 3 3 3 2 3 3 1 1 2

1 1 3 3 1 1 3 1

3 3 1 3 3 2 2 3 3 2 2 3 2

4

19

1

19

2

( ) / ( ! ), ( ) / ( ), ( ) / ( ! ), ( ) / ( ), ( ) / ( ! ),

( ) / ( ), ( ( ) / ( ! )) ( ( ? ) / ( ));

( ) / ( ! ), ( ) / ( ), ( ) / ( ), ( ) / ( ! ) ( ? ) / ( ),

(

:

:

Ts I e O A x I f O e I g O A h I a O b I a O A c

I e O I e O A x I A x O h

Ts I e O A x I f O e I a O c I g O A h I A h O c

I e

d

4 2 22 4 4 2) / ( ), ( ) / ( ! ) ( ? ) / ( );O x I h O A d I A d O f

 

20 
3 3

3 3

3 2 ( ) / ( ), ;q q I a O b  
3 3 1 3 3 3 3 2 3 3 1 1 2 1 1

3 3 1 1 3 1

20

1 ( ) / ( ! ), ( ) / ( ), ( ) / ( ! ), ( ) / ( ), ( ) / ( ! ), ( ) / ( ),

( ( ) / ( ! )) ( ( ? ) / ( ))

:Ts I e O A x I f O e I g O A h I a O I a O A c I e O

I e O A x I A x O y

b d
 

21 
4 3 4
( ? ) / ( )I A f O b  

4 4 4 4 4 4

21

1 ( ) / ( ), ( ) / ( ), ( ) / ( ):Ts I f O b I e O x I d O f  

22 
4 4

4 4

0 2 ( ) / ( ), ;q q I O xe  
4 4 4 4

22

1 ( ) / ( ), ( ) / ( ):Ts I e O x I d O f  

23 
4 4

4 4

1 2 ( ) / ( ), ;q q I O xe  
4 4 4 4 4 4

23

1 ( ) / ( ), ( ) / ( ), ( ) / ( ):Ts I f O b I e O x I d O f  

24 
4 2 4
( ? ) / ( )I A d O f  

4 4 4 4 4 4 2 2 2 2 2 2 4

4 4 2 2 4 2

24

1 ( ) / ( ), ( ) / ( ), ( ) / ( ), ( ) / ( ), ( ) / ( ), ( ) / ( ! ),

( ( ) / ( ! )) ( ( ? ) / ( ))

:Ts I f O b I e O x I d O f I a O I h O c I h O A d

I e O A g I A g O k

c
 

25 
4 4 2( ) / ( )!I O Ae g  

4 4 4 4 4 4 4 4 2 4 4

4 4 4 4 4 4 2 2 2 2 2 2 4

4 4 2 2 4 2

25

1

25

2

( ) / ( ), ( ) / ( ), ( ) / ( ), ( ) / ( ! ), ( ) / ( );

( ) / ( ), ( ) / ( ), ( ) / ( ), ( ) / ( ), ( ) / ( ), ( ) / ( ! ),

( ( ) / ( ! )) ( ( ? ) / ( ))

:

:

Ts I f O b I e O x I d O f I e O A g I f O b

Ts I f O b I e O x I d O f I a O I h O c I h O A d

I e O A g I A g O k

c  

 

 

182 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER



local states have status messages. 

The tests are generated on the local transition structure 

of components, so we will not meet the state 

combinatorial explosion problem. By applying the 

admissible preamble sub-sequence of all synchronous 

operations, all the test sequences are executable. All the 

outputs of the local transitions can be checked by OIS, so 

the fault isolation may be more accurate. 

The experiment in section 5 shows that this method has 

better properties than single product machine method. It 

is a promising way for distributed software testing. 

ACKNOWLEDGMENT 

This work was supported in part by the National Key 

Technology R&D Program under Grant 2009BAG12A08, 

the R&D Foundation of the Ministry of Railways under 

Grant 2009X003 and the Research Foundation of Beijing 

National Railway Research and Design Institute of Signal 

and Communication. 

REFERENCES 

[1] S. Ghosh, A. P. Mathur, “Issues in testing distributed 

Component-Based Systems,” Proceedings of the First 

Interational ICSE Workshop Testing Distributed 

Component-based System, May, 1999. 

[2] I.-H. Cho, J. D. McGregor, “Component specification and 

testing interoperation of components,” Proc. of the 

IASTED Int'l Conf., Software Engineering and 

Applications, pp.27--31, 1999. 

[3] I.-H. Cho, J. D. McGregor, “A formal approach to 

specifying and testing the interoperation between 

components,” Proceedings of the 38th annual on Southeast 

regional conference, pp.161-170, 2000. 

[4] A. Petrenko and N. Yevtushenko, “Test suite generation 

from a FSM with a given type of implementation errors,’’ 

Proc. IFIP 12th Int. Symp. Protocol specification. Testing, 

and Verification XII, North-Holland, pp. 229-243, 1992. 

[5] H. S. Hong ,  I. Lee ,  O. Sokolsky, “Automatic Test 

Generation from Statecharts Using Model Checking,” 

Proceedings of FATES'01, Workshop on Formal 

Approaches to Testing of Software, pp.31-36, 2001. 

[6] Y. Choi, D. Kim, J. Kim, and et al., “Protocol test 

sequence generation using UIO and BUIO,” 1995 IEEE 

International Conference on communications, pp. 362-366, 

1995. 

[7] S. Fujiwara, G. v. Bochmann, F. Khendek and et al., “Test 

selection based finite state models,” IEEE Transactions On 

Software Engineer, vol.17, Issue 6, pp.591-603, 1991. 

[8] S. C. Pinto Ferraz Fabbri, M. E. Delamaro, J. C. 

Maldonado and et al., “Mutation analysis testing for finite 

state machine,” Proceedings of 5th International 

Symposium on Software Reliability Engineer, pp.220-229, 

1994. 

[9] S. T. Chanson, Q. Li, “On static and dynamic test case 

selections in protocol conformance testing,” The 5th Int’l 

Workshop on Protocol Test Systems, pp.225-267, 1992. 

[10] D. P. Sidhu and T. K. Leung, “Formal methods for 

protocol testing: A detailed study,” IEEE Trans. Software 

Eng., vol. 15, Issue 4, pp. 413-426, Apr. 1989. 

[11] T.Chow, “Testing Software Design Modeled by Finite 

Machines,” IEEE Transaction on Software Engineering, 

vol. 4, pp.178-187, 1978. 

[12] D. Drusinsky, “Model checking of statecharts using 

automatic white box test generation,” Circuits and Systems, 

2005. 48th Midwest Symposium on, pp.327-332, 2005. 

[13] A. V. Aho, A. T. Dahbura, D. Lee and M. U. Uyar, “An 

optimization technique for protocol conformance test 

generation based on UIO sequences and Rural Chinese 

Postman Tours,” Protocol Specification, Testing, and 

Verification VIII, pp.75-86, 1988. 

[14] G. v. Bochmann and A. Petrenko, “Protocol testing: review 

of methods and relevance for software testing,” 

Proceedings of the 1994 ACM SIGSOFT international 

symposium on Software testing and analysis, pp.109-124, 

1994.  

[15] G. Luo, G. v. Bochmann, and A. Petrenko, “Test selection 

based on communicating nondeterministic finite state 

machines using a generalized Wp-method,” IEEE 

Transactions on Software Engineering, vol. 20, pp.149-162, 

1994. 

[16] R.M. Hierons, “Checking States and Transitions of A Set 

of Communication finite state machines,” Microprocessors 

and Microsystems, vol. 24, pp.443-452, 2001. 

[17] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to 

automata theory, languages, and computation. 2nd ed., 

Pearson Education, 2000.  

[18] G. v. Bochmann, A. Das, R. Dossouli, M. Dubuc and et al., 

“Fault model in testing”, Proceedings of the IFIP 

TC6/WG6.1 Fourth International Workshop on Protocol 

Test Systems IV, pp.17-30, October 15-17, 1991. 

 

 

 

 

 

Shuai Wang was born in Changchun, Jilin Province, China, on 

April 3, 1981. He received his B.S. degree in control science 

and engineering from Beijing Institute of Technology 

University, Beijing, China in 2004. Currently, he is a PH.D 

candidate working in fields of control science and engineering 

at Tsinghua University. His major research interests include 

system test, fault diagnosis and reliability analysis. 

 

 

 

Yindong Ji was born in Beijing, China in 1962. He received his 

B.S. and M.S. all from the Department of Automation, at 

Tsinghua University, in 1985 and 1989, respectively. His main 

research areas are digital signal process, fault diagnosis, 

modeling & simulations. He is a member of IEEE. 

Prof. JI is with the Department of Automation, and Tsinghua 

National Laboratory for Information Science and Technology, 

Tsinghua University, Beijing, China. He has published over 60 

papers in journals.  His current research interest is in the area of 

train control system of high speed railway. 

 

 

 

Shiyuan Yang was born in Shanghai, China, in 1945. He 

received his B.S. and M.S degree from Tsinghua University in 

1970 and 1981, respectively. 

Currently, he is a Professor in automation of department in 

Tsinghua University. He is an Associate Director of the FTC 

committee, China. His main research interests are home 

automation network, test technology, electronic technology 

application, system fault diagnosing. 

 

JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011 183

© 2011 ACADEMY PUBLISHER

http://portal.acm.org/author_page.cfm?id=81100371578&coll=GUIDE&dl=GUIDE&trk=0&CFID=49898877&CFTOKEN=69744729
http://portal.acm.org/author_page.cfm?id=81339516570&coll=GUIDE&dl=GUIDE&trk=0&CFID=49898877&CFTOKEN=69744729
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10622
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10622
http://en.wikipedia.org/wiki/John_E._Hopcroft
http://en.wikipedia.org/wiki/Rajeev_Motwani
http://en.wikipedia.org/wiki/Jeffrey_D._Ullman

