
 

XIOTR :A Terse Ranking of XIO for XML 
Keyword Search  

Xia Li 
School of Computer Science and Technology Northwestern Polytechnical University, Xi’an, China 

e-mail: lixia@nwpu.edu.cn  
 

Zhanhuai Li, Qun Chen and Ning Li 
School of Computer Science and Technology Northwestern Polytechnical University, Xi’an, China 

e-mail: {lizhh, chenbenben,lining}@nwpu.edu.cn 
 
 
 

Abstract—The emergence of the Web has increased 
interests in XML data because that XML has flexible 
structure. Keyword search has attracted a great deal of 
attention for retrieving XML data because it is a user-
friendly mechanism. But Keyword search is hard to directly 
improve search quality because lots of keyword-matched 
nodes may not contribute to the results. And in many 
applications, the goal is to find such related results that best 
match a set of keywords, the keywords occur location may 
not be consided. XML includes rich semantic information, 
these semantics are helpful to information retrieval process. 
The existing approaches of keyword search usually first 
generate all possible results composed of relevant tuples and 
then sort them based on their individual ranks. This paper 
investigates the compelling problem of how to take 
advantage of XML semantics to improve keyword search 
quality. We design an XML keyword search approach, that 
can derive the keyword query and generate a set of effective 
structured queries by analyzing the given keyword query 
and the schemas of XML data sources. Furthermore, we 
provide a terse algorithm to computing the rank score of the 
structured queries, then we can sort the results easily. We 
have implemented our method on real datasets and the 
experimental results show that our approach achieves both 
high recall and precise when compared with existing 
proposals. 
 
Index Terms—XML; Keyword Search; Structured 
Query; Rank 

I.  INTRODUCTION 
    The Extensible Markup Language (XML) is becoming 
the dominant standard for exchanging data over the 
World Wide Web. As XML becomes the standard for 
representing web data, how to perform effective 
information retrieval on XML data has attracted much 
research interests in recent years[1-6]. The INitative for 
the Evaluation of XML Retrieval (INEX)1, for example, 
was established in April, 2002 and has prompted XML 
researchers worldwide to promote the evaluation of 
effective XML retrieval. Keyword search is a proven and 

                                                           
∗ Supported by the National Natural Science Foundation of China under 

Grant No. 60803043, 60970070 ; the National High-Tech Research 
and Development Plan of China under Grant No. 2009AA1Z134. 

 
1 http://www.inex.otago.ac.nz/ 

widely accepted mechanism for querying in document 
systems and World Wide Web. One of the key 
advantages of keyword search querying is its simplicity – 
users do not have to learn a complex query language, and 
can issue queries without any prior knowledge about the 
structure of the underlying data. Since the keyword 
search query interface is very flexible, queries may not 
always be precise and can potentially return a large 
number of query results, especially in large document 
collections. there are many unrelated results of a keyword 
query due to the lack of clear semantic relationships 
among keywords.  

If users know the query languages and the structure of 
the XML data to be retrieved, they are able to issue a 
structured query, such as NEXI, XPath2 and XQuery3. The 
desired results can be effectively retrieved because the 
structured query can convey complex and precise 
semantic meanings. Nevertheless, there are many 
situations where structured queries may not be applicable, 
such as, a user may not know the data schema, or the 
schema is very complex such that a query can not be 
easily formulated, or a user does not know how to express 
a search using a structured query language, as typically 
found in web applications.  
   The main shortcoming of structured queries is that user 
must learn the construct queries language and must know 
the xml data structure. Nevertheless, there are many 
situations where keyword search on XML documents is 
highly desirable. 

 Existing studies mainly focus on efficiency of 
keyword search on XML databases[7, 8], and accordingly, 
how to discover the structure clue from the input 
keywords so as to improve the precision is urgent to 
investigate. We emphasize the precision of keyword 
search on XML databases in this paper, which is at least 
as important as efficiency. Our objective is to provide a 
general method to retrieve semi-structured data 
efficiently. 

 To achieve our goal, we have published a paper [9], in 
the paper, we introduced a novel concept, called 
XIO(XML Information Object), which is a smallest 

                                                           
2 http://www.w3.org/TR/xpath 
3 http://www.w3.org/XML/Query 

156 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.1.156-163



 

meaningful XML twig as an information object result. 
And we introduced the algorithm to score the XIO 
similarity between two XIO. Then we give an efficient 
and adaptive keyword search strategy, called XIOF 
(XML Information Object Finder), to infer a set of XIO 
from a pure keyword query entered by a user who even 
has no any knowledge of the schema, then to answer pure 
keyword queries over semi-structured data XML by 
translating the XIO to effective structured queries, which 
can improve the performance of keyword search greatly 
by specifying the precise contexts of the constructed 
structured queries.  
    Since the keyword search query interface is very 
flexible, queries may not always be precise and can 
potentially return a large number of query results, 
especially in large document collections. there are many 
unrelated results of a keyword query due to the lack of 
clear semantic relationships among keywords. 
Consequently, an important requirement for XML IR is 
to rank the query results so that the most relevant results 
appear first. 

 The paper [9] did not conside the ranking of the 
queries results. In this paper, we will give a terse 
algorithm,called XIOTR (XML Information Object Terse 
Ranking), to computing the XIO’s rank score, and 
according the rank score of the structured queries to sort 
the queries results. 

A. Our Contributions 
To the best of our knowledge, the XIOTR proposed in 

this paper is the first approach that provides all the 
following features. The contributions of our work include: 

(1) We introduce the notion of XIO, which is smallest 
meaningful information object as a twig of XML data, 
and propose the algorithm to score similarity of two XIO, 
which can dispose off the unrelated result.  

(2) For different data sources, XIOF can infer 
different XIO from a given keyword query and the 
special XML data, which can be used to construct 
adaptive structured queries. 

(3) Provide a terse algorithm, called XIOTR , to 
computing the rank score of XIO, so that to sort the 
structured queries, to rank the query results so that the 
most relevant results appear first. 

(4)We conducted an extensive performance study 
using real data sets with various characteristics. an 
experimental evaluation of XIOTR and a comparison 
with alternative approaches 

B. Paper Organization  
The remainder of this paper is organized as follows. 

We discuss the related work and our motivation in Section 
II. In Section III, we present the data model and basic 
notations of XIO, then describe the XIOF algorithms. In 
Section IV, we present a new inverted list index structures 
and associated query processing algorithms for evaluating 
XML keyword search queries . an experimental evaluation 
of XIOTR and a comparison with alternative approaches 
are provided in Section IV. Finally we conclude the paper 
in Section V. 

II. RELATED WORK AND OUR MOTIVATION 

A. Related Work  
   Efficient evaluation and ranking of XML path 
conditions is a very fruitful research area. Solutions 
include structural joins[10], the multi-predicate merge 
join[11], the Staircase join based on index structures with 
pre- and post order encodings of elements within 
document trees[12] and Holistic Twig Joins[13]. A path 
stack algorithm, is probably the most efficient method for 
twig queries using sequential scans of index lists and 
linked stacks in memory. However, it does not deal with 
uncertain structure and does not support ranked retrieval 
or top-k-style threshold-based early termination. Vagena 
et al. [14] apply structural summaries to efficiently 
evaluate twig queries on graph-structured data, and 
Polyzotis et al. [15] present an efficient algorithm for 
computing (structurally) approximate answers for twig 
queries. Li et al. [16] extends XQuery to support partial 
knowledge of the schema. None of these papers considers 
result ranking and query optimization for retrieving the 
top-k results only. Information retrieval on XML data has 
become popular in recent years; Ref. [17]gives a 
comprehensive overview of the field. Some approaches 
extend traditional keyword style querying to XML 
data[18, 19]. Full-fledged XML query languages with 
rich IR models for ranked retrieval were introduced in 
Refs. [20,21]. Extensions of the vector space model for 
keyword search on XML documents developed in Refs. 
[20], whereas Li et al. [22] use language models for this 
purpose. Vague structural conditions were addressed in 
Refs. [23], Amer-Yahia et al.[24]  combined this theme 
with full-text conditions, and Amer-Yahia et al. [25] 
proposed an integrated scoring model for content and 
vague structural conditions. More recently, various 
groups have started adding IR-style keyword conditions 
to existing XML query languages.  

Keyword search over databases allows users to find 
pieces of information without having to write complicated 
structure queries. In particular, an incompletely specified 
query may return too many results. Nevertheless, there are 
many situations where structured queries may not be 
applicable, such as a user may not know the data schema, 
or the schema is very complex so that a query cannot be 
easily formulated or a user prefers to search relevant 
information from different XML documents via one query.  

Given a keyword query and an XML data source, most 
of related work[6, 16, 26], first retrieve the relevant nodes 
matching with every single keyword from the data source 
and then compute LCA or SLCA[27] of the nodes as the 
results to be returned. XRANK[19] and Schema-Free 
XQuery[16] develop stack-based algorithms to compute 
LCAs as the results. [6]focus on the discussions how to 
infer return clauses for keyword queries XML data. [26] 
takes the valuable LCA as results by avoiding the false 
positive and false negative of LCA and SLCA. The study 
of query relaxation can also support structured queries 
when users cannot specify their queries precisely, 
Xbridge[28] can derive the semantics of a keyword query 
and generate a set of effective structured queries by 

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 157

© 2011 ACADEMY PUBLISHER



 

analyzing the given keyword query and the schemas of 
XML data sources. But in [28] the keyword must consists 
of the forms l : k, l : * or l : ? , where l is a label and k is a 
term, user have to know the labels in the xml data or know 
the node in the schemas of XML data sources, in other 
words, it is not the pure keywords query.  
   About the results rank, despite the success of HTML-
based keyword search engines, certain limitations of the 
HTML data model make such systems ineffective in many 
domains. These limitations stem from the fact that HTML 
is a presentation language and hence cannot capture much 
semantics. The XML data model addresses this limitation 
by allowing for extensible element tags, which can be 
arbitrarily nested to capture additional semantics. 
    Given the nested, extensible element tags supported by 
XML, it is natural to exploit this information for querying. 
One approach is to use sophisticated query languages such 
as XQuery to query XML documents. While this approach 
can be very effective in some cases, a downside is that 
users have to learn a complex query language and 
understand the schema of underlying XML. An alternative 
approach, and the one we consider in this paper, is to 
retain the simple keyword search query interface, but 
exploit XML’s tagged and nested structure before query 
processing.  
    XML and HTML keyword search queries differ in how 
query results are ranked. HTML search engines such as 
Google usually rank documents based (partly) on their 
hyperlinked structure[29]. Since XML keyword search 
queries can return nested elements, ranking has to be done 
at the granularity of XML elements, as opposed to entire 
XML documents. For example, different papers in the 
XML document in Figure 1 can have different rankings 
depending on the underlying hyperlinked structure. 
Computing rankings at the granularity of elements is 
complicated by the fact that the semantics of containment 
links (relating parent and child elements) is very different 
from that of hyperlinks. Consequently, techniques for 
computing rankings solely based on hyperlinks [29] are 
not directly applicable for nested XML elements. 
   The notion of proximity among keywords is more 
complex for XML. In HTML, proximity among keywords 
translates directly to the distance between keywords in a 
document. However, for XML, the distance between 
keywords is just one measure of proximity; the other 
measure of proximity is the distance between keywords 
and the result XML element. As an illustration, consider 
the keyword search query “Design Wasserman”. Although 
the distance between the keywords “Design” (line 6) and 
“Wasserman” (line 10) is small, the XML element that 
contains both the keywords (the < article > element in line 
5) is not a direct parent of either keyword, and is thus not 
very proximal to either keyword. Thus, for XML, we need 
to consider a two-dimensional proximity metric involving 
both the keyword distance.  

 
Figure 1.  Example of XML document  

B. Our Motivation 
The above novel aspects of XML keyword search have 

interesting implications for the design of a search engine. 
In this paper, we describe the algorithm, implementation 
and evaluation of XIOTR built to address the above 
requirements for effective XML keyword search.  

XIOTR aims to bridge keyword search and structured 
queries over XML information retrieval (IR). From a user 
viewpoint, it provides a keyword search interface, it 
allows users to search the information they are interested 
in without learning a complex query language or knowing 
the XML structure . From an IR viewpoint, XIOTR 
provides ranked retrieval based on a scoring function 
throw structured queries The key point, however, is that 
TopX combines these two viewpoints into a unified 
software system, in this paper ,with emphasis on XML 
ranked retrieval. 

III. PRELIMINARY AND XIO SIMILARITY SCORE 

ALGORITHM  
In this section, we describe our representation of 

XML data and define some basic notations to explain our 
proposed index.  

A. Preliminary 
Definition 1. (XML Tree): An XML Tree is defined as 
( )T N E r= , ,  where N is a finite set of nodes, representing 

elements and attributes of the schema T, N NE NV= ∪ , 
NE is set of leaf nodes, NV is set of middle nodes; E is set 
of directed edges where each edge 1 2( )e n n,  represents the 
parent child relationship between the two nodes 

1 2n n N, ∈ , denoted by 
2 1( )Parent n n= ( node 1n  is the 

parent of node 2n ) or 
2 1( )n Child n∈  (node 

2n  is one of the 

158 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER



 

child node of 
1n ), r is the root node of the tree T. For 

example, in Fig.2 node 0 is root, (0 1 2) 0 1Parent . . = .  and 
0 1 3 (0 1)Child. . ∈ . . 

In many applications, the goal is to find xml 
information objects related to xml dataset that best match 
a set of keywords. For example, as shown in Fig. 3, one 
might want to find the article which author is Tom, the 
node article and the node journal will be return as xml 
information object. When user input the keyword ”author 
Tom”, we can infer user want to find a XIO named article 
or journal rather than to find the attribute node author or 
the node author which is an attribute of the XIO(article). 
Actually, each xml document can be regarded as an xml 
information object,  the root node is the summarization of 
the XML contents, and each XML can be regarded as a 
big XIO which contains many types of small XIO. We can 
see the detailed definition is shown below. 

Definition 2. (XML XIO): Which is a smallest 
meaningful  XML twig as an information object result. 
Given a set of labels |1il i n≤ ≤  and an XML schema tree 
T, a XIO is defined as the root node of the sub-tree subT of 
T, such that subT  contains at least one schema node labeled 
as ,...,i nl l  
   Definition 3. (Alias XIO) In ( )T N E r= , , , there are 

1XIO  and
2XIO  are subT  of T, the 

1XIO  and
2XIO  is 

alias XIO, if the following two conditions hold: 
1) 

1 2( ) ( )Root XIO Root XIO≠  

2) 
1 2( , )SIM XIO XIO θ≥  

The 
1 2( ) ( )Root XIO Root XIO≠  is the root node label of XIO. 

   
1 2( , )SIM XIO XIO is the similarity score of the two XIO. 

B. XIO Similarity Score Algorithm 
   Because the root node label of XIO is different or 

the expression of certain properties in different ways, we 
may mistakenly infer the same type XIO as different type 
XIO. Typical example is the existence of an alias object. 
For example, as shown in Fig.3, the node article and the 
node journal should be regarded as the same type of XIO. 
In order to avoid mistakenly judged the same type of XIO 
into different type XIO, we provide an algorithm to 
computing the similarity score between two XIO, as 
equation 1. 
 

   

issues(0)

*issue(1)

number(3)

*article(5)

title(6) pages(7) authors(8)

*author(9)

articles(4)

*journal(10)

author(9)

Volume(2)

title(6) pages(7)

 
Figure 2.  Example of XML document Schema 

issues
(0)

issue
(0.1) issue

(0.1)volume
(0.1.2)

article
(0.1.4.5)

title
(0.1.4.5.6) pages

(0.1.4.5.7)

authors
(0.1.4.5.8)

author
(0.1.4.5.8.9)

articles
(0.1.4)

John

Alice

RFID
12

journal
( 0.1.4.10)

title
(0.1.4.10.6) pages

(0.1.4.10.7)

author
(0.1.4.10.9)

Tom
XML

13

number
(0.1.3)

author
(0.1.4.5.8.9)

 

Figure 3.  Example of XML document Tree 

The structure of same type XIO should be similar. 
Therefore, we consider two factors to compute the XIO 
similarity, the semantic and the structural information of 
XIO. That is, taking into account XIO contains the node 
information, and to consider XIO contains hierarchy of 
node. The similarity score algorithm of two XIO as 
follows[9]: 

1 2 1 2 1 2( , ) _ ( , )* _ ( , )SIM XIO XIO SIM N XIO XIO SIM L XIO XIO=  (1) 

In (1), 
1XIO  and 

2XIO are two twigs of T, 

1 2( , )SIM XIO XIO )is the similarity of 
1XIO  and 

2XIO , 

1 2_ ( , )SIM N XIO XIO  is the node similarity of 
1XIO  and 

2XIO , detail in (2), and 
1 2_ ( , )SIM L XIO XIO  is the node-

level similarity of 
1XIO  and 

2XIO , detail in (3). 

1 2
1 2

1 2

| ( ) ( ) |_ ( , )
| ( ) ( ) |
Root XIO Root XIOSIM N XIO XIO
Root XIO Root XIO

∩
=

∪
     (2) 

In (2), 
1( )Root XIO  is the label of the node which is 

contained by 
1XIO . When the number of two XIO 

contains the same node is more, the result value is greater. 
If all nodes of the two XIO are same, the node similarity 
score is 1. Thus, 

1 20 _ ( , ) 1SIM N XIO XIO≤ ≤  

, ,

, ,

1 2

1 2
1, 1 1 2

( , )
_ ( , )

( , )
n n n ni j i j

n n n ni j i j

n L L

i j L L

Min XIO XIO
SIM L XIO XIO

Max XIO XIO= =

= ∑     (3) 

In (3), 
,1 n ni jLXIO is the path number between node ni and 

node nj in XIO1. When the count of two XIO contains 
the same path is more, the result value is greater. If all 
paths of the two XIO are same, the node-level similarity 
score is 1. Thus, 

1 20 _ ( , ) 1SIM L XIO XIO≤ ≤  

C. AN ADAPTIVE SEARCH STRATEGY 
   XIOF infer a set of XIO from a keyword query by 
analyzing the structure of XML, then to perform 

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 159

© 2011 ACADEMY PUBLISHER



 

structured queries using of existing structured query 
system, such as saxon4 by translating a XIO to effective 
structured queries. There are three key questions need to 
address: (1) How to judge a XIO is meaningful. (2) How 
to calculate the similarity of XIO to merging similar XIO. 
(3) How to infer target XIO from the keywords queries 
and the special xml source. (4) How to score the ranking 
of queries results. The question(1~3) have been discussed 
in paper[9] , We brief describe them here, and we will 
emphasize on the fourth question in the follow subsection. 

In XML file, there are three types data element, 
attribute and text, the element and attribute are structure 
information, and the text is content information. The 
element and attribute play the same role as semantic 
information to limit the search target, so we can regard 
element and attribute as the search term. The text is the 
search target content. Same as, the user keywords query 
can be divided into search term (abbreviate as s.t.) and 
search content (abbreviate as s.c.). If the keywords query 
contains s.t., we can infer the XIO structure through scan 
the xml schema, otherwise, if the keywords query only 
contains s.c. we can not infer the XIO structure directly. 
We describe the two kinds keywords query in this section, 
one is contains s.t. another is only contains s.c. 

Given a list of label(as s.t.) and a XML tree T, an XIO 
of these labels can be represented with a sub-tree of T 
such that it contains the node labeled. We will derive the 
returned nodes only by identifying the types of the XIO. 
For any XIO T∈ , if XIO is meaningful, we can determine 
that XIO can be taken as a return because the XIO 
represents an independent meaningful information object 
at the conceptual level. However, if XIO is un-meaningful, 
the XIO may not be returned. In this case, we probe its 
ancestor nodes until we find its nearest ancestor XIO 
which is meaningful. For example, as shown in Fig.3, in a 
digital library application, consider keyword query q2 
(title xml Tom) over the XML document. We are able to 
infer user want to find a article or journal since the 
keywords query contains title (as s.c.), title NT∈ , so we 
probe its ancestor nodes article or journal as the target 
XIO, which attribute has the node title. 

However, if user issues a no structure query, such as 
q(xml Tom) which only contains s.c but no s.t. In this case 
we may not infer the XIO directly. We know, in a XML 
tree T, any s.c. must be contained in a text node, and any 
text node must be a content of an element or attribute node. 
So, we can have an inverted table of eigenvalue to record 
the relation between text and NV node based on a XML 
document, and we can have the structure information 
between NV node and NT node based on a XML schema 
also. So if a query no structured information, we can 
confirm the corresponding s.t. through scanning the 
inverted table of eigenvalue, then, infer a XIO based on 
the corresponding s.t. Such as q(xml Tom), the "xml" is 
contained by a text node which parent node is Title, and 
"Tom" is contained by a text node which parent node is 
author, we can trust the target XIO is article or journal 
which is the parent node of title and author. 

                                                           
4 http://saxon.sourceforge.net/ 

D. Score Rank Algorithm 
Almost each IR algorithm has to rank the query results 

so that the most relevant results appear first. According to 
above description, a query keywords and corresponding 
XML document, may infer a group of users demand 
information retrieval results. For sorting, first to sort the 
XIO, retrieval results will be in accordance with the XIO 
classification, a XIO retrieval results correspond to a 
group of retrieval results. For information retrieval results 
according to the classification of object, and information 
object, so the user has sort for easy positioning 
information retrieval results. The sorting algorithm as 
follows. 

Definition 4. (Attribute Value Weight): denoted as 
( , )i it v tω_ . Since XML keyword search queries can 

return nested elements, ranking has to be done at the 
granularity of XML elements, as opposed to entire XML 
documents. According the theory of TF/IDF, we get the 
attribute weight algorithm as following: 

( , ) ( , )( , )
max{ ( , ) ( , ) |1 }

i i i i
i i

i i i i

tf v t idf v tt v t
tf v t idf v t i n

×
ω_ =

× ≤  ≤
   (4) 

In (4), ( , )i itf v t  is the term frequency of node 
iv  which 

contains the keyword 
it .  ( , )i iidf v t  is the inverse elements 

frequency of the node 
iv  which contains the keyword 

it  ,  

( , ) log( / 0.01)idf v t N n
i i i

= +                    (5) 

In (5), the N is the total number of the words which 
are contained in the text belong to the node 

iv . When the 
specified word appear frequency is more in the node 

iv , 
the result value is greater. In the node 

iv  , the number of 
different words is less, the result value is greater. If there 
is only one word in the text of the node 

iv  , the attribute 
value weight is 1. Thus, 0 ( , ) 1t v ti i≤ ω_ ≤  

Definition 5. (Attribute Structure Weight): denoted as 
( , )i me v vω_ . mv is the root node of the mXIO , obviously, 

the path between node iv  and the root node mv  of mXIO is 
short , the weight should be larger, we get the attribute 
structure weight algorithm as following: 

( , ) ( , )1
( , )

( , ) 1 max{ ( , ) ( , ) | 1 }

tf v v idf v v
i m i me v v

i m LthOfPath v v tf v v idf v v i n
i m i m i m

×
ω_ = ×

+ × ≤  ≤

 (5) 

In (4), ( , )i mtf v v  is the term frequency of node 
iv  which 

contains the keyword 
it .  ( , )i midf v v  is the inverse elements 

frequency of the node 
iv  which contains the keyword 

it  , 

( , ) log( / 0.01)idf v t N n
i i i

= +  , in here, the N is the total 

number of the words which are contained in the text 
belong to the node 

iv . ( , )i mLthOfPath v v  is the path 
between the node iv  and the mXIO root node mv , 
Obviously, 0 ( , ) 1i me v v≤ ω_ ≤  

160 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER



 

Definition 6. (Similarity Score between XIO and Q): 
denoted as ( , )Score Q XIOi . Because the XIO the focus 
factor are Attribute Value and Attribute Structure , so we 
can get the algorithm of Similarity Score between XIO 
and Q as following: 

1
( , ) ( , ) ( , )]

1 1

k n k
Score Q O e v v t v tmi i i ii in

−
= ×[ ω_ + ω_∑ ∑

= =
  (6) 

In (6), n is the number of nodes which are contained in 
XIOi ， n is the number of the keywords which entered 
by user for quering, k is the number of search content, n-k 
is the number of search term Obviously, 
0 ( , ) 1Score Q Oi≤ ≤ . 

IV. EXPRIMENTS 
We begin by describing the XML data sets and querys 

workloads used in the experiment. We empirically 
compared the performance of our XIOTR with the SLCA 
which based on Dewey ID on real-life data sets Sigmod5, 
dblp6 and auction4. We present the detail information of 
data set in Table I. The experiments were performed on 
2.8GHz Pentium IV processor with 2GB of main memory 
and 250GB of disk space, OS is MS-Windows XP. We 
implemented both the SLCA based on Dewey ID and 
XIOTR in Java programming language. The index was 
stored in MySQL5.0. We present the test cases and the 
experimental results in Table I, There are 18 test cases 
from three data sets, QS1 ~QS6 is the test case of Sigmod, 
QD1~QD6 of dblp and QA1~QA6 of auction. In Fig.4, 
processing time (ms) is the average execution time for 
obtaining the structure language from keywords language, 
every process have performed 5 times. 

A. Performance Result 
In our experiments, we found that XIOTR shows 

significantly better performance. Table I illustrates the 
experimental result of XIOTR . The experimental 
processing time compared the performance of XIOTR and 
SLCA[12] are shown in Fig.4. We observe that our 
algorithm achieves better search performance than the 
existing methods SLCA. Fig. 4 illustrates the experimental 
results compared the performance of XIOTR and 
SLCA[12]. We observe that our algorithm achieves better 
search performance than the existing methods SLCA. The 
recall rate and precision rate of the two methods are 
shown in the Fig. 4. In two different documents on the 16 
test cases, the recall rate and precision rate are 100% on 
XIOF, SLCA of the recall rate was 100%, while the 
precision rate based on different forms in different test 
cases. 

The reason of recall rate was 100% for the experiment 
is that the document is basically non-existent missing 
values, which makes the judge methods of SLCA or of 
XIOTR are also effective. But the precision rate, XIOTR 
outperform over SLCA, because XIOTR first to judge a 
XIO is meaningful or not before judge a XIO can be as a  

                                                           
5 http://www.cs.washington.edu/research/xmldatasets/ 
6 http://dblp.uni-trier.de/xml/ 

TABLE I.  TEST KEYWORDS QUERIES ON FILES: SIGMOD 
RECORD,DBLP AND AUCTION 

NO.  keywork query  Create structured Query (NEXI)  
QS1  author Hatfield  // ariclesTuple [about(.//author, Hatfield)] 

QS2  title Description  // ariclesTuple [about(.//title, 
Description)]  

QS3  Exploiting 
Gibson 

//ariclesTuple[about(.//title, 
Exploiting Gibson)]  

QS4  William  //ariclesTuple[about(.//author, William)]  
QS5  Description 

Independence 
Gibson 

//ariclesTuple[about(.//title, 
Description Independence) and 
about(.//author, Gibson)]  

QS6  Description 
Languages  

//ariclesTuple[about(.//title, Description 
Languages)]  

QD1 title Normalized  //inproceedings 
[about(.//title,Normalized)]  

QD2 booktitle SWEE 
Rosenthal  

//www [about(.//booktitle,SWEE) and 
about(.//url, Rosenthal)]  

QD3 author Luca 
ICCAD  

//inproceedings 
[about(.//booktitle,ICCAD) and 
about(.//author, Luca)]  

QD4 Structural 
Association  

//inproceedings [about(.//title,Structural 
Association)]  

QD5 booktitle Storage 
Retrieval  

//inproceedings [about(.//title,Storage 
Retrieval)]  

QD6 Retrieval Carole  //www [about(.//title, Retrieval) and 
about(.//author, Carole)]  

QA1 Krishna person  //person[about (.//name, Krishna)]  
QA2 Meketon  //person[about (.//street, Meketon)]  
QA3 

Claudine Marwedel //person[about(.//name, Claudine) and 
about(.//street, Marwedel)]  

QA4 person101  //persopn[about (.//id, person101)]  
QA5 author person2155  //bidder[about (.//author, person2155)]  
QA6 Featured  // open auction[about (.//type, Featured)]  

 

0

0.5

1

1.5

QS
1

QS
2

QS
3

QS
4

QS
5

QS
6

QD
1

QD
2

QD
3

QD
4

QD
5

QD
6

QA
1

QA
2

QA
3

QA
4

QA
5

QA
6

R
ec
a
ll XIOTR

SLCA

 
(a) recall on XIOTR  and SLCA 

0

0.5

1

1.5

QS
1

QS
2

QS
3

QS
4

QS
5

QS
6

QD
1

QD
2

QD
3

QD
4

QD
5

QD
6

QA
1

QA
2

QA
3

QA
4

QA
5

QA
6

Pr
e
c
is
i
o
n

XIOTR

SLCA

 
(b) Precision on XIOTR  and SLCA 

Figure 4. The Precision(a) and Recall(b) 
 

result, otherwise, XIOTR will dispose the meaningless 
result through merging similar XIO; In addition, the query 
be performed through Saxon which is a structure query 
system, and that XIOTR can provide a precise query, so 
our method fully reflect the high precision advantages of 
structured query. XIOTR method showed high precision 
rates, particularly in the case that the search keywords 
only contains s.c. The precision rate of XIOTR methods 
and SLCA method is differences because unmeaningful 
results are returned in SLCA, while XIOTR dispose the 
meaningless result. 

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 161

© 2011 ACADEMY PUBLISHER



 

Because that XIOTR method reasonably take into 
account the structure of the XML in the values and 
relevance, and thus very well to avoid the generation of 
useless information. Hence, our method leads to an 
improvement over the existing approaches. 

V. CONCLUSIONS AND FUTURE WORK  
XML query languages such as XQuery, XPath and 

NEXI use label paths to traverse the irregularly structured 
data, without efficient indexes, query processing can be 
quite inefficient due to an exhaustive traversal on XML 
data. But current mechanisms do not allow ordinary users 
to pose queries easily on semi-structured databases. We 
have proposed a novel index method, quick terse path 
index XIOTR , which contain the content and structure of 
the XML documents. XIOTR provides a terse index that 
can quickly derive the keyword query and generate 
effective structured queries by analyzing the given 
keyword query and scanning the index, hence it has a 
performance advantage over methods indexing either. We 
have conducted an extensive experimental study on real-
life XML data sets. The experimental results show that 
XIOTR is effective, and efficient in supporting structural 
queries, the precision significantly outperforms the 
existing proposals.  

Important future work includes user case studies to 
determine effective instantiations of our XIOTR . It is 
likely that a learning mechanism with user feedback will 
prove to be necessary to automatically dynamic index 
update. Another related problem of interest is partly 
matching for keywords queries on semi-structured 
databases. 

VI. ACKNOWLEDGMENT 
This work is supported by the National Natural 

Science Foundation of China under Grant No.60803043, 
60970070; the National High-Tech Research and 
Development Plan of China under Grant 
No.2009AA1Z134 (863 Program). 

REFERENCES 
[1] Z. Bao, T. W. Ling, B. Chen, and J. Lu, "Effective XML 

Keyword Search with Relevance Oriented Ranking," in 
Proceedings of the 2009 IEEE International Conference 
on Data Engineering: IEEE Computer Society, 2009, pp. 
517-528. 

[2] J.-M. Bremer and M. Gertz, "Integrating document and 
data retrieval based on XML," The VLDB Journal, vol. 
15, pp. 53-83, 2006. 

[3] Y. Chen, W. Wang, Z. Liu, and X. Lin, "Keyword search 
on structured and semi-structured data," pp. 1005 - 1010 
2009. 

[4] J. Feng, G. Li, J. Wang, and L. Zhou, "Finding and 
ranking compact connected trees for effective keyword 
proximity search in XML documents," Inf. Syst., vol. 35, 
pp. 186-203, 2010. 

[5] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou, "EASE: 
an effective 3-in-1 keyword search method for 
unstructured, semi-structured and structured data," in 
Proceedings of the 2008 ACM SIGMOD international 
conference on Management of data Vancouver, Canada: 
ACM, 2008, pp. 903-914. 

[6] Z. Liu and Y. Chen, "Identifying meaningful return 
information for XML keyword search," in Proceedings of 
the 2007 ACM SIGMOD international conference on 
Management of data Beijing, China: ACM, 2007, pp. 329-
340. 

[7] F. Shao, L. Guo, C. Botev, A. Bhaskar, M. Chettiar, F. 
Yang, and J. Shanmugasundaram, "Efficient keyword 
search over virtual XML views," The VLDB Journal, vol. 
18, pp. 543-570, 2009. 

[8] J. F. Guoliang Li1 , Feng Lin1  and Lizhu Zhou1 
"Progressive Ranking for Efficient Keyword Search over 
Relational Databases " pp. 193-197, 2008. 

[9] X. Li, Z. Li, P. Wang, and Q. Chen, "XIOF:Finding XIO 
for effective keyword search in XML documents," vol. 
ISA 2010, pp. 99-104, 2010. 

[10] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. 
Zaniolo, "Efficient structural joins on indexed XML 
documents," in Proceedings of the 28th international 
conference on Very Large Data Bases Hong Kong, China: 
VLDB Endowment, 2002. 

[11] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. 
Lohman, "On supporting containment queries in relational 
database management systems," in Proceedings of the 
2001 ACM SIGMOD international conference on 
Management of data Santa Barbara, California, United 
States: ACM, 2001. 

[12] T. Grust, "Accelerating XPath location steps," in 
Proceedings of the 2002 ACM SIGMOD international 
conference on Management of data Madison, Wisconsin: 
ACM, 2002, pp. 109 - 120. 

[13] N. Bruno, N. Koudas, and D. Srivastava, "Holistic twig 
joins: optimal XML pattern matching," in Proceedings of 
the 2002 ACM SIGMOD international conference on 
Management of data Madison, Wisconsin: ACM, 2002. 

[14] Z. Vagena, M. M. Moro, and V. J. Tsotras, "Twig query 
processing over graph-structured XML data," in 
Proceedings of the 7th International Workshop on the 
Web and Databases: colocated with ACM 
SIGMOD/PODS 2004 Paris, France: ACM, 2004. 

[15] N. Polyzotis, M. Garofalakis, and Y. Ioannidis, 
"Approximate XML query answers," in Proceedings of 
the 2004 ACM SIGMOD international conference on 
Management of data Paris, France: ACM, 2004. 

[16] Y. Li, C. Yu, and H. V. Jagadish, "Schema-free XQuery," 
in Proceedings of the Thirtieth international conference on 
Very Large Data Bases - Volume 30 Toronto, Canada: 
VLDB Endowment, 2004, pp. 72-83. 

[17] S. Amer-Yahia and M. Lalmas, "XML search: languages, 
INEX and scoring," SIGMOD Rec., vol. 35, pp. 16-23, 
2006. 

[18] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, "XSEarch: 
a semantic search engine for XML," in Proceedings of the 
29th international conference on Very large data bases - 
Volume 29 Berlin, Germany: VLDB Endowment, 2003, 
pp. 527 - 538  

[19] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram, 
"XRANK: ranked keyword search over XML 
documents," Proceedings of the 2003 ACM SIGMOD 
international conference on Management of data, pp. 16-
27, 2003. 

[20] D. Carmel, Y. S. Maarek, M. Mandelbrod, Y. Mass, and 
A. Soffer, "Searching XML documents via XML 
fragments," in Proceedings of the 26th annual 
international ACM SIGIR conference on Research and 
development in informaion retrieval Toronto, Canada: 
ACM, 2003. 

[21] T. T. Chinenyanga and N. Kushmerick, "Expressive 
retrieval from XML documents," in Proceedings of the 
24th annual international ACM SIGIR conference on 
Research and development in information retrieval New 
Orleans, Louisiana, United States: ACM, 2001. 

162 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER



 

[22] J. List, P. Mihajlovic, V. Mihajlovi", G. Ramirez, and A. 
P. Vries, "TIJAH : Embracing IR Methods in XML 
Databases " vol. Inf. Retr. 8(4), pp. 547 - 570, 2005. 

[23] P. Schlieder and P. Meuss, "Querying and ranking XML 
documents " vol. JASIST 53(6), pp. 489 - 503 2002. 

[24] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit, 
"FleXPath : flexible structure and full-text querying for 
XML " pp. 83 - 94, 2004. 

[25] P. Amer-Yahia, P. Koudas, A. Marian, P. Srivastava, and 
P. Toman, "Structure and content scoring for XML " vol. 
Trondheim, Norway, pp. 361 - 372 2005. 

[26] G. Li, J. Feng, J. Wang, and L. Zhou, "Effective keyword 
search for valuable lcas over xml documents," in 
Proceedings of the sixteenth ACM conference on 
Conference on information and knowledge management 
Lisbon, Portugal: ACM, 2007, pp. 31-40. 

[27] Y. Xu and Y. Papakonstantinou, "Efficient keyword 
search for smallest LCAs in XML databases," in 
Proceedings of the 2005 ACM SIGMOD international 
conference on Management of data Baltimore, Maryland: 
ACM, 2005, pp. 527 - 538  

[28] J. Li, C. Liu, R. Zhou, and B. Ning, "Processing XML 
Keyword Search by Constructing Effective Structured 
Queries," in Proceedings of the Joint International 
Conferences on Advances in Data and Web Management 
Suzhou, China: Springer-Verlag, 2009, pp. 88-99. 

[29] J. Kleinberg, "Authoritative Sources in a Hyperlinked 
Environment," vol. JACM 46(5), 1999. 

 
 

 
Xia Li  (1977 -), Female, PhD, China. AnHui, Research 
Interests:  XML IR, Data Management, Software Engineering, 
data management. 

E-mail: lixia@nwpu.edu.cn 
Tel: 13892802964 
Address: School of Computer Science and Technology 

Northwestern Polytechnical University, Xi’an, China (710072) 
 
 
 
Zhanhuai Li  (1961 -), Male, PhD supervisor, China. ShanXi, 
the main academic part-time: Professional Committee of China 
Computer Federation Database deputy director of the China 
Computer Society information storage Standing Committee, 
Chinese Society of Astronautics Computer Professional 
Committee. Research Interests: Database Management System 
Research and Implementation; data mining; WEB data 
management technologies; streaming data management 
technology. 
 
 
 
Qun Chen (1976 -), Male, PhD supervisor, China FuJian, 
Research Interests: XML IR, RFID, Data Management. 
 
 
 
Ning Li (1978 -), Female, PhD, China. ShanXi, Research 
Interests: Software Engineering, Data Management, Data 
Mining , 
 
 
 

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 163

© 2011 ACADEMY PUBLISHER


