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Abstract— Text-to-Speech (TTS) system is one to translate 
given text to speech which can be used in various 
applications such as information releasing systems, voice 
response devices, voice services in E-mail and reading 
machines for the blind. Great progress has been made in the 
research on Chinese TTS systems and several Chinese TTS 
systems have been published. However, because of the 
complexity of Chinese, the current available speech patterns 
are not very fine. The speech quality of those systems 
developed from these patterns is not good enough to meet 
the needs of users. The main purpose of this paper is to gain 
a refined prosodic model of Chinese speech. Traditional 
methods are not used in this thesis and data mining 
techniques are employed. Data mining is the process of 
discovering advantageous patterns in database. There are 
now many data mining algorithms, one of which is neural 
network. This paper presents a data mining system using 
clustering algorithm to find useful patterns from Chinese 
speech database. Study on the tone changes of Chinese two- 
word phrases has been made and good results have been 
achieved. They are helpful to develop high quality Chinese 
TTS systems. 
 
Index Terms—Classifiers, clustering, data reduction, 
relevance feedback, speech data mining 
 

I.  INTRODUCTION 
The field of speech data mining is in the midst of 

defining itself. As in previous debates on the nature of 
text data mining [22], we have multiple and sometimes 
overlapping areas. Does language modeling for 
information retrieval fall under the heading of speech 
data mining [23]? How about information extraction from 
speech [24] or speech summarization [25]? This is a rich 
area for study, and we wish to propose a slightly different 
tack that we feel is relevant to the field. 

Our work on semantic data mining of short utterances 
relates to the design of a taxonomy that covers an initial 
set of utterances, with a specific set of utterance types. 
This taxonomy relates to a specific business problem of 
interest to the analyst, who is a subject matter expert in 
this specific business area. An effective taxonomy will be 
a set of utterance types such that this set of types covers 
the preponderance of the utterances in the utterance set. 
As an example, the utterance, “I want to order a calling 
card for my business line” would be mapped to the 
utterance type Request(Order_CallingCard). Utterances 
may have multiple types. The set of utterance types forms 
the taxonomy of interest, and each utterance type is a 

testable hypothesis when expressed as an NLU classifier. 
The overall goal is to develop an effective dialog 
response system for use in large-scale telephony 
applications. Initially, our research examined how 
relevance feedback might be used to augment active 
learning as part of the process of refining an NLU 
classifier that was deployed in the field and needed to 
adapt to a changing situation. Based on an initial 
investigation, we determined that the benefits of an 
interactive methodology with relevance feedback would 
yield minimal results at this stage of the process. 
However, we did find that this method could have 
significant impact in the initial creation phase of the set 
of NLU classifiers. 

Relevance feedback is typically applied to full text 
documents; therefore, we did some initial 
experimentation to determine the value of this approach 
on short utterances [7]. We used over 12 000 utterances 
with 75 known utterance types from one of our existing 
applications and applied relevance feedback techniques to 
determine the coverage ratio. From this experiment, we 
determined the following. 
• The coverage ratio was sufficient to warrant 
implementing the algorithm into an interactive system. 
• Relevance feedback would not give good results on 
small sets (sets containing less than 1% of the total 
number of utterances). 

Before we can create an effective dialogue response 
system for a particular application, we collect thousands 
of utterances in order to effectively cover the space. 
Initial data collection is done through a “wizard” system 
that collects the set of utterances in the context of the 
specific business problem [11]. Once collected, these 
utterances are transcribed by hand and turned over to the 
analyst who classifies the utterances and develops a 
labeling guide that documents the taxonomy. This 
taxonomy forms the basis for a set of Natural Language 
Understanding (NLU) classifiers, which have a one-to-
one relationship with the set of utterance types. At this 
point, a separate group of people, called labelers, use the 
labeling guide as the basis to classify a larger set of 
utterances. Once the utterances are classified, they serve 
as input to build the NLU classifiers. The ultimate goal 
would be an effective set of NLU classifiers that could be 
used with a dialogue manager that will understand and 
properly reply to people calling in to a telephone voice 
response unit [10]. 

We test the NLU classifiers in the field to determine 
their effectiveness in combination with the dialog 
manager. In many instances, this combination may not 
completely satisfy the business problem. This initiates an 
interactive process that often requires an adjustment to 
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the taxonomy. As we worked with the analysts to refine 
this interactive process, we adapted our methodology to 
incorporate their feedback and comments. We determined 
that many of the utterances were either exact duplicates 
or so similar that the NLU classifier would recognize 
them as duplicates. We decided to incorporate data 
reduction methods to identify these “clones” and hide 
them from the analyst while still making them available 
to the NLU creation phase. Other feedback from the 
analysts indicated that they wanted methods for seeding 
relevance feedback iterations that went beyond simple 
search. We determined that clustering the utterances 
could give approximations to the utterance types that the 
analyst could then iteratively improve. Our goal in 
creating these interactive techniques is to save time for 
the analyst and help generate more consistent results 
when a project is handed off from one analyst to another. 

In this paper, we will show how and why we adapted 
the following techniques to work on short utterances: 
• data reduction; 
• clustering; 
• relevance feedback. 

In addition, we produce an NLU metric that gives a 
measure of accuracy for the coverage of the taxonomy. 
Using this metric, an analyst can refine the taxonomy 
before it goes to the labelers and especially before it goes 
to the field. 

II.  DATA REDUCTION   
After data collection, the utterances or documents are 

mapped into a feature vector space for subsequent 
processing. In many applications, this is a one-to-one 
mapping, but in cases where the documents are very short 
(e.g., single sentences or phrases), this mapping is 
naturally many-to-one. This is obviously true for repeated 
documents, but in many applications, it is desirable to 
expand the mapping such that families of similar 
documents are mapped to a single feature vector 
representation. For many speech data collections, 
utterance redundancy (and even repetition) is inherent in 
the collection process, and this is tedious for analysts to 
deal with as they examine and work with the dataset. 
Natural language processing techniques including text 
normalization, called entity extraction, and feature 
computation are used to coalesce similar documents and 
thereby reduce the volume of data to be examined. The 
end product of this processing is a subset of the original 
utterances that represents the diversity of the input data in 
a concise way. Sets of identical or similar utterances are 
formed, and one utterance is selected at random to 
represent each set (alternative selection methods are also 
possible). Analysts may choose to expand these clone 
families to view individual members, but the bulk of the 
interaction only involves a single representative utterance 
from each set. 

A. Text Normalization 
In data reduction, we must carefully define what is 

meant when we say that utterances are “similar.” There is 
no doubt that the user interface does not need to display 
exact text duplicates (data samples in which two different 

callers say the exact same thing). At the next level, 
utterances may differ only by transcription variants like 
“100” versus “one hundred” or “$50” versus “fifty 
dollars.” Text normalization is used to remove this 
variation. Moving further, utterances may differ only by 
the inclusion of verbal pauses or of transcription markup 
such as “uh, eh, background noise.” Beyond this, for 
many applications, it is insignificant if the utterances 
differ only by contraction: “I’d versus I would” or “I 
want to” versus “I want to.” Acronym expansions can be 
included here: “I forgot my personal identification 
number” versus “I forgot my P I N.” Up to this point, it is 
clear that these variations are not relevant for the 
purposes of intent determination (but, of course, they are 
useful for training an NLU classifier). We could go 
further and include synonyms or synonymous phrases: “I 
want” versus “I need.” Synonyms, however, quickly 
become too powerful at data reduction, collapsing 
semantically distinct utterances or producing other 
undesirable effects (“I am in want of a doctor.”) In 
addition, synonyms may be application specific. 

Text normalization is handled by string replacement 
mappings using regular expressions. Note that these may 
be represented as context-free grammars and composed 
with named entity extraction (see below) to perform both 
operations in a single step. In addition to one-to-one 
replacements, the normalization includes many-to-one 
mappings (you y’all, ya’ll) and many-to-null mappings 
(to remove noise words). 

B. Named Entity Extraction 
Utterances that differ only by an entity value should 

also be collapsed. For example, “give me extension 12 
345” and “give me extension 54321” should be 
represented by “give me extension extension_value.” 
Named entity extraction is implemented through rules 
encoded using context-free grammars in Backus–Naur 
form. A library of generic grammars is available for such 
items as phone numbers, and the library may be 
augmented with application-specific grammars to deal 
with account number formats, for example. The 
grammars are viewable and editable through an 
interactive Web interface. Note that any grammars 
developed or selected at this point may also be used later 
in the deployed application but that the named entity-
extraction process may also be data driven in addition to 
or instead of being rule based. 

C. Feature Extraction 
To perform processing such as clustering, relevance 
feedback, or building prototype classifiers, the utterances 
are represented by feature vectors. At the simplest level, 
individual words can be used as features (i.e., a unigram 
language model). In this case, a lexis or vocabulary for 
the corpus of utterances is formed, and each word is 
assigned an integer index. Each utterance is then 
converted to a vector of indices, and the subsequent 
processing operates on these feature vectors. Other 
methods for deriving features include using bi-grams or 
tri-grams as features [21], weighting features based on the 
number of times a word appears in an utterance (Term 
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Frequency; TF) or how unusual the word is in the corpus 
(Term frequency—inverse document frequency; TF-IDF) 
[20], and performing word stemming [12]. When the 
dataset available for training is very small (as is the case 
for relevance feedback), it is best to use less-restrictive 
features to effectively amplify the training data. In this 
case, we have chosen to use features that are invariant to 
word position, word count, and word morphology, and 
we ignore noise words. With this, the following two 
utterances have identical feature vector representations: 
• I need to check medical claim status. 
• I need check status of a medical claim. 

Note that while these features are very useful for the 
process of initially analyzing the data and defining 
utterance types, it is appropriate to use a different set of 
features when training NLU classifiers with large 
amounts of data. In that case, tri-grams may be used, and 
stemming is not necessary since the training data will 
contain all of the relevant morphological variations. 

 
  TABLE I TYPICAL REDUNDANCY RATES FOR COLLECTIONS 

OF CUSTOMER CARE DATA 

 

D.  Data-Reduction Results 
The effectiveness of the redundancy removal is largely 

determined by the nature of the data. As shown in Table I, 
we have found typical redundancy rates for collections of 
customer care data of from 30 to 40%. In some cases, 
where the task is less complex, we have observed data 
redundancy greater than 50%. Note that as the average 
length of the documents increases, the redundancy 
decreases. 

III. CLUSTERING 
While removing redundant data greatly eases the 

burden on the analyst, we can go a step further by 
organizing the data into clusters of similar utterances. 
Unfortunately, available distance metrics for utterance 
similarity are feature-based and result in lexical clusters 
rather than clusters of semantically similar utterances. 

Therefore, the goal of this stage of the processing is to 
add further structure to the collected utterance set so that 
an analyst can more easily make informed judgments to 
define the utterance types. Clustering short utterances is 
problematic due to the paucity of available lexical 
features. It is quite common for two utterances to have no 
common features; this is not the case when clustering 
long-form documents such as news stories. 

 In this section, we address this issue and present an 
efficient method for clustering utterance data. 

A. Clustering Algorithm 
Clustering causes data to be grouped based on intrinsic 

similarities. After the data-reduction steps described 
above, clustering serves as a bootstrapping process for 
creating an initial reasonable set of utterance types. In 
any clustering algorithm, we need to define the similarity 

 
                     Fig. 1. Illustration of cluster distance. 

(or dissimilarity, which is also called distance) between 
two samples and the similarity between two clusters of 
samples. Specifically, the data samples in our task are 
short utterances of words. Each utterance is converted 
into a feature vector, which is an array of terms (words) 
and their weights. The distance between two utterances is 
defined as the cosine distance between corresponding 
feature vectors. Assume that x and y are two feature 
vectors and that the distance d(x, y) between them is 
given by 

                      ( , ) 1
|| || || ||

x yd x y
x y

= −
i
i

 

    As indicated in the previous section, there are different 
ways to extract a feature vector from an utterance. The 
options include named entity extraction, stop word 
removal, word stemming, N-gram on terms, and binary or 
TF-IDF-based weights. For all the results presented in 
this paper, we applied named entity extraction, stop word 
removal, word stemming, and 1-gram term with binary 
weights to each utterance to generate the set of feature 
vectors. 
   The distance between two clusters is defined as the 
maximum utterance distance between all pairs of 
utterances: one from each cluster. Fig. 1 illustrates the 
definition of the cluster distance. The range of utterance 
distance values is normalized from 0 to 1, as is the range 
of the cluster distance values. When the cluster distance 
is 1, it means that there exists at least one pair of 
utterances–one from each cluster–that is totally different 
(sharing no common term). Many clustering algorithms 
can be found in an excellent reviewing paper by Jain et al. 
[5]. Buhman et al. [17] proposed maximum entropy 
approach for pair wise data clustering. However, it does 
not generate the clustering tree, which is required in our 
system to efficiently recreate clusters by cutting the 
dendrogram at different levels. Guha et al. [18] 
introduced the Hierarchical Agglomerative Clustering 
(HAC) algorithm called Clustering Using Representatives 
(CURE). CURE represents a cluster by a fixed number of 
points scattered around it, which makes the algorithm 
insensitive to the outliers and more efficient for large data 
sets. Karypis et al. [19] proposed the Chameleon 
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algorithm, which is a hierarchical clustering using 
dynamic modeling. A key feature of the Chameleon 
algorithm is that it accounts for both inter connectivity 
and closeness in identifying the most similar pair of 
clusters. Both CURE and Chameleon are efficient, but the 
clustering results are normally the approximations of 
those of traditional HAC. Our interest is in a clustering 
method that generates the same results as traditional HAC, 
yet in an efficient way. In the following, we will first 
briefly describe the traditional HAC and then show how 
we improve it effectively reduce both the time and the 
space complexities in our specific application. The details 
of the traditional hierarchical agglomerative clustering 
algorithm can be found in [4]. The following is a brief 
description of the HAC procedure. Initially, each 
utterance is a cluster on its own. Then, for each iteration, 
two clusters with a minimum distance value are merged.  
This procedure continues until all utterances are in one 
cluster such that a full dendrogram is created. We then 
cut the clustering tree using a preset threshold to generate 
the clustering results. Depending on the analyst’s 
requirements for clustering, the optimal threshold will 
vary. We allow for the option of generating new clusters 
using a different threshold. 
   The principle of HAC is straightforward, yet the 
computational complexity and memory requirements are 
high for large datasets. Assuming that there are utterances, 
direct implementation of HAC requires O(N2) memory 
for storing the utterance distance matrix and cluster 
distance matrix. Given that the average size of the 
utterances is small (10 terms) compared to the feature 
dimension ( 10 k), there is an efficient way to compute 
the distance between two utterances. From formula (1), 
we know that the norm of each utterance ||x|| is 1.0 after 
feature normalization, and x*y can be computed by 
checking only the nonzero terms for both utterances. 
Therefore, instead of maintaining the huge 
utterance/cluster distance matrix, we compute the 
utterance/cluster distance on the fly, such that the 
memory usage is effectively reduced to O(N). 

Another interesting phenomena is that when the 
utterances are short, a significant number of entries in the 
utterance distance matrix are 1.0 since x*y=0 if x and y 
share no common terms. This also means that in the 
clustering procedure, for each cluster, most of the 
distances from other clusters are 1.0. Since the distance 
from one cluster to its nearest neighbor never decreases, 
once it is 1.0, these clusters need not be considered for 
merging in future iterations. To further improve the speed, 
instead of searching the nearest clusters among all pairs 
of clusters O(N2) , for each cluster, we keep track of its 
neighboring clusters and corresponding distances, where 
k<<N  , such that we only need to search O(N) distance 
to locate the closest clusters. The overhead is the 
maintenance of the neighboring clusters for all clusters. 
When two clusters merge, we only need to update those 
clusters whose neighbors contain at least one of the 
merged clusters. Therefore, the maintenance is minimal. 

Table II shows the computation time and memory 
usage for directHAC implementation and our improved 

version. We compared them on two datasets: one contains 
5000 utterances and the other 20 000 utterances. For the 
first dataset, the direct HAC implementation requires 4 hr 
to complete and uses 200-MB memory, yet the improved 
implementation only takes 15 s and requires 8-MB 
memory. For the second dataset, we only provide the 
results for the improved implementation and the memory 
usage for the direct implementation. We did not measure 
the computation time since it takes too long—a 
reasonable estimate is about 250 hr. 
          TABLE II CLUSTERING ALGORITHM COMPLEXITY 

 

B. Merging Clusters 
As mentioned before, HAC may still produce a large 

number of clusters since the utterances are short. To 
reduce the total number of clusters, we merge all clusters 
smaller than an established minimum into a special 
“other” cluster. While there is no set rule for the 
minimum size of clusters, we find that a minimum of 
three to five are reasonable choices in our study.   

Anecdotally, the analysts found it easier to transform a 
set of clusters into utterance types than to create utterance 
types directly from a large set of flat data. The specific 
utterance types depend on the business problem that the 
analyst is attempting to solve. Depending on the distance 
threshold chosen in the clustering algorithm, the 
clustering results may either be conservative (with small 
threshold) or aggressive (with large threshold). If the 
clustering is conservative, the utterances of one utterance 
type may be scattered into several clusters, and the 
analyst has to merge these clusters to create the desired 
utterance type. On the other hand, if the clustering is 
aggressive, there may be multiple utterance types in one 
cluster, and the analyst needs to manually split the 
mixture cluster into different utterance types. In real 
applications, we tend to set a relatively low threshold 
since it is easier to merge small homogeneous clusters 
into a larger cluster than it is to split one big 
heterogeneous cluster into many smaller clusters. 

C.  Clustering Performance Evaluation 
We use the purity concept explained in [6] to evaluate 

clustering performance. The two measurements are the 
average cluster purity (ACP) and the average utterance 
type purity (ATP), as explained below. First, we define 
the following: 
nij    total number of utterances in cluster i with utterance 

type j; 
NT    total number of utterance types; 
NC   total number of clusters; 
N     total number of utterances; 
n.j    total number of utterances with utterance type j; 
ni.    total number of utterances in cluster i. 

The purity of a cluster pi. can then be defined as 
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Similarly, the utterance type purity and the average 
utterance type purity (ATP) are calculated as 
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The ATP measures how well the utterances of one 
utterance type are limited to only one cluster, and the 
ACP measures how well the utterances in one cluster are 
within the same utterance type. Two extreme cases are 1) 
if all utterances are in one cluster, then ATP=100%, and 
ACP is small; 2) if each utterance is in a separate cluster, 
then ACP =100%, and ATP is small. Ideally, we prefer a 
high ACP and a high ATP for each cluster. When this is 
not the case (given that the clustering algorithm is used 
for bootstrapping the utterance types), we prefer a high 
ACP with reasonable ATP over a high ATP with low 
ACP (see Table III). In this mode, the analyst does not 
need to spend too much effort on checking the 
consistency of each cluster but rather study the difference 
and similarity among clusters. 

D.  Clustering Results 
We evaluated the clustering performance on four 

applications across four different industrial sectors, 
specifically, financial, health care, insurance, and retail. 
To cope with the multiple labels problem, we only 
consider the single label utterances in the evaluation. 
Table III gives the results. In the evaluation, we set the 
clustering distance threshold to 0.6, and the minimum 
cluster size to 5. 

From Table III, we see that the ACP is in the same 
range, roughly 60–70% across the four applications, and 
the ATP are quite different among the different 
applications. The health care application achieves the 
highest ATP with 45.6%, and the financial application 
achieves the lowest ATP, with 23.2%. Generally, when 
the number of utterance types is larger, the ACP will be 
smaller, and when the number of clusters is larger, the 
ATP will be smaller. For the financial and retail 
applications, the numbers of utterance types are small; 
therefore, their corresponding ACPs are large. For the 
health care and insurance applications, the numbers of 
utterance types are large, and therefore, their ACPs are 
small. For financial and insurance applications, the 
numbers of clusters are large, and their ATPs are small. 
The health care and retail applications have a small 
number of clusters, and their ATPs are large. 

The utterance types for different applications are 
determined by analysts based on their knowledge and on 
the business problem to be solved. Therefore, the number 

of utterance types may not uniformly reflect the 
scattering in the datasets. The clusters are determined in a 
systematic way, and they more reliably indicate the 
syntactic structure of the datasets. For example, the 
financial application has 36 utterance types, but it does 
not mean that the dataset is homogeneous. Actually, it is 
not homogeneous since there are a large number of 
clusters, which implies that the dataset is actually 
heterogeneous. 
         TABLE III CLUSTERING PERFORMANCE RESULTS BY  

APPLICATION 

 

IV.  RELEVANCE FEEDBACK 
Although clustering provides a good starting point, 

finding all representative utterances belonging to one 
utterance type is not a trivial task. Additional data-mining 
tools are desirable to help the analyst. Our solution is to 
provide a classification mechanism based on [14] SVM 
classifiers for the analyst to perform this tedious task. In 
such classification-based approaches, the user 
sequentially assigns labels to examples until the examples 
belonging to the target utterance type are reasonably 
separated from the rest. 

A.  Support Vector Machines 
We adopted SVMs as the classifier [7], [13] for several 

reasons: First, SVMs efficiently handle high dimensional 
data. In our case, this is a set of utterances with a large 
vocabulary. We compared SVMs to Adaboost [2], which 
is another classification algorithm used for creating NLU 
models. On three customer care data sets, corresponding 
to medical and telecommunication applications and 
containing between 9000 and 35 000 examples, the F-
measures obtained with Adaboost ranged from 67 to 77. 
The use of SVMs improved these F-measures by three 
points on average. 

Second, SVMs provide especially reliable performance 
with a small amount of training data. If we reduce the 
size of the aforementioned data sets to less than 1000 
examples, SVM F-measure is, on average, five points 
over Adaboost F-measure. 

Third, with the use of Rational Kernels [16], SVMs can 
be extended to accept as input the word lattice produced 
by an ASR system instead of just the best recognized 
sentence. A characteristic of SVMs is that all the 
necessary computations only require inner products 
between vectors belonging to the input space. Taking two 
vectors x and y, their inner product (x.y) can be replaced 
by the application of a kernel function K(x,y). Provided 
that it verifies some properties (symmetric, positive 
definite), this kernel can engender an inner product (and, 
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consequently, a metric) in a feature space that is different 
from the input space. Now, suppose that instead of the 
feature extracted from sentences as described in Section 
II, the output of the speech recognizer consists of word 
lattices, which are encoded as graphs or finite state 
machines (FSMs). While there is no obvious inner 
product in the space of FSMs, the application of kernels 
(with a called Rational) to these FSMs defines a metric 
that can be used to apply SVM learning to these FSMs. 

In our ASR system, the oracle accuracy, which is 
defined as the accuracy of the path in the lattice closest to 
the transcription, is considerably better than the word 
accuracy using best recognized sentence only. This 
means that often, the correct sentence is somewhere in 
the lattice but not as the top candidate. Rational Kernels, 
by using the additional information contained in the 
lattice, improve the F-measures [9] observed in the three 
data sets by 1.5 points on average. (F-measure combines 
recall (r) and precision (p) with equal weight as follows: 
F(r,p)=2rp/(r+p)). 

Rational Kernels have also been used to generalize the 
clustering algorithm described in Section III-A to FSMs. 
Their actual use in an environment that requires user 
interaction is under investigation (with the challenge of 
visualizing FSMs). 

B.   Relevance Feedback 
The most commonly used approach in Information 

Retrieval (IR) is relevance feedback, which is a form of 
query-free retrieval where documents are retrieved from a 
collection according to a measure of relevance to a given 
set of documents. In essence, an analyst indicates to the 
retrieval system that it should retrieve “more documents 
like the ones desired and not like the ones ignored.” 
Selecting relevant documents based on analyst’s inputs is 
basically a classification (relevant/irrelevant) problem. 
Relevance feedback is an iterative procedure. The analyst 
starts with a cluster or a query result by certain keywords 
and marks each utterance as either a positive or negative 
utterance for the utterance type. The analyst’s inputs are 
collected by the relevance feedback engine, and they are 
used to build a SVM classifier that attempts to capture the 
essence of the utterance type. The SVM classifier is then 
applied to the rest of the utterances in the dataset, and it 
assigns a relevance score for each utterance. A new set of 
the most relevant utterances are generated and presented 
to the analyst, and the second loop of relevance feedback 
begins. The analyst determines the end of this cycle based 
on how closely the utterances in the generated set match 
their concept for the utterance type. 

For efficient labeling of large quantities of data, 
another iterative approach, generally referred to as active 
learning, is preferred. The most relevant utterances, while 
interesting from an IR standpoint, are usually obvious for 
the classifier. They are not those that maximize progress 
when learning them. It is rather the labeling of uncertain 
utterances, which lie at the decision boundary, which 
gives the greatest improvement to the discrimination 
between relevant and irrelevant utterances. To establish 
which utterances lay at the decision boundary, one can 
rely on either geometric or probabilistic criteria.    

According to the geometric criterion, the examples that 
should be labeled in priority stand at the center of the 
classifier. For an example x, let g(x) be the output of the 
SVM before the addition of any bias. The geometric 
criterion relies on the transformation 

                               g(x)+b 
such that for positive support vectors 

                             g(x)+b=1 
and for negative support vectors 

                             g(x)+b=-1 
The center of the margin corresponds to 
                                  g(x)+b=0 

In our problem, we define the positive class as 
examples belonging to the utterance type and the negative 
class as all other examples. As a consequence, the 
positive class has many fewer representatives than the 
negative class. Therefore, choosing examples at the 
center of the margin will typically return a large majority 
of negative utterances and result in a labeling process that 
is both suboptimal and frustrating. 

The probabilistic criterion relies on the fact that the 
classifier output approximates in a reasonable way the 
posterior probability that a given utterance belongs to the 
utterance type and selects examples where the posterior 
probability is the closest to 0.5. In the case of SVMs, 
such a probabilistic approximation can be obtained with 
the application of univariate logistic regression to the 
output of the SVM [14]. The transformation consists of 

                          g’(x)=σ(a.g(x)+b) 
where  σ is the sigmoid function, and a and b are 
optimized to minimize the Kullback–Leibler divergence 
[14] between g’(x) and the posterior probability of the 
class P(c|x) , given x. Separate training sets should be 
used to train the SVM classifier and the logistic 
parameters a and  b. We use cross-validation to maximize 
the use of labeled examples. Note that in the case of 
active learning, our logistic remapping function is trained 
on the already-labeled examples, whose distribution is 
skewed and not statistically representative of the true 
distribution. Despite this limitation, we found that the 
logistic remapping approximation worked well on 
unlabeled examples, returning comparable numbers of 
positive and negative examples, and converging 
significantly faster than the geometric criterion. Both 
theory and computer simulations predict that active 
learning, using the probabilistic criterion, minimize the 
number of examples one has to label to achieve a given 
classification accuracy on test data. Our simulations 
suggest that if the goal is to label enough examples to 
build a classifier that generalize well on test data, the 
active learning strategy can reduce by up to a factor of six 
the number of examples that need to be labeled. 

However, the reality is quite different. First, the initial 
goal is not to build a classifier but rather to collect typical 
examples and estimate the coverage of an utterance type 
for the design of a labeling guide. Second, active learning 
typically returns the hardest to classify examples. Each 
one of them has to be examined carefully by the analyst 
who needs to have a very good idea of what kind of 
utterances a given utterance type covers. Relevance 
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feedback returns a lot of “obvious,” and sometimes nearly 
identical, examples. This can be frustrating but has the 
following advantages over active learning: 
• In many cases, all the utterances are obvious positives, 
and a single “select all” click will do the job. Thus, 
labeling ten examples using relevance feedback can be as 
fast as labeling one example using active learning. 
• To return the most relevant examples gives the analyst 
clear feedback that he/she is going in the right direction. 
Boundary examples returned by active learning do not 
give a clear indication of how well the classifier works on 
previously labeled examples. 
• During the initial iterations, the analyst may not have a 
clear idea of the full coverage of an utterance type and 
needs to be confronted with data to better specify the 
utterance type. By presenting “typical” examples, 
relevance feedback works better in this loosely defined 
search scenario. 

Moreover, some of these “typical” examples can be set 
apart as illustrations for the labeling guide. In practice, all 
examples whose posterior probability of belonging to the 
utterance type ranges from 0.5 to 1 are returned and 
sorted in descending order of probability. The analyst can 
then choose to label this list either from the top or the 
bottom. The general preference seems to go toward 
labeling the most relevant (top) examples, at least at the 
beginning of the labeling process. 

V.  NLU METRIC 
The analyst can improve utterance types by iteratively 

building and testing interim NLU classifiers. A Web 
interface was added to allow the analyst to build and test 
NLU classifiers and to better understand patterns in the 
NLU classifier test results. We used BoosTexter as the 
underlying boosting algorithm for classification [1]–[3]. 

After the analyst has labeled the utterances (we will 
refer to these as truth utterance-type labels), 
approximately 20% of the labeled utterances are set aside 
for testing. The remaining data are used to build the 
initial NLU classifier. For each of the tested utterances in 
the test data, logs show the classification confidence 
scores for each utterance type. Confidence scores are 
replaced by probabilities that have been computed using a 
logistic function. These probabilities are then used to 
calculate the NLU metric, which attempts to reveal 
patterns in the classification results. The NLU metric, 
roughly speaking, is a measure of utterance type 
differentiability. The NLU metric is calculated as follows 
and is averaged over the utterances that belong to only 
one utterance type: 
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Where S is the NLU Metric, N is the number of 
utterances that belong to only one utterance type, Ti  is 
the truth probability, Xi is the next highest probability, 
and Hi is the highest probability. A test utterance is 

correctly classified if the calculated probability of the 
truth type is the highest probability. 

Table IV shows two sample test utterances and the test 
log results. The first utterance is incorrectly classified 
(shown in italics) since the Request(Sales) utterance type 
has a higher probability than the Request(Order_CC) 
utterance type. In this particular case, the word “order” 
also figures prominently in the Request(Sales) utterance 
type. As can be expected, this overlapping language 
problem will occur at times, no matter how much work is 
expended to create distinct utterance types. The second 
utterance is correctly classified, but the probabilities are 
too close. Ideally, the truth utterance type probability is 
near 1, and the next nearest probability is close to 0 so 
that the contribution to the NLU metric would be close to 
1. If the probabilities are too close together, then these 
two utterance types can be confused in the field, and calls 
can possibly be incorrectly routed. In this case, the 
contributions to the NLU metric from these two 
utterances were -0.5091 (incorrectly classified) and 
0.0495 (correctly classified). As can be seen in Table V, 
the NLU metric for the Request ( Order_CC) utterance 
type is 0.681. Of the 18 test utterances, only two were  
                    TABLE IV TEST LOG PROBABILITIES 

 
                                            TABLE V NLU METRIC 

 
 incorrectly classified. Thus, although some of the test 
utterances in the test log indicate problems, on the 
aggregate, the NLU metric for this utterance type is quite 
good. Other good utterance types are shown in Table V. 
If the NLU metric was less than 0.50 or negative, this 
would indicate a problem with the utterance type. The 
best approach for the analyst is to evaluate both the test 
log probabilities (for utterance level problems) and the 
NLU metric (for aggregate level problems) for every 
utterance type. This metric allows the analyst to identify 
utterance types that might have problems in the field. 
Once identified, the analyst could redefine the 
problematic utterance types. Another interim NLU 
classifier could then be built and tested to determine if the 
changes improved the utterance type. The analyst can 
iteratively build and test the interim NLU classifiers. 
Once the utterance types are correct, the final annotation 
guide is created. The final annotation guide would then 
be used by the labelers to label all the utterance data 
needed to build the final NLU classifier. The NLU metric 
helps create better utterance types, which ultimately leads 
to a better NLU classifier. 
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VI. SUMMARY 
We have shown adaptations of text-based data mining 

tools to make them more useful in the context of speech 
data mining. These tools enable our analysts to develop 
NLU classifiers in the context of a specific business 
problem. Data-reduction techniques are used to take 
advantage of the nature of short utterances and give a 
compacted view of a large data set. In clustering, we 
discussed the difficulties of creating clusters from short 
utterances. We also discussed how we took advantage of 
the distance metric for short utterances to help us improve 
the performance of the clustering algorithm. For 
relevance feedback on short utterances, we have shown 
that using SVMs and then reporting results that are sorted 
by distance from the support vector gives results that are 
more useful for our analysts. Our analysts have reported 
that the task is much less tedious and that they have done 
a better job of covering all of the significant utterance 
types. The NLU metric that we created gives us a method 
of determining the accuracy of the NLU before it goes 
into the field. 
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