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Abstract—A novel constant tamper-proofing software 
watermark technique based on H encryption function is 
presented. First we split the watermark into smaller pieces 
before encoding them using CLOC scheme. With the 
watermark pieces, a many-to-one function (H function) as 
the decoding function is constructed in order to avoid the 
pattern-matching or reverse engineering attack. The results 
of the function are encoded into constants as the 
parameters of opaque predicates or appended to the 
condition branches of the program to make the pieces 
relevant. The feature of interaction among the pieces 
improves the tamper-proofing ability because there being 
one piece destroyed, the program will not work correctly. 
The simulation shows that the performance of the proposed 
scheme is good and can resist many kinds of attacks. 
 
Index Terms— constant tamper-proofing, CLOC encoding, 
opaque predicate, H function 
 

I.  INTRODUCTION 

Since the unauthorized use and modification of 
software are pervasive around the world, software piracy 
becomes an important issue [1]. Recent studies show that 
35% of the software programs used today are pirated [2]. 
 Software watermarking is an efficient technology for 
software protection [3] by inserting secret messages into 
the programs. In addition to applying watermarking 
techniques to protect the copyrights of software codes, 
combined with other techniques, software watermarking 
can also be used in database protection and information 
security problems.  

Watermarks can be classified into two categories: 
static watermarks and dynamic watermarks [4]. A static 
watermark is stored inside program code in a certain 
format, and it does not change during the program 
execution. Static watermarking techniques are more 
fragile as they can be easily attacked by code optimizers 
or obfuscators. A dynamic watermark is inserted in the 
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execution state of a software object. More precisely, in 
dynamic software watermarking, what has been 
embedded is not the watermark itself but some codes 
which cause the watermark to be expressed, or extracted, 
when the software is run. One of the most effective 
watermarking techniques proposed to date is the dynamic 
graph watermarking (DGW) scheme of Collberg et al [5] 
[6] [7]. The algorithm starts by mapping the watermark 
to a special data structure called Planted Plane Cubic 
Tree (PPCT), and when the program is executed the 
PPCT will be constructed.  

The biggest advantage of DGW over static 
watermarking is that a dynamic watermark graph 
structure contains many pointers, and it is hard to 
analyze pointers at runtime. Also, because a DGW 
watermark is constructed dynamically, runtime 
information must be gathered to analyze the watermark 
structure. Hackers need more effort to analyze stack and 
heap dumps than to analyze plain language code. All of 
these features ensure that a DGW watermark gains a 
certain degree of protection simply by its method of 
construction. But, there is a weak point in DGW 
algorithm, the functionality of the candidate program (a 
software program that needs to be watermarked) does not 
depend on the watermark code. Moreover, so far, the 
technology of protecting DGW watermark in software 
has not received much academic attention.  

Tamper-proofing technique has been suggested to 
protect DGW watermark. It can detect if a program has 
been altered, and if so, then the program will fail to 
function properly. In this paper, we present a new tamper-
proofing technique based on PPCT and constant encoding 
by creating dependencies from a candidate program to 
constant. This algorithm can be an additional step in 
DGW watermarking system to protect watermarks against 
malicious attacks. The proposed scheme uses the 
watermark pieces to construct a many-to-one function 
and insert the results of the function into constants which 
would be distributed into the program in the form of 
parameters of opaque predicate. To a certain extent, this 
scheme resolves the problem that the decoding function 
is too simple that is easily be analyzed and attacked 
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maliciously. The proposed technique has the following 
desirable features.  
1. We split the watermark number into small pieces to 

ensure the stealth of DGW watermark.  
2. Construct a many-to-one function with the 

watermark pieces, which increases the tamper-
proofing of watermark. 

3. H function realizes many-to-one mapping that 
effectively resists the pattern matching attack.  

This paper is organized as follows. In section II, 
related works are explained. Section III describes the 
principle of DGW watermark. Section VI discusses our 
design considerations. Section V evaluates the proposed 
tamper-proofing technique with respect to resilience 
against attacks. Section VI concludes and discusses 
future work. 

II.  RELATED WORK 

Tamper-proofing technique is widely used in data 
integrity and data confidentiality. Unfortunately, most of 
the work in this field are trade secrets and are not 
published. In 1999 Collberg and Thomborson [8] 
developed a watermark tamper-proofing technique using 
the Java reflection mechanism by checking the type 
consistency of the graphic nodes at runtime. This method 
verifies the intactness of the Java classes representing the 

watermark at run time. The authors pointed out that, this 
solution has a fairly obvious disadvantage in its lack of 
stealth.  

Palsberg introduced an approach to protect dynamic 
watermarks, by using opaque predicates to guard the 
watermark representation [9]. Ideally, if the watermark 
representations are altered, the opaque predicates will 
switch the program flow into an error-making branch.  

In 2002, Yong He [10] proposed a constant coding 
scheme to strengthen the resistance of the CT watermark. 
He presented a prototype design of the algorithm and 
successfully developed a codec which converts integers 
into PPCT structures. However, the decoding function is 
too simple to resist the pattern-matching attack. 
Moreover, the algorithm does not create dependencies 
between the watermark and the constants. Once the 
attacker figures out the location of the watermark 
building code, this tamper-proofed application will be no 
saver than untamper-proofed application.  

III.  DGW WATERMARKING 

The CT algorithm is the most representative in DGW 
proposed by Collberg and Thomborson. The idea is to 
embed the watermark into the topology of graph 
structure dynamically that is constructed at runtime. The 
process [11] is as follows:  

 

 

Figture1. Overview of the CT algorithm 

A. Embedding:  
Step1:W is embedded in the topology of graph G, G 

can be RPG（Reducible Permutation Graph）, Radix-k 
encoding linked list, parent-pointer tree, PPCT（Planted 
Plane Cubic Tree）or IPPCT（Intensify Planted Plane 
Cubic Tree）, etc; 

Step2: Graph G is split into several components G1, 
G2,...; 

Step3: Each Gi is converted into Java bytecode and 
embedded into the candidate program along the 
execution path. 

B. Extracting:  
During extraction the candidate program is run with 

the same key K as input, the watermark graph gets built 
on the heap, the graph is extracted and the watermark 
number is recovered. 

By now, there are three main encoding schemes in DG
W: CLOC (Catalan Leaf-Oriented Conversion), BOC (Bit
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-Oriented Conversion), CUIC (Catalan Unique Indexed C
onversion）. In this paper, we use CLOC based on PPCT.
 It was proposed by Palsberg, and then improved by Yong
 He.  

IV.  DESIGN CONSIDERATIONS 

As we discussed, a dynamic graph watermark is built 
at runtime in the program-controlled memory, and it is 
difficult to analyze or attack such watermarks. However, 
the DGW watermark does not relate closely to the 
functions of its candidate program. Thus, the DGW 
watermark still can be attacked by intensive analysis and 

modification to the watermarked program. In this section, 
we discuss a new tamper-proofing technique of DGW 
watermark. The process is described in Fig.2. PPCT has 
strong resistance against malicious attack, but its 
encoding range is small. If the watermark number is too 
big, the graph structure is also big and will be located 
easily. Different from the strategy of splitting PPCT into 
sub-trees [12], instead, we split the watermark number W 
into pieces ),...,2,1( kiwi =  before encoding it. iw  is so 
smaller that the number of node in PPCT structure is 
smaller, then the watermark has good stealth.  

 

 

Figture2. Tamper-proofing process 

A. Watermark splitting 
A watermark may take different forms, e.g., number, 

string or graph. Without loss of generality, we assume 
that a watermark (denoted as W) is a numerical value that 
the software owner selects. The aim of splitting the 
watermark is to ensure that the size of watermark piece is 
moderate, so it has good stealth and high efficiency. 
Attackers cannot get W from watermark pieces when they 
don’t know the key. Secondly, it is difficult for attackers 
to resume W from these pieces so that it improves the 
security. The algorithm is as follows [13]: 

(1) Compute the minimum exponent l so that W can be 
represented using k-1 digits of base 2l; 

(2) Split W into w1,w2, … ,wk-1 pieces so that  
l

j

k

j
j

jl wwW 20,2
2

0
<≤= ∑

−

=

; 

(3) We get the following set, 
 110110 ,1},,...,,{ −−− +=−= iiik wsslssssS , where k, l 

works as part of secret keys to extract the watermark. 

B. H function based constant tamper-proofing technique 
Now, the most mature tamper-proofing method is to 

pick up some appropriate variables from the candidate 
program by decoding the PPCT instead of directly from 
the constant pool [14]. In this way, we can associate 

watermarks with constants, and if watermarks are 
attacked, the program cannot execute correctly. In order 
to avoid the pattern-matching attack, the decoding 
function should be many-to-one to prevent any reverse 
engineering attack. The many-to-one property is realized 
in our scheme.based on an encrypting algorithm [15] as 
following, where H is an encrypting function, 

),...,2,1( niM i = is plaintexts and ),...,2,1( niKi =  is secret 
key. It satisties: 

(1) ),...2,1)(,( niKMH ii =  are equal to each other; 
(2) Given some (less than n) iM and 

iK  , the plaintext 
information that is corresponding to the unknown secret 
keys cannot be calculated. 

Proof: Choose an encryption function E (D is the 
decryption function), a random integer S and random 
values ),...,2,1( niri = , it satisfies the following conditions: 

E is the output function with fixed length, and the 
length is |S|. 

| | | | ( 1, 2,..., )ir S i n= =  

Providing that  

Input watermark W 

Split W into wi(i=1,2,...,k) 

Encode wi to PPCT 

Compute function H 
corresponding to wi 

Find C=H( ),C is constant in 
the program 

C is replaced by H(wi), and H( ) is added into the opaque predicate for 
“mutual effect” 
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Apparently F and G form an encryption/decryption 

function pair. Where, x is the plaintext, (y, z) is the secret 
key. Function F satisfies the demands expressed above. 
For secret key ),( ii ru and plaintexts ),...,2,1( niM i = , we 
can get the same value using F to encrypt.  

According to the calculation of O, we know that the 
security of F bases on the security of function E only if E 
satisfies condition (2), and O can satisfy condition (2). 
Q.E.D. 

Choose ),...,2,1( niari == and calculate each secret key 

iu  for each plaintext, ),,(),( auMFaMH iii = , each 

),( aMH i
 are equal. Select ),( aMH  to be a many-to-one 

function for tamper-proofing, a is a random constant. 
The piece ,( 1, 2,... )i kw i =  is the parameter iM of 

function H, we calculate ),( aMH  as the encoding 
constant. At the program is running, calculate 

(int( ), )(1 )iH T a i k≤ ≤ as the constant decoding function. In 
this case, 

iT  is a random watermark structure tree, the 
form of )(int(),H  avoids the problem of easy exposure 
of int()  and realizes the many-to-one property. 
Moreover, based on (2), attackers cannot calculate the left 
watermark information even they have found k-1 
watermark pieces. The embedding process is as Fig. 3. 

 
(a) tamper-proofing code is not added                                                (b) tamper-proofing code is added 

Figure 3. Example of proposed temper-proofing technique 

In this case, iw , jw are the watermark pieces, 

iT ,
jT are the root nodes of PPCT. In Fig. 3(b), 

constant c is replaced by the watermark decoding 
function with two different parameters. 

The watermark pieces are added into the 
parameters of opaque predicate in the form 

of ( (int( )) (int( )))i jH T H T− , or appended to the 
branches of the program. Once there being one iT  
attacked, the parameters of opaque predicate will 
change so that the program will not execute correctly 
as shown in Fig. 4. 

 

  
(a) no opaque predicate                                                        (b) add opaque predicate 

Figure 4. Watermark interaction 

 
 
 

 

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 151

© 2011 ACADEMY PUBLISHER



Once iT  or 
jT is attacked and cause the watermark 

not to be recognized, codes 1 does not execute but 
code 2 does, in this way, the program does not 
produce the “dead codes”, instead, it will enter into an 
incorrect execution state, and produces unexpected 
result. We call this effect as the “watermark pieces 
mutual effect”. Once the watermark is attacked, we 
can felt it under the circumstance that the number of 
opaque predicates increases to 2

kc . 
Refer to literature [16] that each watermark piece 

can interact with the two pieces before and behind it. 
So, the number of opaque predicate can be reduced to  
k, which can reduce the impact on the program 
performance. The interaction feature among pieces 
constructs a “cycle” that can be used to check and 
recover the tampered watermark. Obviously, this 
feature improves the tamper-proofing of watermark. 

V.  SECURITY ANALYSES 

The watermark scheme in this paper is realized 
with Java language JDK1.6.0 in WindowsXP system 
and it is assessed in SandMark [17] [18] that is a 
standard watermark platform. The Benchmark 
applications in this experiment are TTT, calculator 
and mine-sweeping as shown in Table I. 

TALBE I. 

BENCHMARK APPLICATIONS 

Program The number of 
class 

The number of 
method size 

TTT 12 51 11 
Calculator 2 6 4 

Mine-sweeping 8 38 42 

A. Capacity of Information Hiding 
The PPCT structure in this paper has a good 

performance of anti-attacks, but it is lower ability in 
coding capacity. In order to improve its stealth, the 
idea of watermark pieces is used. However, each 
piece resumes to the original watermark through 
exponential linear cumulation, so this scheme still gets 
a good amount of information hiding capacity. Table 
II shows the least number of leaf nodes N needed in 
coding watermark W with different piece number k. 

 

 

TABLE II. 

CODING ABILITY  

Piece number K 
5 

Watermark W 
100 

Leaf nodes N 
5 

5    1000      6 
10     100       4
10    1000       5

 Table III lists the coding capacity contrast among a 
variety of commonly used software watermarking 
graph structures and IPPCT [19]. It shows that IPPCT 
with a higher data rate can be used to improve the 
capacity of information hiding. Table III lists 
encoding capability contrast conditions of some 
common used software watermark graph structure as 
well as IPPCT and PIPPCT (Planar IPPCT). PIPPCT 
is a dynamic graph structure proposed by the writer of 
this article which has relatively good data rate. Its 
structure is as Fig. 5(c), and Fig. 6 shows its node 
structure. 

B．Stealth 
Statistic analysis has been carried out on the byte 

code distribution of function (int( ), )iH T a  in system 
zl. Table IV shows the static code statistics: the 
number of instructions and types are 958 and 65 
respectively, in which the proportion of instruction 
types more than 1% is 20, between 0.5% and 1% is 20 
and others are have the proportion below 0.5%. Table 
V is the statistic window 2: the number of instructions 
and types are 933 and 269 respectively, in which the 
proportions of instruction types more than 1% is14, 
between 0.5% and 1% is 39 and others are have the 
proportion below 0.5%. In the statistic window 3: the 
number of instructions and types are 910 and 458 
respectively, in which the proportion of instruction 
types more than 1% is 5, between 0.5% and 1% is 33 
and others are have the proportion below 0.5%. In the 
statistic window 4: the number of instructions and 
types are 889 and 599 respectively, in which the 
proportion of instruction types more than 1% is 3, 
between 0.5% and 1% is 16 and others are have the 
proportion below 0.5%. In the statistic window 5: the 
number of instructions and types are 866 and 669 
respectively, in which the proportion of instruction 
types more than 1% is 0, between 0.5% and 1% is 10 
and others are have the proportion below 0.5%.

TABLE III. 

COMPARISON OF THE ENCODING ABILITIES 

Watermark W Radix-K PPCT Permutation RPG IPPCT 
897 6 18 8 12 10 
9331 7 20 8 13 12 
16631 7 20 9 15 12 

169037 8 26 10 19 14 
3524768 9 32 11 21 16 
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TABLE IV. 

INSTRUCTION FREQUENCIES 

Byte code Proportion Byte code Proportion Byte code Proportion Byte code Proportion 

aload 23.07% return 1.15% iconst_1 0.63% ifge 0.1% 

invokevirtual 7.1% getstatic 1.04% aload_3 0.63% astore_1 0.1% 

getfield 6.37% athrow 1.04% iload_1 0.63% iload_3 0.1% 

astore 6.05% iload_2 0.94% iastore 0.63% imul 0.1% 
invokeinterface 4.91% if_icmpne 0.94% ixor 0.52% istore_3 0.1% 
invokespecial 4.28% Areturn 0.94% ireturn 0.52% if_acmpeq 0.1% 

dup 3.76% iinc 0.94% ifeq 0.42% f2i 0.1% 

iconst 3.34% ifne 0.94% istore_2 0.42% bastore 0.1% 

new 3.24% checkcast 0.84% arraylength 0.42% ifnull 0.1% 

goto 3.03% istore 0.73% ldc 0.42% fmul 0.1% 

invokestatic 2.4% iconst_0 0.73% isub 0.42% if_acmpne 0.1% 

aload_0 2.4% iaload 0.73% iconst_2 0.31% iconst_3 0.1% 

putfield 1.67% if_icmplt 0.73% iconst_4 0.31% iconst_5 0.1% 

iload 1.57% bipush 0.73% newarray 0.31% Putstatic 0.1% 

pop 1.25% aload_1 0.73% istore_1 0.31%   

ifnonnull 1.15% aconst 0.73% astore_3 0.31%   
ldc_w 1.15% if_icmpeq 0.73% iadd 0.31%   

TABLE V. 

MOST COMMON 2-GRAMS 

Byte code Proportion Byte code Proportion Byte code proportion 
aload,aload 6.22% …… … invokespecial,new 0.11% 

aload,getfield 4.72% astore,getstatic 0.21% bipush,istore_2 0.11% 
aload,invokevirtual 4.07% ifne,new 0.21% iinc,iload_2 0.11% 

astore,aload 3.43% iconst_1,goto 0.21% aload_0,iload_1 0.11% 
new,dup 3.32% aload,iconst 0.21% dup,aload_1 0.11% 

aload,invokeinterface 3.22% invokespecial,aload_0 0.21% if_acmpeq,aload 0.11% 
goto,aload 2.57% aload,aconst 0.21% iload,iaload 0.11% 

aload,invokestatic 1.39% ifnonnull,pop 0.21% ifeq,aload 0.11% 
invokeinterface,astore 1.39% if_icmpeq,aload 0.21% ifnull,aload 0.11% 
invokespecial,astore 1.39% iconst_1,invokevirtual 0.21% pop,iinc 0.11% 

astore,goto 1.29% getstatic,new 0.21% iload_2,iload_1 0.11% 
aload_0,getfield 1.29% aload,ifnonnull 0.21% iinc,iload_1 0.11% 

invokespecial,athrow 1.07% iconst,aload 0.21% getfield,if_acmpeq 0.11% 
invokevirtual,iconst 1.07% …… … aload_3,bipush 0.11% 

 
Collberg had done statistic analysis on the 1132 

static java byte code programs, and pointed out that 
the byte codes such as aload 0, invokevirtual, getfield, 
dup and invokespecial should have higher appearance 
rate, and others are below 1%, especially jsr w and 
goto w that are almost rarely been used. Based on the 
results in literature [20], the byte codes of our 
algorithm are frequently used, and most frequency 
distributions conform to the characteristics of the 
general applications, so it has good stealth. 

C. Resistance 
Table VI and VII are the experiment results of 

optimizer and obfuscator imposed on system zl that 
are provided by Sandmark. It shows that the algorithm 
in this paper can effectively fight against semantics-
preserving transformation on Sandmark platform, and 
also can be immune of all obfuscators except split 
classes. And when it is attacked by split classes, the 
program will go into an incorrect execution condition. 

TABLE VI. 

THE EFFECTS OF OPTIMIZERS ON ZL 

Optimizer TTT Calculator Mine-sweeping 
BLOAT + + + 

Dynamic Inliner + + + 
Inliner + + + 

Variable Reassigner + + + 
Subtractive attacks: if the watermark is located, 

attackers can try to remove it without changing the 
semantics. Essentially, the scheme in this paper is one 
kind of dynamic data structure watermark, and can 

completely resist this attack theoretically. The 
watermark is embedded in a tree structure that is 
generated dynamically and spread in the entire 
program, so attackers cannot locate the watermark.  
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Pattern-matching attacks: when attackers cannot 
know the program’s behaviors, they will use debugger 
or other tools to trace every function’s return values in 
the program, and replace the function whose return  
value is constant with the corresponding constant. The 
scheme cannot completely resist the pattern-matching 
attack, but the watermark is made up of pieces, so this 
attack needs high expense. And even finding all the 

pieces, the attacker cannot recover the original 
watermark without knowing the secret keys. 

Distortive attacks: The attacker may find some 
pieces, and then distort them. However, the distorted 
watermark can hardly maintain the program semantics 
to a large extent, and the”mutual effect” cycle can 
locate the distorted watermarks and recover them in a 
certain extent. 

TABLE VII. 

THE EFFECTS OF OBFUSCATIONS ON ZL 

Obfuscator TTT Calculator Mine-sweeping 
Array Folder + + + 
Array Splitter + + + 

BLOAT + + + 
Block Marker + + + 

Bludgeon Signatures + + + 
Boolean Splitter + + + 
Branch Inverter + + + 

Buggy Code + + + 
Class Encrypter + + + 

Class Splitter + + + 
ConstantPoolReorderer + + + 

Duplicate Registers + + + 
Dynamic Inliner + + + 
False Refactor + + + 

Field Assignment + + + 
Inliner + + + 

InsertOpaquePredicates + + + 
Integer Array Splitter + + + 
Interleave Methods + + + 

Irreducibility + + + 
Merge Local Integer + + + 

Method Merger + + + 
Objectify + + + 

Opaque Branch Insertion + + + 
Overlode Names + + + 

ParamAlias + + + 
PromotePrimitive Registers + + + 

Promote Primitive Types + + + 
Publicize Fields + + + 

Random Dead Code + + + 
Rename Registers + + + 

Reorder instructions + + + 
Reorder Parameters + + + 

Simple Opaque Predicates -- -- -- 
Split Classes + + + 

Static Method Bodies + + + 
String Encoder + + + 

TransparentBranchInsertion + + + 
VariableReassigner + + + 

VI.  CONCLUSION AND FUTURE WORK 

Software watermark is an efficient technology for 
copyright protection, but the theory has yet to be 
mature. Because of the determinacy of software’s 
behaviors itself, the software is easily attacked, and 
how to improve the robustness of software is one of 
key points, moreover, how to improve the ability of 
watermark’s tamper-proofing is always a popular 
research problem. The constant tamper-proofing 
technology proposed in this paper based on H 
function, the watermark pieces are constructed into 
the constants and embed to the program’s branches 
and conditions to form the “mutual effect” cycle to 
protect the program. In expanding the capability of 
encoding, this scheme also efficiently improves the 
watermark’s robustness and tamper-proofing. 

Experiment analysis shows that this novel scheme has 
a strong ability to protect the program and has good 
performance. 

Currently, some part of system zl still needs to be 
manual processes. How to realize the totally 
automatic model and to do accurate measurement 
evaluations on more samples, and even how to 
balance the relationships among stealth, data rate, and 
robustness are our future works. 
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