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Abstract— In regression testing, an important problem is
how to select a smaller size of test set for execution.
We present a novel constraint-oriented test suite reduction
method for conservative regression testing by which we mean
that all bugs discovered must be revealed by the reduced test
suite. A test constraint for a bug is Boolean formulas defined
over the input variables of program under test. The reduced
test constraints for a pool of bugs are constructed using the
subsumption relationship between test constraint conditions.
Test case selection is based on the reduced test constraint
set. A test case is selected into the test suite when and only
when it satisfies one or more test constraints. The selection
process is completed when all test constraint conditions
are satisfied by the selected test cases. An empirical study
is conducted and the experimental results show that our
method can significantly save efforts for the conservative
regression testing.

Index Terms— software testing, regression testing, test case
reduction, test case selection

I. INTRODUCTION

In regression testing, one concern is to verify whether
the detected bugs have been removed, and the other is to
check whether new bugs are introduced during the mod-
ification [10]. This requires testers to re-execute a huge
number of test cases developed in the previous stages.
Software testing is a kind of an engineering activity, and
must be conducted within the limited schedule, budget
and human power, thus an important issue in regression
testing is how to efficiently select test cases from a test set
that have been developed using various test case genera-
tion strategies [13]. Lots of test suite reduction techniques
have been developed, and they usually select test cases
based on some criteria, such as control flow coverage [14],
requirement coverage [3], dependency analysis [2] and so
on [1], [10]–[13].

Conservative regression testing pays much attention to
confirm that the reported bugs are removed. We describe
a common scenario of conservative regression testing
below. When a failure is detected, testers often record
the inputs that cause the failure, the functional domain
where the failure takes place, and the steps necessary
for repeating this failure. With the reported information,
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programmers debug the relevant modules. This is an
extremely challenging and time-consuming process, since
the failure-causing input doses not reveal the true reason
of the failure. Furthermore, more than one test case may
trigger the same failure, programmers need to figure out
all possible inputs that can trigger this failure even they
have solved the failure with the reported inputs. In this
situation, the problem arises that given a set of bugs
reported by testers, how to select the minimum set of test
cases that can trigger all of them. We view this as a kind
of conservative regression testing, which is especially
important for the hurry-up software release while the
limited budget and schedule is allocated.

In this paper, we present a novel constraint-based test
case reduction method for conservative regression testing.
This method makes use of test constraint for test suite
reduction. For a given bug of program p, a test constraint
that is defined over input parameters of p specifies the
necessary conditions that the bug can be detected. In other
words, to answer whether a test case can detect a specific
bug, we only need to check whether the test case satisfies
the test constraint of the bug. Test constraints can be
derived through program analysis techniques. For a pool
of bugs, we calculate the hierarchy of their test constraints
and keep the stronger test constraints. Then the test case
selection is based on the reduced constraint set. A test
case is selected into the test suite when and only when
it satisfies one or more test constraints. The selection
process is completed when all constraint conditions are
satisfied by the selected test cases. In this way, our method
only selects a small subset of test suite for conservative
regression testing. Our method does not need to run the
program, because that a test constraint for a bug is derived
through program analysis techniques; both test constraint
reduction and test case selection for a constraint are
conducted in the level of class rather than instance.

The main contributions of this work include:

• a method for deriving test constraint for a given bug,
• a test constraint oriented test case reduction strategy,

and
• a case study on test suite reduction for a real life

program using test constraint-oriented strategy.

The remaining of the paper is organized as follows.
Section II presents the concept of test constraints and their
construction. Section III discusses the construction of the
test constraint hierarchy for a pool of bugs. Section IV

314 JOURNAL OF SOFTWARE, VOL. 6, NO. 2, FEBRUARY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.2.314-321



proposes to reduce test suite based on the test constraint
hierarchy. Section V demonstrates the proposed method
with a real-life program and reports the experimental
results. Section VI discusses related work and compares
our method with the exiting approaches. Section VII
concludes the paper with pointing out future work.

II. TEST CONSTRAINTS AND THEIR
CONSTRUCTION

All inputs of a program constitute the input domain of
the program. If there is a bug with a program, it means
there must be some inputs that can be used to detect the
bug. These inputs are called failure-causing inputs and are
part of the whole input domain. Then, how can we restrict
the input domain into failure-causing inputs? We call such
a restriction as a test constraint. A test constraint answers
the question “why and how do the beginning statement
influences the faulty statements, and why and how do the
faulty statements influences to the statements which can
produce different observable outputs”.

A. Test constraints

Definition 1 (program under test). A program under
test p is a three-tuple ρ =< I,O, S > where I is a set of
inputs, which can be represented by the parameter vector
< V1, V2, · · · , Vn >, O is a set of operations, and S is
a set of states. A state si of p is an instance of input
vector < v1, v2, · · · , vn > where v1 ∈ V1, v2 ∈ V2 and
vn ∈ Vn. Sinit ∈ S and Sfinal ⊆ S are initial state and
final states of p, respectively. An operation oi ∈ O is the
transformation between states si ∈ S and sj ∈ S, namely
si

oi−→ sj . Note that a final state refers to the one that
produces observable outputs, including returning a value
or printing out a message.

Definition 2 (faulty version) A mutant f of a program
p is said to be a faulty version, when there exist inputs x
s.t. x ∈ Ip and x ∈ If where Ip and If are the inputs
of p and f , such that Sp

final ̸= Sf
final where Sp

final and
Sf
final are the final states of p and f , respectively.
An example of a faulty version is illustrated in Figure 1

where an operator fault occurs in line 4. For the program
p, its input consists of four parameters: the first two are
of integer, while the last two are of bool. The operations
of p are a set of assignment, logic and relation operations.
The final state of p is represented by the output, i.e. the
value of variable alt sep. Obviously, not all test cases can
reveal the bug illustrated in Figure 1. For example, when
the test case < 1, 1, 1, 1 > is used as an input, both the
original program and the faulty version produce an output
of 0. The bug is not revealed because the faulty operation
is not activated.

Definition 3 (trigger-condition). The input set bti ⊆ If

which can trigger the bug b is called bug-trigger inputs,
and the condition which can restrict the whole inputs If

to bti is called trigger-condition.
The trigger-condition for the bug shown in Figure 1 is

“!preflag”, and its bug-trigger inputs can be expressed as

int alt test (int own alt, int other alt, bool preflag, bool
postflag) {
1 bool upward, downward;
2 int alt sep = 0;
3 if (!preflag ) {
4 upward = own alt <= other alt?1:0;
/*The correct one should be “own alt<other alt?1:0”.*/
5 downward=other alt<own alt ?1:0;
6 if(postflag) {
7 if (upward && downward)
8 alt sep = 0;
9 else if (upward)
10 alt sep = 1;
11 else if (downward)
12 alt sep = 2;
13 else
14 alt sep = 0;
15 }
16 }
17 return alt sep;
18 }
Figure 1. An example of a faulty program with one operator mutation.

{< x, y, 0, z > |x ∈ all possible values of own alt, y ∈
all possible values of other alt, z ∈ {0, 1}}. It intends
to specify that preflag is restricted to be 0, and there
are no constraints defined on postflag, own alt and
other alt.

Definition 4 (Propagation-Condition).The input set
fpi ⊆ If which can guarantee different outputs for f and
p after the bug b is triggered is called fault-propagation
inputs, and the condition which can restrict the whole
inputs If to fpi is called propagation-condition.

As to the bug shown in Figure 1, the propagation-
condition for the bug is “own alt == other alt”
and “postflag”. Its fault-propagation inputs are {<
x, y, z, 1 > |x ∈ all possible values of own alt ∧ y ∈
all possible values of other alt ∧x == y∧z ∈ {0, 1}}.

Definition 5 (Test Constraint). Given a faulty version
f of a program p, i.e. a bug b is seeded into p, the
test constraint of b is a set of constraints that are used
to identify all possible inputs that can guarantee the
detection of the bug b. The intersection of btpc(b) and
fppc(b) is necessary parts of test constraint of the bug b.
Here, btpc(b) and fppc(b) are the trigger-condition and
propagation-condition of the bug b, respectively.

The test constraint for the bug in Figure 1 is “!pre-
flag”, “own alt == other alt” and “postflag”. The test
suite satisfying the test constraint is {< x, x, 0, 1 >
|x ∈ all possible values of own alt ∩ all possible
values of other alt}. < 5, 5, 0, 1 > is a test case that
satisfies test constraint of the bug.

B. Constructing test constraints
We employ program analysis techniques, including

slicing [16], chopping [6], and path condition [8], to
obtain the trigger-conditions and propagation-conditions
of a test constraint.
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Definition 6 (Program Slicing). Given a statement t in a
program p, a set of statements slicing (t) ={s1, s2, · · · , sn}
is extracted to form the slice of the statement t, where
t is called the slicing criteria, si is a sentence which
potentially has an influence onto the statement t (i.e. its
execution affects the state spt of program p at the statement
t), denoted as si

∗−→ t.
The slices of statements 10 and 14 in the program

in Figure 1 are slicing(10)={2, 3, 4, 5, 6, 7, 9} and slic-
ing(14)={2, 3, 4, 5, 6, 7, 9, 11, 13}, respectively. Note that
the program slicing defined here is a kind of static
sclicing, and thereinafter the line number is used for
reference to a statement.

Definition7 (Program Chopping). Given a source cri-
teria s and target criterion t in a program p, the chop-
ping(s,t)={si|si ∈ s

∗−→ t∧s ∈ p∧t ∈ p}, where s
∗−→ t

is referred to as the path from s to t.
The choppings of statement 5 to statements 10 and

14 in Figure 1 are chopping(5,10)={5, 6, 7, 9} and chop-
ping(5,14)={5, 6, 7, 9, 11, 13}, respectively. Statements in
source criterion or target criterion are often replaced by
the nodes of PDGs (Program Dependency Graph [4]) to
provide the higher abstraction.

Definition 8 (Path Conditions). Path conditions give
necessary conditions under which a transitive depen-
dence between source criterion s and target criterion t
of the program p exists. Path Condition(s,t)={ec|si ∈
chopping(s, t) ∧ ec 7→ si}, where ec 7→ si denotes that
the execution condition of si is ec.

Execution conditions for statements 3-14 of the pro-
gram in Figure 1 are as follows:

ec(3) :=true,

ec(4) :=preflag == false,

ec(5) =ec(6) = ec(4),

ec(7) :=preflag == false ∧ postflag == true,

ec(8) :=preflag == false ∧ postflag == true

∧ own alt ≤ other alt ∧ other alt < own alt,

ec(9) =ec(7),

ec(10) :=preflag == false ∧ postflag == true

∧ own alt ≤ other alt,

ec(11) :=preflag == false ∧ postflag == true

∧ own alt > other alt,

ec(12) :=preflag == false ∧ postflag == true

∧ own alt > other alt ∧ other alt < own alt,

ec(13) :=preflag == false ∧ postflag == true

∧ own alt > other alt ∧ other alt ≥ own alt,

ec(14) =ec(13).

Based on chopping(5, 10) = {5, 6, 7, 9} and chopping
(5, 14) = {5, 6, 7, 9, 11, 13}, we can further obtain their
path conditions: path condition(5, 10) := ec(5)∧ec(6)∧
ec(7)∧ec(9) := preflag == false∧postflag == true
and path condition(5, 14) := ec(5) ∧ ec(6) ∧ ec(7) ∧
ec(9) ∧ ec(11) ∧ ec(13) := preflag == false ∧
postflag == true∧own alt > other alt∧other alt ≥
own alt.

In order to exclusively show the propagation effect of
the bug b, we need to restrict the inputs to fall in the offset

Figure 2. An illustration of input offset caused by the bug.

caused by the fault in terms of input domain, denoted as
Offset(b). Figure 2 illustrates such an offset. When x < 3
or x ≥ 5 , the variable i is assigned to the same value in
both the faulty version and the correct version. When 3 ≤
x ≤ 5, the variable i is assigned to 0 in the faulty version,
while 1 in the correct version. Thus, the offset(b) is 3 ≤
x ≤ 5. As to the bug in 1, the upward is 0 in the original
program when own alt is equal to other alt, while 1 in
the faulty version. Offset(b) is that other alt == own alt
needs to be evaluated to be true.

Since the test constraint of a bug b is the
intersection of bug-triggering trigger-conditions and
fault-propagation propagation-conditions, the test con-
straint ts(b) of the bug b is equivalently the com-
bination of path conditions(BS, s), offset(b) and
path conditions(s,ESi)(i = 1..n), where BS is the
beginning statement of program p, ESi is one of the
end statement set ES, s is the statement where the bug
b occurs. In order to be efficient, the calculation of
path conditions can be executed based on their slicings
and choppings. Slicing(s) indicates the statements which
affect on the execution of s, Chopping (s,t) indicates the
possible fault propagation paths from the source s. The
test constraint for the bug in Figure 1 can be calculated us-
ing path conditions(1, 3), path conditions(5, 10) and
offset(b), and the result is preflag == false ∧
postflag == true ∧ other alt == own alt.

We propose algorithm 1 in Figure 3 to construct test
constraints. It makes use of slicing, chopping and path
conditions in an integrated way. The algorithm assumes
that the program under test is a C program with only one
single function and with only one single faulty statement,
and consists of assignment, branch, goto and return state-
ments. The algorithm first constructs a PDG of program
p, where the entry statement, faulty statement and output
statements can be mapped into different nodes; it then
constructs bug trigger chopping (between entry statement
and faulty statement) and fault propagation choppings
(between faulty statement and output statements); fi-
nally, it calculates trigger-conditions and propagation-
conditions. Since how to construct a PDG of a program
Construct PDG (p), program slices Construct Slice(s, t),
program chops Construct Chopping(s, t) and path condi-
tions Construct PathConditions(s) are well discussed, we
will not extensively discuss these issues. For details, the
interested can refer to [6], [8], [13].

The procedure get OffsetCondition(sc) as illustrated in
Figure 4 returns the Offset(sc) of a mutant sc(i.e. a bug).
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Algorithm 1 Test Constraint Construction for a Single
Fault TS Construction(p,sc, ts)
{
INPUT
p : {si|type(si) ∈ {assignment, branch, goto, return} ∧
1 ≤ i ≤ n; Note that type (si) is type of statement si;
sc: si

mutation−→ s′i, where si ∈ p, s′i is a mutated statement;
OUTPUT
ts:{csj | |csj | ∈ {true, false} ∧ vars(csj) ⊆ paras(p)
∧ 1 ≤ j ≤ m}; Note that vars(csj) denotes a set of

variables in csj ; paras(p) denotes a set of input parameter
variables of program p.
PROCEDURE

1) Initialise ts to ∅, the beginning statement of p to
sinit , the output statement set to sfinal, the input
parameter variables to paras(p).

2) Construct a PDG of p using the procedure Con-
struct PDG (p), where PDG = {Nodes,Edges}.

- Note that for each si ∈ p, there exists a node
nk ∈ Nodes. For si ∈ p ∧ sj ∈ p ∧ si ∈
nk ∧ sj ∈ nm ∧ nk ̸= nm, if there exists
an edge t ∈ Edges between nk and nm,
then there exists dependency between si and
sj . When constructing the PDG of a program,
the mutated statement s′i should be included in
a separate node.

3) Map sinit, si and sfinal to the nodes Ninit,
Nmutant and Nfinal in PDG, where Ninit ∈
Nodes, Nmutant ∈ Nodes, and Nfinal ⊆ Nodes.

4) Construct program slices slice using the procedure
Construct Slice(Ninit, Nmutant), and ts ← ts ∩
Construct PathConditions(slice).

5) ts← ts ∩ get OffsetCondition(sc).
6) For each ni ∈ Nfinal, construct chops using the

procedure Construct Chopping (Nmutant, ni) and
ts← ts∩ Construct PathConditions(chops−{si}).

7) Return ts.
END
}

Figure 3. A sketch of Algorithm 1

Here, ts(var, vsi, vs′i):= |var| → vsi∩vs′i, where vsi and
vs′i satisfy assume(s(vsi/var)) ⊕ assume(s(vs′i/var)).
Note that s(y/x)) is referred to as that all the occurrences
of x in statement s are substituted by y which is a set
of feasible values of variable x. assume(s) is defined as
follows.

assume(s) =






var == exp; if s is an assignment
statement like var = exp

var op exp; if s is a branch statement
like if (var op exp) where
op ∈ {>,≥,≤, <,==, ! =}

Algorithm 1 can apply to normal C programs through
pre-processing. Like slicing execution [19], we can inline
the function body at every function call site to get an
equivalent C program with only one function, and use if
and goto statements to rewrite all loops in C program.

Procedure get OffsetConditions(sc)
{
INPUT
sc: si

mutation−→ s′i.
OUTPUT
dts:{csj | |csj | ∈ {true, false} ∧ vars(csj) ⊆ paras(p)
∧ 1 ≤ j ≤ m};
PROCEDURE

1) dts← ∅.
2) foreach var in vars(si) ∩ paras(p) ∩ vars(s′i),

where vars(si) and vars(s′i) are variables in
statements si and s′i, respectively, dts ← dts ∩
ts(var, vsi, vs

′
i).

3) Return dts.
}

Figure 4. The sketch of Procedure get OffsetConditions.

After rewriting, the C program has only one function
and is composed of assignment, branch, goto and return
statements.

We assume the faulty version contains only one bug
when the faulty version is compared with the original one,
as illustrated in Figure 1. Actually, we can extend the test
constraint of a single fault to the one containing multiple
faults. A faulty version f of the program p contains bugs
b1, b2, . . . , bn, tc1, tc2, . . . , tcn is the test constraint of
bugs b1, b2, . . . , bn, respectively. Each test constraint tci
for a single fault can be derived using Algorithm 1. Then
test constraint for this faulty version (composite of bugs
b1, b2, . . . , bn) is tc1 ∪ tc2∪, . . . ,∪tcn. Hereinafter test
constraints may be referred to as test constraint for single
or multiple faults unless otherwise indicated.

III. CONSTRUCTING TEST CONSTRAINT
HIERARCHY

For a given bug of a program, we can obtain its
test constraints using program slicing, chopping and path
conditions as discussed in Section II. Repeatedly, we can
obtain a set of test constraints for a pool of reported
bugs. Each test constraint specifies the conditions that can
guarantee the detection of the targeted bug in a program
under test. In other words, test constraints restrict the
selection of test cases to the particular area of input
domain of the program. Sometimes, test cases a and b
have overlapping in the input domain. This means that
test constraints of different bugs may have hierarchical
constraint conditions.

A test constraint is a Boolean formula. The operators
between two constraint conditions in a test constraint are
disjunctive (∨), conjunctive (∧) and not (!) and parenthe-
ses. We can transform a test constraint ts in a general form
to one ts′ in disjunctive normal form (DNF) using the
distributive law. Each term in the resulting test constraint
ts′ is a feasible test case schema, which is referred to
as that a test case satisfying this schema must be able to
detect the fault on which ts is constructed. Each literal
in a term is an atomic constraint condition. For example,
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the atomic constraints defined on input parameter x of
program p may be x ≥ a where a is a constant, or x ≤ y
where y is another variable or input parameter. If more
than one literal is defined on the same input parameter x,
then these literals are the composite constraint condition
for x. For example, x ≥ a ∨ x ≥ b and x ≥ a ∧ x ≤ b
(a must be less than b; otherwise, it is an unsatisfiable
constraint) are two composite constraints for x.

Definition 9 (null constraint condition). For an input
parameter x of a program p, if there does not exist a test
constraint condition defined on x, we say x has a null
constraint.

Definition 10 (stronger constraint condition). c1 and
c2 are two constraints defined on the input parameter x,
c1 is said to be stronger than c1 (denoted as c1 ≻ c2 ), if
and only if, any value v satisfying c1 must satisfy c2.

A null constrain is the weakest constraint. A stronger
constraint restricts the qualified values to smaller scope.
For example, x > 5 and x > 7 are two constraints on x,
then x > 7 is stronger than x > 5.

Definition 11 (test constraint subsumption) ts1, ts2 are
two test constraints of program p, and V1, V2, · · · , Vn is a
set of input parameters of p, for all Vi(i = 1..n), C(Vi)
and C ′(Vi) are constraints on input parameter Vi in test
constraints ts1 and ts2, respectively, if C(Vi) = C ′(Vi) or
C(Vi) ≻ C ′(Vi), then we say ts1 subsumes ts2 (denoted
as ts1 ⊃s ts2).

Based on the hierarchy among test constraints, we pro-
pose the following strategies for test constraint reduction.

1) Strategy-I: If constraint condition c1 is stronger than
constraint condition c2 (i.e. c1 ≻ c2), c1 will restrict
input domain to a smaller input domain than c2, c1
is selected as the reduced constraint.

2) Strategy-II: If test case schema (a term in a test
constraint) tcs1 subsumes test case schema tcs2 (i.e.
tcs1 ⊃s tcs2 ), tcs1 is selected as the reduced test
constraint.

We propose Algorithm 2 in Figure 5 to reduce test
constraints based on the above reduction strategies. The
algorithm assumes that a set of test constraints of all
known bugs has been derived in DNF. The body of
the algorithm is composed of two passes: the first pass
reduces each test constraint by the concept of stronger
constraint, and the second pass reduces the set of test
constraints by the concepts of test constraint subsumption.
The algorithm returns a reduced test constraint set. Note
that the algorithm cannot guarantee that the output is
a smallest size of test constraints, constraint(vk, tj)
denotes the constraint conditions of term tj defined on
the variable vk, tj(−/c2) denotes all occurrences of c2 in
tj are replaced by null.

IV. TEST SUITE REDUCTION VIA
CONSTRAINT HIERARCHY

If there are common test constraints between two bugs,
we can merge the test constraints. The test cases that
satisfy the reduced test constraints can still guarantee the
detection of the two bugs. In practice, a software bug

Algorithm 2. Test Constraint Reduction TS Reduction
(ts0, tsr)
{
INPUT
ts0 : {tsi|tsi is a test constraint in DNF ∧1 ≤ i ≤ n};
OUTPUT
tsr : {ts′j |ts′j is a constraint in DNF ∧1 ≤ j ≤ m};
PROCEDURE

1) foreach test constraint tsi ∈ ts0 using Strategy-I.
- foreach term tj in tsi {

foreach variable vk in paras(p) {
foreach constraints c1 ∈ constraint(vk, tj) ∧
c2 ∈ constraint(vk, tj) ∧ c1 ̸= c2 {
If (c1 ≻ c2)
tj ← tj(−/c2).
} } }

- foreach terms t1 ∈ tsi and t2 ∈ tsi ∧ t1 ̸= t2{
If (t1 ⊂s t2)
tsi ← tsi(−/t2).
}

2) tsr ← ts0.
3) foreach term ts′i ∈ tsr and ts′j ∈ tsr {

If ∃t1, t2(t1 ∈ ts′i ∧ t2 ∈ ts′j ∧ t1 ⊃s t2)
tsr ← tsr − {ts′j}.
}

4) Return tsr.
END
}

Figure 5. A sketch of Algorithm 2.

library usually consists of a number of reported bugs
and test cases. Ideally, all those test cases should be re-
executed to verify whether all reported bugs are removed
from the program under test. This is often impractical.
Instead, we need to select test cases for execution from
the pool of test cases that have been developed before
regression testing.

We propose the following procedure to select test cases
based on the reduced test constraint set tsr.

1) Initialise an empty test case set TestSuite, and an
empty satisfied test constraint set SatTC.

2) For all test cases tci in the test case pool tcp, figure
out the number stsi of test constraints ts′j in tsr
which tci can satisfy.

3) Select the test case tcm whose stsm is the largest
among the remaining test cases in tcp, tcp ←−
tcp − {tcm}, TestSuite ←− TestSuite ∪ {tcm},
SatTC ←− SatTC ∪GetSatTC(tcm) ; Note that
GetSatTC(tcm) denotes the set of test constraints
ts′j in tcp which test case tcm can satisfy.

4) Repeat Steps 2 and 3 until tcp is null or the size of
SatTC does not increase any longer.

5) Return TestSuite.
When the procedure stops, it means that either all test

constraints has have been satisfied by the selected test
cases, or all test cases in the current test cases can not
satisfy some test constraints. If former, it means that all
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reported bugs are detected by the selected test cases; if
latter, it means that new test cases need to be constructed
to satisfy the remaining test constraints.

Although the proposed method is intended to reduce the
size of test cases and selects test cases from a test case
library, it can be also used to guide the generation of high-
quality test cases for regression testing. This is totally
different from those generating test cases from software
code or specifications because our method generates test
cases on the basis of test constraints. This is particularly
useful to design test case for those hard-to-detect bugs
provided that test constraint hierarchy exists.

V. CASE STUDY

In this section, we report a case study which is used to
validate feasibility and efficiency of the proposed method.

A. Experiment Settings

Subject program. TCAS is an aircraft collision avoid-
ance system developed by the researchers at Siemens.
TCAS consists of 138 executable lines of C code in
9 modules. It has 12 input parameters: 5 of them are
of Boolean type and 7 are of Integer. We select TCAS
as subject program since it has been widely used for
empirical study in several literature [5], [7], [9], [14], [15],
[17].

Faulty versions. For TCAS, 41 faulty versions have
been created by manually seeding ”realistic” faults into
the base program that is considered correct, and each fault
involves single or multiple line changes when compared
with the base program [5], [14].

Test suite. The test case pool has 1608 test cases which
has been constructed with two steps: a test suite first
generated by employing Category Partition Method, and
then additional test cases are appended to the test suite
to ensure that several kinds of unit coverage in the base
program and faulty versions were exercised by at least 30
tests [5], [14].

B. Test suite reduction via test constraints

For each faulty version, we first locate the place where
the fault is seeded, and then develop the test constraint
using the proposed method in Section II. Finally, we
obtain 41 test constraints.

As an illustration, faulty version 6 has an operator error
in line 104 where the less than operator (i.e. “<”) is
mistakenly replaced by the less than or equal to operator
(i.e.“≤”). The corresponding test constraint is illustrated
in Table I. Atomic constraint condition is represented by a
Boolean literal, which usually defines a relationship over
one or more input parameters. Composite constraint con-
ditions are represented by a Boolean expression consisting
of one or more atomic constraint conditions. The test
constraint of faulty version 6 is composed of 4 atomic
constraint conditions (i.e. No. 1, 4, 5 and 6 in Table I)
and 3 composite constraint conditions (i.e. No. 2, 3 and
7 in Table I).

TABLE I.
TEST CONSTRAINT OF THE FAULTY VERSION 6

No Atomic/Composite constraint conditions
1 Other Tracked Alt = Own Tracked Alt
2 Down Separation < 400 ∧ Alt Layer V alue = 0 ∨

Down Separation < 500 ∧ Alt Layer V alue = 1 ∨
Down Separation < 640 ∧ Alt Layer V alue = 2 ∨
Down Separation < 740 ∧ Alt Layer V alue = 3

3 Climb Inhibit = 1 ∧
Up Separation+ 100 > Down Separation ∨

Climb Inhibit = 0 ∧
Up Separation > Down Separation

4 High Confidence = 1
5 Own Tracked Alt Rate ≤ 600
6 Cur V ertical Sep > 600
7 Other Capacity! = 1 ∨ Other Capacity == 1 ∧

Two of Three Reports V alid = 1 ∧ Other RAC = 0

For the 41 faulty versions of TCAS, we achieved 17
atomic constraint conditions (such as No. 1, 4, 5 and 6
in Table I and 37 composite constraint conditions (such
as No. 2, 3 and 7 in Table I), respectively. We further
construct the test constraint hierarchy using the concept
and strategy in Section III and then employ the test
constraint reduction algorithm to reduce the size of test
constraint set and obtain 26 reduced test constraints.

Among these 1608 test cases, 1076 valid test cases
are accepted and processed by the program. We use
the procedure discussed in Section IV to select 26 test
cases from 1076 valid test cases. The selected test cases
can satisfy the reduced test constraints. For each faulty
version, at least one test case can detect the seeded fault.
This means that if one wants to confirm whether all seed
faults are removed, he just needs to execute these 26 test
cases.

C. Results and threats

Experimental results are very exciting since only about
2 percent of test cases are selected for execution for the
purpose of conservative regression testing. Besides the
test suite reduction efficiency, we also discover that there
exists test constraint hierarchy among these 41 seeded
faults. For example, test constraints of the faulty version
6 subsume test constraints of the faulty versions 10, 11,
and 31. In other words, it is more difficult to detect the
bug in the faulty version 6 than in the faulty versions 10,
11 and 31. This preliminary empirical study has shown
the feasibility and efficiency of the proposed method.
The number and size of the subject program may be
the limitation of the empirical evaluation. In addition, the
subject program is a numeric application and there are
not very complex cascades of if-then-else branches, this
could be another limitation of effectiveness evaluation of
the proposed method.

VI. RELATED WORK

Various test suite reduction methods have been devel-
oped [13]. Below, we describe several typical work and
compare them with our method.
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Program-based test suite reduction methods select a
subset of test cases from original test set using some cri-
teria on programs. Harrold and Rothermel [14] presented
a test suite reduction technique using the control-flow
coverage as selection criteria. Wu et al. [18] presented
a regression testing technique that selects test cases by
utilizing static information from the analysis of the pro-
gram structure and dynamic information by tracing the
function-calling sequences.

Specification-based test suite reduction methods use
system requirements to select test cases for regression
testing. Chittimalli and Harrold [3] presented a regression
test selection approach using system requirements along
with their associate test cases and their criticality. Paul et
al. [12] presented a scenario-based functional regression
testing technique.

Model-based test suite reduction methods first model
programs or specifications and then select test cases for
regression testing using some criteria over the model.
Chen et al. [2] proposed a test suite reduction technique
using extended dependency analysis. Ali et al. [1] devel-
oped a test case selection technique that is based on an
extended concurrent control flow graph generated from
UML class diagrams and sequence diagrams.

Architecture-based test suite reduction methods make
use of architecture information to guide test case selec-
tion for regression testing. Muccini et al. [10] explore
how regression testing can be systematically applied at
the software architecture level in order to reduce the
cost of retesting modified systems. A model differencing
technique that is used to implement architecture-level
regression testing is reported in [11].

The test suite reduction method presented in this paper
belongs to the program-based category. However, our
method is completely different from existing program-
based test suite reduction approaches in that our method
is based on test constraints that are Boolean formulas
defined on the input parameters of a program; thus our
method itself does not concern the structure or data flow
of the program although calculating test constraints needs
to analyze the program, our method does not need to run
the program in order to select test cases for regression
testing, and our method reduces test suite at the level of
constraints instead of test case instances.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a test constraint-oriented test suite
reduction method for selecting a smaller size of test suite
for conservative regression testing. The method consists
of construction of test constraints for each bug, reduction
of test constraints according to their hierarchy for a pool
of bugs, and selection of test cases based on the reduced
test constraints. A test constraint can be derived via
program slicing, chopping, path conditions and sensitive
data analysis techniques. A test case is selected into the
test suite only when it satisfies one or more reduced test
constraints. In this way, our method doesn’t need the
execution of program under test, and selects the smaller

size of test suite for regression testing. A case study has
been conducted and the experimental results show the
feasibility and efficiency of the propose approach.

For future work, we will seek the latest results from the
area of symbolic executions and dataflow analysis, and
leverage them for more experiments. The test constraint
method analyzes the source code of programs under
test and its success relies heavily on tool support for
slicing, chopping and path conditions analysis. Another
interesting topic is to verify the effectiveness when the
proposed method is applied to unrestricted regression
testing.
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