
A Novel Method for Speech Data Mining

Dai Sheng-Hui, Lin Gang-Yong, Zhou Hua-Qing

School of Information and Electronics, East China Institute of Technology, China, 344000

Abstract— Text-to-Speech (TTS) system is one to translate
given text to speech which can be used in various
applications such as information releasing systems, voice
response devices, voice services in E-mail and reading
machines for the blind. Great progress has been made in the
research on Chinese TTS systems and several Chinese TTS
systems have been published. However, because of the
complexity of Chinese, the current available speech patterns
are not very fine. The speech quality of those systems
developed from these patterns is not good enough to meet
the needs of users. The main purpose of this paper is to gain
a refined prosodic model of Chinese speech. Traditional
methods are not used in this thesis and data mining
techniques are employed. Data mining is the process of
discovering advantageous patterns in database. There are
now many data mining algorithms, one of which is neural
network. This paper presents a data mining system using
clustering algorithm to find useful patterns from Chinese
speech database. Study on the tone changes of Chinese two-
word phrases has been made and good results have been
achieved. They are helpful to develop high quality Chinese
TTS systems.

Index Terms—Classifiers, clustering, data reduction,
relevance feedback, speech data mining

I. INTRODUCTION
The field of speech data mining is in the midst of

defining itself. As in previous debates on the nature of
text data mining [22], we have multiple and sometimes
overlapping areas. Does language modeling for
information retrieval fall under the heading of speech
data mining [23]? How about information extraction from
speech [24] or speech summarization [25]? This is a rich
area for study, and we wish to propose a slightly different
tack that we feel is relevant to the field.

Our work on semantic data mining of short utterances
relates to the design of a taxonomy that covers an initial
set of utterances, with a specific set of utterance types.
This taxonomy relates to a specific business problem of
interest to the analyst, who is a subject matter expert in
this specific business area. An effective taxonomy will be
a set of utterance types such that this set of types covers
the preponderance of the utterances in the utterance set.
As an example, the utterance, “I want to order a calling
card for my business line” would be mapped to the
utterance type Request(Order_CallingCard). Utterances
may have multiple types. The set of utterance types forms
the taxonomy of interest, and each utterance type is a

testable hypothesis when expressed as an NLU classifier.
The overall goal is to develop an effective dialog
response system for use in large-scale telephony
applications. Initially, our research examined how
relevance feedback might be used to augment active
learning as part of the process of refining an NLU
classifier that was deployed in the field and needed to
adapt to a changing situation. Based on an initial
investigation, we determined that the benefits of an
interactive methodology with relevance feedback would
yield minimal results at this stage of the process.
However, we did find that this method could have
significant impact in the initial creation phase of the set
of NLU classifiers.

Relevance feedback is typically applied to full text
documents; therefore, we did some initial
experimentation to determine the value of this approach
on short utterances [7]. We used over 12 000 utterances
with 75 known utterance types from one of our existing
applications and applied relevance feedback techniques to
determine the coverage ratio. From this experiment, we
determined the following.
• The coverage ratio was sufficient to warrant
implementing the algorithm into an interactive system.
• Relevance feedback would not give good results on
small sets (sets containing less than 1% of the total
number of utterances).

Before we can create an effective dialogue response
system for a particular application, we collect thousands
of utterances in order to effectively cover the space.
Initial data collection is done through a “wizard” system
that collects the set of utterances in the context of the
specific business problem [11]. Once collected, these
utterances are transcribed by hand and turned over to the
analyst who classifies the utterances and develops a
labeling guide that documents the taxonomy. This
taxonomy forms the basis for a set of Natural Language
Understanding (NLU) classifiers, which have a one-to-
one relationship with the set of utterance types. At this
point, a separate group of people, called labelers, use the
labeling guide as the basis to classify a larger set of
utterances. Once the utterances are classified, they serve
as input to build the NLU classifiers. The ultimate goal
would be an effective set of NLU classifiers that could be
used with a dialogue manager that will understand and
properly reply to people calling in to a telephone voice
response unit [10].

We test the NLU classifiers in the field to determine
their effectiveness in combination with the dialog
manager. In many instances, this combination may not
completely satisfy the business problem. This initiates an
interactive process that often requires an adjustment to

Manuscript received Oct 15, 2009; revised Nov 15, 2009; accepted
Dec 25, 2009.

64 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.1.64-71

the taxonomy. As we worked with the analysts to refine
this interactive process, we adapted our methodology to
incorporate their feedback and comments. We determined
that many of the utterances were either exact duplicates
or so similar that the NLU classifier would recognize
them as duplicates. We decided to incorporate data
reduction methods to identify these “clones” and hide
them from the analyst while still making them available
to the NLU creation phase. Other feedback from the
analysts indicated that they wanted methods for seeding
relevance feedback iterations that went beyond simple
search. We determined that clustering the utterances
could give approximations to the utterance types that the
analyst could then iteratively improve. Our goal in
creating these interactive techniques is to save time for
the analyst and help generate more consistent results
when a project is handed off from one analyst to another.

In this paper, we will show how and why we adapted
the following techniques to work on short utterances:
• data reduction;
• clustering;
• relevance feedback.

In addition, we produce an NLU metric that gives a
measure of accuracy for the coverage of the taxonomy.
Using this metric, an analyst can refine the taxonomy
before it goes to the labelers and especially before it goes
to the field.

II. DATA REDUCTION
After data collection, the utterances or documents are

mapped into a feature vector space for subsequent
processing. In many applications, this is a one-to-one
mapping, but in cases where the documents are very short
(e.g., single sentences or phrases), this mapping is
naturally many-to-one. This is obviously true for repeated
documents, but in many applications, it is desirable to
expand the mapping such that families of similar
documents are mapped to a single feature vector
representation. For many speech data collections,
utterance redundancy (and even repetition) is inherent in
the collection process, and this is tedious for analysts to
deal with as they examine and work with the dataset.
Natural language processing techniques including text
normalization, called entity extraction, and feature
computation are used to coalesce similar documents and
thereby reduce the volume of data to be examined. The
end product of this processing is a subset of the original
utterances that represents the diversity of the input data in
a concise way. Sets of identical or similar utterances are
formed, and one utterance is selected at random to
represent each set (alternative selection methods are also
possible). Analysts may choose to expand these clone
families to view individual members, but the bulk of the
interaction only involves a single representative utterance
from each set.

A. Text Normalization
In data reduction, we must carefully define what is

meant when we say that utterances are “similar.” There is
no doubt that the user interface does not need to display
exact text duplicates (data samples in which two different

callers say the exact same thing). At the next level,
utterances may differ only by transcription variants like
“100” versus “one hundred” or “$50” versus “fifty
dollars.” Text normalization is used to remove this
variation. Moving further, utterances may differ only by
the inclusion of verbal pauses or of transcription markup
such as “uh, eh, background noise.” Beyond this, for
many applications, it is insignificant if the utterances
differ only by contraction: “I’d versus I would” or “I
want to” versus “I want to.” Acronym expansions can be
included here: “I forgot my personal identification
number” versus “I forgot my P I N.” Up to this point, it is
clear that these variations are not relevant for the
purposes of intent determination (but, of course, they are
useful for training an NLU classifier). We could go
further and include synonyms or synonymous phrases: “I
want” versus “I need.” Synonyms, however, quickly
become too powerful at data reduction, collapsing
semantically distinct utterances or producing other
undesirable effects (“I am in want of a doctor.”) In
addition, synonyms may be application specific.

Text normalization is handled by string replacement
mappings using regular expressions. Note that these may
be represented as context-free grammars and composed
with named entity extraction (see below) to perform both
operations in a single step. In addition to one-to-one
replacements, the normalization includes many-to-one
mappings (you y’all, ya’ll) and many-to-null mappings
(to remove noise words).

B. Named Entity Extraction
Utterances that differ only by an entity value should

also be collapsed. For example, “give me extension 12
345” and “give me extension 54321” should be
represented by “give me extension extension_value.”
Named entity extraction is implemented through rules
encoded using context-free grammars in Backus–Naur
form. A library of generic grammars is available for such
items as phone numbers, and the library may be
augmented with application-specific grammars to deal
with account number formats, for example. The
grammars are viewable and editable through an
interactive Web interface. Note that any grammars
developed or selected at this point may also be used later
in the deployed application but that the named entity-
extraction process may also be data driven in addition to
or instead of being rule based.

C. Feature Extraction
To perform processing such as clustering, relevance
feedback, or building prototype classifiers, the utterances
are represented by feature vectors. At the simplest level,
individual words can be used as features (i.e., a unigram
language model). In this case, a lexis or vocabulary for
the corpus of utterances is formed, and each word is
assigned an integer index. Each utterance is then
converted to a vector of indices, and the subsequent
processing operates on these feature vectors. Other
methods for deriving features include using bi-grams or
tri-grams as features [21], weighting features based on the
number of times a word appears in an utterance (Term

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 65

© 2011 ACADEMY PUBLISHER

Frequency; TF) or how unusual the word is in the corpus
(Term frequency—inverse document frequency; TF-IDF)
[20], and performing word stemming [12]. When the
dataset available for training is very small (as is the case
for relevance feedback), it is best to use less-restrictive
features to effectively amplify the training data. In this
case, we have chosen to use features that are invariant to
word position, word count, and word morphology, and
we ignore noise words. With this, the following two
utterances have identical feature vector representations:
• I need to check medical claim status.
• I need check status of a medical claim.

Note that while these features are very useful for the
process of initially analyzing the data and defining
utterance types, it is appropriate to use a different set of
features when training NLU classifiers with large
amounts of data. In that case, tri-grams may be used, and
stemming is not necessary since the training data will
contain all of the relevant morphological variations.

 TABLE I TYPICAL REDUNDANCY RATES FOR COLLECTIONS

OF CUSTOMER CARE DATA

D. Data-Reduction Results
The effectiveness of the redundancy removal is largely

determined by the nature of the data. As shown in Table I,
we have found typical redundancy rates for collections of
customer care data of from 30 to 40%. In some cases,
where the task is less complex, we have observed data
redundancy greater than 50%. Note that as the average
length of the documents increases, the redundancy
decreases.

III. CLUSTERING
While removing redundant data greatly eases the

burden on the analyst, we can go a step further by
organizing the data into clusters of similar utterances.
Unfortunately, available distance metrics for utterance
similarity are feature-based and result in lexical clusters
rather than clusters of semantically similar utterances.

Therefore, the goal of this stage of the processing is to
add further structure to the collected utterance set so that
an analyst can more easily make informed judgments to
define the utterance types. Clustering short utterances is
problematic due to the paucity of available lexical
features. It is quite common for two utterances to have no
common features; this is not the case when clustering
long-form documents such as news stories.

 In this section, we address this issue and present an
efficient method for clustering utterance data.

A. Clustering Algorithm
Clustering causes data to be grouped based on intrinsic

similarities. After the data-reduction steps described
above, clustering serves as a bootstrapping process for
creating an initial reasonable set of utterance types. In
any clustering algorithm, we need to define the similarity

 Fig. 1. Illustration of cluster distance.

(or dissimilarity, which is also called distance) between
two samples and the similarity between two clusters of
samples. Specifically, the data samples in our task are
short utterances of words. Each utterance is converted
into a feature vector, which is an array of terms (words)
and their weights. The distance between two utterances is
defined as the cosine distance between corresponding
feature vectors. Assume that x and y are two feature
vectors and that the distance d(x, y) between them is
given by

 (,) 1
|| || || ||

x yd x y
x y

= −
i
i

 As indicated in the previous section, there are different
ways to extract a feature vector from an utterance. The
options include named entity extraction, stop word
removal, word stemming, N-gram on terms, and binary or
TF-IDF-based weights. For all the results presented in
this paper, we applied named entity extraction, stop word
removal, word stemming, and 1-gram term with binary
weights to each utterance to generate the set of feature
vectors.
 The distance between two clusters is defined as the
maximum utterance distance between all pairs of
utterances: one from each cluster. Fig. 1 illustrates the
definition of the cluster distance. The range of utterance
distance values is normalized from 0 to 1, as is the range
of the cluster distance values. When the cluster distance
is 1, it means that there exists at least one pair of
utterances–one from each cluster–that is totally different
(sharing no common term). Many clustering algorithms
can be found in an excellent reviewing paper by Jain et al.
[5]. Buhman et al. [17] proposed maximum entropy
approach for pair wise data clustering. However, it does
not generate the clustering tree, which is required in our
system to efficiently recreate clusters by cutting the
dendrogram at different levels. Guha et al. [18]
introduced the Hierarchical Agglomerative Clustering
(HAC) algorithm called Clustering Using Representatives
(CURE). CURE represents a cluster by a fixed number of
points scattered around it, which makes the algorithm
insensitive to the outliers and more efficient for large data
sets. Karypis et al. [19] proposed the Chameleon

66 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

algorithm, which is a hierarchical clustering using
dynamic modeling. A key feature of the Chameleon
algorithm is that it accounts for both inter connectivity
and closeness in identifying the most similar pair of
clusters. Both CURE and Chameleon are efficient, but the
clustering results are normally the approximations of
those of traditional HAC. Our interest is in a clustering
method that generates the same results as traditional HAC,
yet in an efficient way. In the following, we will first
briefly describe the traditional HAC and then show how
we improve it effectively reduce both the time and the
space complexities in our specific application. The details
of the traditional hierarchical agglomerative clustering
algorithm can be found in [4]. The following is a brief
description of the HAC procedure. Initially, each
utterance is a cluster on its own. Then, for each iteration,
two clusters with a minimum distance value are merged.
This procedure continues until all utterances are in one
cluster such that a full dendrogram is created. We then
cut the clustering tree using a preset threshold to generate
the clustering results. Depending on the analyst’s
requirements for clustering, the optimal threshold will
vary. We allow for the option of generating new clusters
using a different threshold.
 The principle of HAC is straightforward, yet the
computational complexity and memory requirements are
high for large datasets. Assuming that there are utterances,
direct implementation of HAC requires O(N2) memory
for storing the utterance distance matrix and cluster
distance matrix. Given that the average size of the
utterances is small (10 terms) compared to the feature
dimension (10 k), there is an efficient way to compute
the distance between two utterances. From formula (1),
we know that the norm of each utterance ||x|| is 1.0 after
feature normalization, and x*y can be computed by
checking only the nonzero terms for both utterances.
Therefore, instead of maintaining the huge
utterance/cluster distance matrix, we compute the
utterance/cluster distance on the fly, such that the
memory usage is effectively reduced to O(N).

Another interesting phenomena is that when the
utterances are short, a significant number of entries in the
utterance distance matrix are 1.0 since x*y=0 if x and y
share no common terms. This also means that in the
clustering procedure, for each cluster, most of the
distances from other clusters are 1.0. Since the distance
from one cluster to its nearest neighbor never decreases,
once it is 1.0, these clusters need not be considered for
merging in future iterations. To further improve the speed,
instead of searching the nearest clusters among all pairs
of clusters O(N2) , for each cluster, we keep track of its
neighboring clusters and corresponding distances, where
k<<N , such that we only need to search O(N) distance
to locate the closest clusters. The overhead is the
maintenance of the neighboring clusters for all clusters.
When two clusters merge, we only need to update those
clusters whose neighbors contain at least one of the
merged clusters. Therefore, the maintenance is minimal.

Table II shows the computation time and memory
usage for directHAC implementation and our improved

version. We compared them on two datasets: one contains
5000 utterances and the other 20 000 utterances. For the
first dataset, the direct HAC implementation requires 4 hr
to complete and uses 200-MB memory, yet the improved
implementation only takes 15 s and requires 8-MB
memory. For the second dataset, we only provide the
results for the improved implementation and the memory
usage for the direct implementation. We did not measure
the computation time since it takes too long—a
reasonable estimate is about 250 hr.
 TABLE II CLUSTERING ALGORITHM COMPLEXITY

B. Merging Clusters
As mentioned before, HAC may still produce a large

number of clusters since the utterances are short. To
reduce the total number of clusters, we merge all clusters
smaller than an established minimum into a special
“other” cluster. While there is no set rule for the
minimum size of clusters, we find that a minimum of
three to five are reasonable choices in our study.

Anecdotally, the analysts found it easier to transform a
set of clusters into utterance types than to create utterance
types directly from a large set of flat data. The specific
utterance types depend on the business problem that the
analyst is attempting to solve. Depending on the distance
threshold chosen in the clustering algorithm, the
clustering results may either be conservative (with small
threshold) or aggressive (with large threshold). If the
clustering is conservative, the utterances of one utterance
type may be scattered into several clusters, and the
analyst has to merge these clusters to create the desired
utterance type. On the other hand, if the clustering is
aggressive, there may be multiple utterance types in one
cluster, and the analyst needs to manually split the
mixture cluster into different utterance types. In real
applications, we tend to set a relatively low threshold
since it is easier to merge small homogeneous clusters
into a larger cluster than it is to split one big
heterogeneous cluster into many smaller clusters.

C. Clustering Performance Evaluation
We use the purity concept explained in [6] to evaluate

clustering performance. The two measurements are the
average cluster purity (ACP) and the average utterance
type purity (ATP), as explained below. First, we define
the following:
nij total number of utterances in cluster i with utterance

type j;
NT total number of utterance types;
NC total number of clusters;
N total number of utterances;
n.j total number of utterances with utterance type j;
ni. total number of utterances in cluster i.

The purity of a cluster pi. can then be defined as

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 67

© 2011 ACADEMY PUBLISHER

2

. 2
1

TN
ij

i
j i

n
p

n=

=∑

and the average cluster purity (ACP) is

 . .
1

1 CN

i i
i

ACP p n
N =

= ∑ i

Similarly, the utterance type purity and the average
utterance type purity (ATP) are calculated as

2

. 2
1 .

CN
ij

j
i j

n
p

n=

=∑

 . .
1

1 TN

j j
j

ATP p n
N =

= ∑ i

The ATP measures how well the utterances of one
utterance type are limited to only one cluster, and the
ACP measures how well the utterances in one cluster are
within the same utterance type. Two extreme cases are 1)
if all utterances are in one cluster, then ATP=100%, and
ACP is small; 2) if each utterance is in a separate cluster,
then ACP =100%, and ATP is small. Ideally, we prefer a
high ACP and a high ATP for each cluster. When this is
not the case (given that the clustering algorithm is used
for bootstrapping the utterance types), we prefer a high
ACP with reasonable ATP over a high ATP with low
ACP (see Table III). In this mode, the analyst does not
need to spend too much effort on checking the
consistency of each cluster but rather study the difference
and similarity among clusters.

D. Clustering Results
We evaluated the clustering performance on four

applications across four different industrial sectors,
specifically, financial, health care, insurance, and retail.
To cope with the multiple labels problem, we only
consider the single label utterances in the evaluation.
Table III gives the results. In the evaluation, we set the
clustering distance threshold to 0.6, and the minimum
cluster size to 5.

From Table III, we see that the ACP is in the same
range, roughly 60–70% across the four applications, and
the ATP are quite different among the different
applications. The health care application achieves the
highest ATP with 45.6%, and the financial application
achieves the lowest ATP, with 23.2%. Generally, when
the number of utterance types is larger, the ACP will be
smaller, and when the number of clusters is larger, the
ATP will be smaller. For the financial and retail
applications, the numbers of utterance types are small;
therefore, their corresponding ACPs are large. For the
health care and insurance applications, the numbers of
utterance types are large, and therefore, their ACPs are
small. For financial and insurance applications, the
numbers of clusters are large, and their ATPs are small.
The health care and retail applications have a small
number of clusters, and their ATPs are large.

The utterance types for different applications are
determined by analysts based on their knowledge and on
the business problem to be solved. Therefore, the number

of utterance types may not uniformly reflect the
scattering in the datasets. The clusters are determined in a
systematic way, and they more reliably indicate the
syntactic structure of the datasets. For example, the
financial application has 36 utterance types, but it does
not mean that the dataset is homogeneous. Actually, it is
not homogeneous since there are a large number of
clusters, which implies that the dataset is actually
heterogeneous.
 TABLE III CLUSTERING PERFORMANCE RESULTS BY

APPLICATION

IV. RELEVANCE FEEDBACK
Although clustering provides a good starting point,

finding all representative utterances belonging to one
utterance type is not a trivial task. Additional data-mining
tools are desirable to help the analyst. Our solution is to
provide a classification mechanism based on [14] SVM
classifiers for the analyst to perform this tedious task. In
such classification-based approaches, the user
sequentially assigns labels to examples until the examples
belonging to the target utterance type are reasonably
separated from the rest.

A. Support Vector Machines
We adopted SVMs as the classifier [7], [13] for several

reasons: First, SVMs efficiently handle high dimensional
data. In our case, this is a set of utterances with a large
vocabulary. We compared SVMs to Adaboost [2], which
is another classification algorithm used for creating NLU
models. On three customer care data sets, corresponding
to medical and telecommunication applications and
containing between 9000 and 35 000 examples, the F-
measures obtained with Adaboost ranged from 67 to 77.
The use of SVMs improved these F-measures by three
points on average.

Second, SVMs provide especially reliable performance
with a small amount of training data. If we reduce the
size of the aforementioned data sets to less than 1000
examples, SVM F-measure is, on average, five points
over Adaboost F-measure.

Third, with the use of Rational Kernels [16], SVMs can
be extended to accept as input the word lattice produced
by an ASR system instead of just the best recognized
sentence. A characteristic of SVMs is that all the
necessary computations only require inner products
between vectors belonging to the input space. Taking two
vectors x and y, their inner product (x.y) can be replaced
by the application of a kernel function K(x,y). Provided
that it verifies some properties (symmetric, positive
definite), this kernel can engender an inner product (and,

68 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

consequently, a metric) in a feature space that is different
from the input space. Now, suppose that instead of the
feature extracted from sentences as described in Section
II, the output of the speech recognizer consists of word
lattices, which are encoded as graphs or finite state
machines (FSMs). While there is no obvious inner
product in the space of FSMs, the application of kernels
(with a called Rational) to these FSMs defines a metric
that can be used to apply SVM learning to these FSMs.

In our ASR system, the oracle accuracy, which is
defined as the accuracy of the path in the lattice closest to
the transcription, is considerably better than the word
accuracy using best recognized sentence only. This
means that often, the correct sentence is somewhere in
the lattice but not as the top candidate. Rational Kernels,
by using the additional information contained in the
lattice, improve the F-measures [9] observed in the three
data sets by 1.5 points on average. (F-measure combines
recall (r) and precision (p) with equal weight as follows:
F(r,p)=2rp/(r+p)).

Rational Kernels have also been used to generalize the
clustering algorithm described in Section III-A to FSMs.
Their actual use in an environment that requires user
interaction is under investigation (with the challenge of
visualizing FSMs).

B. Relevance Feedback
The most commonly used approach in Information

Retrieval (IR) is relevance feedback, which is a form of
query-free retrieval where documents are retrieved from a
collection according to a measure of relevance to a given
set of documents. In essence, an analyst indicates to the
retrieval system that it should retrieve “more documents
like the ones desired and not like the ones ignored.”
Selecting relevant documents based on analyst’s inputs is
basically a classification (relevant/irrelevant) problem.
Relevance feedback is an iterative procedure. The analyst
starts with a cluster or a query result by certain keywords
and marks each utterance as either a positive or negative
utterance for the utterance type. The analyst’s inputs are
collected by the relevance feedback engine, and they are
used to build a SVM classifier that attempts to capture the
essence of the utterance type. The SVM classifier is then
applied to the rest of the utterances in the dataset, and it
assigns a relevance score for each utterance. A new set of
the most relevant utterances are generated and presented
to the analyst, and the second loop of relevance feedback
begins. The analyst determines the end of this cycle based
on how closely the utterances in the generated set match
their concept for the utterance type.

For efficient labeling of large quantities of data,
another iterative approach, generally referred to as active
learning, is preferred. The most relevant utterances, while
interesting from an IR standpoint, are usually obvious for
the classifier. They are not those that maximize progress
when learning them. It is rather the labeling of uncertain
utterances, which lie at the decision boundary, which
gives the greatest improvement to the discrimination
between relevant and irrelevant utterances. To establish
which utterances lay at the decision boundary, one can
rely on either geometric or probabilistic criteria.

According to the geometric criterion, the examples that
should be labeled in priority stand at the center of the
classifier. For an example x, let g(x) be the output of the
SVM before the addition of any bias. The geometric
criterion relies on the transformation

 g(x)+b
such that for positive support vectors

 g(x)+b=1
and for negative support vectors

 g(x)+b=-1
The center of the margin corresponds to
 g(x)+b=0

In our problem, we define the positive class as
examples belonging to the utterance type and the negative
class as all other examples. As a consequence, the
positive class has many fewer representatives than the
negative class. Therefore, choosing examples at the
center of the margin will typically return a large majority
of negative utterances and result in a labeling process that
is both suboptimal and frustrating.

The probabilistic criterion relies on the fact that the
classifier output approximates in a reasonable way the
posterior probability that a given utterance belongs to the
utterance type and selects examples where the posterior
probability is the closest to 0.5. In the case of SVMs,
such a probabilistic approximation can be obtained with
the application of univariate logistic regression to the
output of the SVM [14]. The transformation consists of

 g’(x)=σ(a.g(x)+b)
where σ is the sigmoid function, and a and b are
optimized to minimize the Kullback–Leibler divergence
[14] between g’(x) and the posterior probability of the
class P(c|x) , given x. Separate training sets should be
used to train the SVM classifier and the logistic
parameters a and b. We use cross-validation to maximize
the use of labeled examples. Note that in the case of
active learning, our logistic remapping function is trained
on the already-labeled examples, whose distribution is
skewed and not statistically representative of the true
distribution. Despite this limitation, we found that the
logistic remapping approximation worked well on
unlabeled examples, returning comparable numbers of
positive and negative examples, and converging
significantly faster than the geometric criterion. Both
theory and computer simulations predict that active
learning, using the probabilistic criterion, minimize the
number of examples one has to label to achieve a given
classification accuracy on test data. Our simulations
suggest that if the goal is to label enough examples to
build a classifier that generalize well on test data, the
active learning strategy can reduce by up to a factor of six
the number of examples that need to be labeled.

However, the reality is quite different. First, the initial
goal is not to build a classifier but rather to collect typical
examples and estimate the coverage of an utterance type
for the design of a labeling guide. Second, active learning
typically returns the hardest to classify examples. Each
one of them has to be examined carefully by the analyst
who needs to have a very good idea of what kind of
utterances a given utterance type covers. Relevance

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 69

© 2011 ACADEMY PUBLISHER

feedback returns a lot of “obvious,” and sometimes nearly
identical, examples. This can be frustrating but has the
following advantages over active learning:
• In many cases, all the utterances are obvious positives,
and a single “select all” click will do the job. Thus,
labeling ten examples using relevance feedback can be as
fast as labeling one example using active learning.
• To return the most relevant examples gives the analyst
clear feedback that he/she is going in the right direction.
Boundary examples returned by active learning do not
give a clear indication of how well the classifier works on
previously labeled examples.
• During the initial iterations, the analyst may not have a
clear idea of the full coverage of an utterance type and
needs to be confronted with data to better specify the
utterance type. By presenting “typical” examples,
relevance feedback works better in this loosely defined
search scenario.

Moreover, some of these “typical” examples can be set
apart as illustrations for the labeling guide. In practice, all
examples whose posterior probability of belonging to the
utterance type ranges from 0.5 to 1 are returned and
sorted in descending order of probability. The analyst can
then choose to label this list either from the top or the
bottom. The general preference seems to go toward
labeling the most relevant (top) examples, at least at the
beginning of the labeling process.

V. NLU METRIC
The analyst can improve utterance types by iteratively

building and testing interim NLU classifiers. A Web
interface was added to allow the analyst to build and test
NLU classifiers and to better understand patterns in the
NLU classifier test results. We used BoosTexter as the
underlying boosting algorithm for classification [1]–[3].

After the analyst has labeled the utterances (we will
refer to these as truth utterance-type labels),
approximately 20% of the labeled utterances are set aside
for testing. The remaining data are used to build the
initial NLU classifier. For each of the tested utterances in
the test data, logs show the classification confidence
scores for each utterance type. Confidence scores are
replaced by probabilities that have been computed using a
logistic function. These probabilities are then used to
calculate the NLU metric, which attempts to reveal
patterns in the classification results. The NLU metric,
roughly speaking, is a measure of utterance type
differentiability. The NLU metric is calculated as follows
and is averaged over the utterances that belong to only
one utterance type:

 1

1

(), ()

1 (), ()

N

i i i i
i

N

i i i i
i

T X for T H correctly classified

T H for T H correctly classified
N

=

=

⎧ − =⎪⎪
⎨
⎪ − =
⎪⎩

∑

∑

1

N
S=

Where S is the NLU Metric, N is the number of
utterances that belong to only one utterance type, Ti is
the truth probability, Xi is the next highest probability,
and Hi is the highest probability. A test utterance is

correctly classified if the calculated probability of the
truth type is the highest probability.

Table IV shows two sample test utterances and the test
log results. The first utterance is incorrectly classified
(shown in italics) since the Request(Sales) utterance type
has a higher probability than the Request(Order_CC)
utterance type. In this particular case, the word “order”
also figures prominently in the Request(Sales) utterance
type. As can be expected, this overlapping language
problem will occur at times, no matter how much work is
expended to create distinct utterance types. The second
utterance is correctly classified, but the probabilities are
too close. Ideally, the truth utterance type probability is
near 1, and the next nearest probability is close to 0 so
that the contribution to the NLU metric would be close to
1. If the probabilities are too close together, then these
two utterance types can be confused in the field, and calls
can possibly be incorrectly routed. In this case, the
contributions to the NLU metric from these two
utterances were -0.5091 (incorrectly classified) and
0.0495 (correctly classified). As can be seen in Table V,
the NLU metric for the Request (Order_CC) utterance
type is 0.681. Of the 18 test utterances, only two were
 TABLE IV TEST LOG PROBABILITIES

 TABLE V NLU METRIC

 incorrectly classified. Thus, although some of the test
utterances in the test log indicate problems, on the
aggregate, the NLU metric for this utterance type is quite
good. Other good utterance types are shown in Table V.
If the NLU metric was less than 0.50 or negative, this
would indicate a problem with the utterance type. The
best approach for the analyst is to evaluate both the test
log probabilities (for utterance level problems) and the
NLU metric (for aggregate level problems) for every
utterance type. This metric allows the analyst to identify
utterance types that might have problems in the field.
Once identified, the analyst could redefine the
problematic utterance types. Another interim NLU
classifier could then be built and tested to determine if the
changes improved the utterance type. The analyst can
iteratively build and test the interim NLU classifiers.
Once the utterance types are correct, the final annotation
guide is created. The final annotation guide would then
be used by the labelers to label all the utterance data
needed to build the final NLU classifier. The NLU metric
helps create better utterance types, which ultimately leads
to a better NLU classifier.

70 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

VI. SUMMARY
We have shown adaptations of text-based data mining

tools to make them more useful in the context of speech
data mining. These tools enable our analysts to develop
NLU classifiers in the context of a specific business
problem. Data-reduction techniques are used to take
advantage of the nature of short utterances and give a
compacted view of a large data set. In clustering, we
discussed the difficulties of creating clusters from short
utterances. We also discussed how we took advantage of
the distance metric for short utterances to help us improve
the performance of the clustering algorithm. For
relevance feedback on short utterances, we have shown
that using SVMs and then reporting results that are sorted
by distance from the support vector gives results that are
more useful for our analysts. Our analysts have reported
that the task is much less tedious and that they have done
a better job of covering all of the significant utterance
types. The NLU metric that we created gives us a method
of determining the accuracy of the NLU before it goes
into the field.

REFERENCES
[1] Y. Freund and R. Schapire, “A short introduction to
boosting,” J. Japanese Soc. Artificial Intell., vol. 14, no. 5, pp.
771–780,2008.
[2] M. Rochery, R. Schapire, M. Rahim, N. Gupta, G. Riccardi,
S. Bangalore, H. Alshawi, and S. Douglas, “Combining prior
knowledge and boosting for call classification in spoken
language dialogue,” in Proc. ICASSP.
[3] R. Schapire and Y. Singer, “BoosTexter: a boosting-based
system for text categorization,” Machine Learning, vol. 39, no.
2/3, pp. 135–168, 2008.
[4] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data.
Englewood Cliffs, NJ: Prentice-Hall,2008.
[5] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a
review,” ACM Comput. Surveys, vol. 31, no. 3, pp. 264–323,
Sep.2008.
[6] J. Ajmera, H. Bourlard, I. Lapidot, and I. McCowan,
“Unknown-multiple speaker clustering using HMM,” in Proc.
ICSLP, Denver, CO, 2008, pp. 573–576.
[7] I. Drucker, I. Gibbon, and I. Shahraray, Support vector
machines: relevance feedback and information retrieval, in Inf.
Process. Manage., vol. 28, pp. 305–332, 2002.
[8] H. Drucker, D. Gibbon, and B. Shahraray, “Relevance
feedback using support vector machines,” in Proc. Int. Conf.
Machine Learning.
[9] C. Van Rijsbergen, Information Retrieval, Second ed.
London, U.K.: Butterworth, 1979.
[10] A. Abella and A. Gorin, “Construct algebra: analytical
dialog management,” in Proc. Annu. Meet. Assoc. Computat.
Linguistics, Washington, DC, Jun. 1999.
[11] A. L. Gorin, G. Riccardi, and J. H. Wright, “How may I
help you?,” in Speech Commun., vol. 23, 1997, pp. 113–127.
[12] M. F. Porter, “An algorithm for suffix stripping,” Program,
vol. 14, no. 3, pp. 130–137, 1980.
[13] V. N. Vapnick, Statistical Learning Theory. New York:

Wiley, 1998.
[14] C. Platt, “Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods,” in
Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B.
Schölkopf, and D. Schuurmans, Eds. Cambridge, MA: MIT
Press, 1999, pp. 61–74.
[15] Z. Xu, X. Xu, K. Yu, V. Tresp, and J. Wang, “A hybrid
relevance-feedback approach to text retrieval,” in Proc. 25th
Eur. Conf. Inf. Retrieval Res., Pisa, Italy, Apr. 14–16, 2008.
[16] C. Cortes, P. Haffner, and M. Mohri, “Rational Kernels:
theory and algorithms,” J. Machine Learning Res., vol. 5, pp.
1035–1062, August 2004.
[17] J. M. Buhman and T. Hofmann, “A maximum entropy
approach to pairwise data clustering,” in Proc. Int. Conf.
Pattern Recogn., 1994, pp. 207–212.
[18] S. Guha, R. Rastogi, and K. Shim, CURE: An Efficient
Clustering Algorithm for Large Databases. Seattle, WA:
SIGMOD, Jun. 1998, pp. 73–84.
[19] G. Karypis, E.-H. Han, and V. Kumar, “CHAMELEON:
hierarchical clustering using dynamic modeling,” IEEE Comput.,
vol. 32, no. 8, pp. 68–75, Aug. 1999.
[20] G. Salton and C. Buckley, “Term weighting approaches in
automatic text retrieval,” Inf. Process. Manage., vol. 5, no. 24,
pp. 513–523, 1988.
[21] J. Chu-Carroll and B. Carpenter, Dialogue management in
vector-based call routing, in Comput. Linguistics, 1998.
[22] M. A. Hearst, “Untangling text data mining,” in Proc. ACL
37th Annu. Meet. Assoc. Comput. Linguistics. College Park, MD,
Jun. 20–26, 1999.
[23] J. Lafferty and C. Zhai, “Document language models,
query models, and risk minimization for information retrieval,”
in Proc. ACM SIGIR Conf. Res. Development Inf. Retrieval,
2008.
[24] M. Jansche and S. Abney, “Information extraction from
voicemail transcripts,” in Proc. EMNL, 2002.
[25] A. Inoue, T. Mikami, and Y. Yamashita, “Improvement of
speech summarization using prosodic information,” in Proc.
ICASSP, 2004, pp. 599–602.

Sheng-Hui Dai received the B.S. and
M.S. degrees in computer science from East China Institute of
Technology, Fuzhou, China, in 1999, 2006, respectively. He
was an assistant of Information Engineering at East China
Institute of Technology, Fuzhou, China, in 1999, and became a
lecturer in 2004. His research interests are in data mining, real-
time systems, multimedia, mobile computing, and wireless
communications.

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 71

© 2011 ACADEMY PUBLISHER

