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Abstract—A feasible structural clustering method based on 
breadth-first-search is proposed for graphs. Clustering is 
very important and widely used in analyzing complex 
networks such as community identification. There are 
clusters with different shapes such as cliques and stars in 
practical application. Some existing algorithms can find 
clique-shaped clusters, but they are unable to identify star-
shaped clusters that are familiar in scale free networks. A 
feasible solution is provided to solve the problem. It is 
superior to other algorithms in one or several of the 
following aspects: An algorithm without any input 
parameters, Running time on a network with n nodes and m 
links is O(n), Extracting clusters of mixed shapes. 

 
Index Terms—complex networks, clustering, modularity 
 

I.  INTRODUCTION 

Network clustering or graph partitioning is the 
division of a graph into a set of sub-graphs, called 
clusters. The term cluster analysis(first used by 
Tryon,1939) encompasses a number of different 
algorithms and  methods for grouping objects of similar 
kind into respective categories. Clustering is very crucial 
to complex networks analysis [1-3]. A loose definition of 
clustering could be “the process of organizing objects 
into groups whose members are similar in some way”. A 
cluster is therefore a collection of objects which are 
“similar” between them and are “dissimilar” to the 
objects belonging to other clusters. Clustering algorithms 
can be applied in many fields. 

The paper is organized as follows. In section 2, we 
recall the related work for network clustering algorithms. 
We first formulize the conception of structure-connected 
clusters and then give the proposed clustering algorithm 
as well as its complexity analysis in section 3. 
Experimental results and evaluation of the algorithm are 
shown in section 4. Finally, we draw our conclusions and 
suggest future work in section 5. 

II.  RELATION WORK 

A. Some Basic Concepts 
Given a graph G = {V, E}, where V is a set of vertices 

and E is a set of edges between vertices, the goal of graph 

partitioning is to divide G into k disjoint sub-graphs 
},{ iii EVG = , in which Φ=ji VV ∩  for any i≠ j, and  

∑
=

=
k

i
iVV

1

. The number of sub-graphs, k, may or may not 

be known as a priori. In this paper, we focus on simple, 
undirected, and unweighted graphs. Here we review some 
of the more common methods. 

The min-max cut method [4] seeks to partition a 
graph G = {V, E} into two clusters A and B. The principle 
of min-max clustering is minimizing the number of 
connections between A and B and maximizing the 
number of connections within each. The min-max cut 
algorithm searches for the clustering that creates two 
clusters whose cut is minimized and while maximizing 
the number of remaining edges. A pitfall of this method 
is that, if one cuts out a single vertex from the graph, one 
will probably achieve the optimum. Therefore, in practice, 
the optimization must be accompanied with some 
constraint, such as A and B should be of equal or similar 
size, or |A|≈|B|. Such constraints are not always 
appropriate. After min-max cut, a normalized cut was 
proposed [5], which normalizes the cut by the total 
number connections between each cluster to the rest of 
the graph. Therefore, cutting out one vertex or some 
small part of the graph will no longer always yield an 
optimum. Both min-max cut and normalized cut methods 
partition a graph into two clusters. To divide a graph into 
k clusters, one has to adopt a top-down approach, splitting 
the graph into two clusters, and then further splitting 
these clusters, and so on, until k clusters have been 
detected. There is no guarantee of the optimality of 
recursive clustering. There is no measure of the number 
of clusters that should be produced when k is unknown. 
There is no indicator to stop the bisection procedure. 

Modularity was proposed as a quality measure of 
network clustering [6,7]. A greedy method based on a 
hierarchical agglomeration clustering algorithm is 
proposed in [8]. Guimera and Amaral [9] optimize 
modularity using simulated annealing. But modularity 
also has resolution limit in community detection. Finding 
the maximal modularity is then equivalent to looking for 
the ideal tradeoff between the number of terms in the sum, 
i.e., the number of modules, and the value of each term 
[10]. D.M. Chen and X.W. Xu proposed an algorithm for 
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identifying useful structure in graphs clustering which is 
based on Breadth-First-Search[11]. 

B. A Breadth-First-Search Based Clustering Algorithm 
The algorithm intends to identify clusters as well as 

hubs and outliers. Therefore, both connectivity and local 
structure are used in our definition of optimal clustering. 
Here we provide the concept of a structure-connected 
cluster, which extends a density-based cluster [3] and can 
distinguish good clusters, hubs and outliers in networks.  
        Let’s consider social communities, people who share 
many friends form a community, and the more friends 
they have in common, the more intimate the community. 
Our method is based on common neighbors and not just 
direct connections. Two vertices are assigned to a cluster 
according to how they share neighbors. But in social 
networks there are different kinds of roles. There are 
people who are outsiders, and there are also people who 
are close to many communities but belong to none. The 
latter plays a special role in small-world networks as hubs 
[12] and it is illustrated by vertex H in Fig.1. 

 
Figure 1. A small network with two clusters, a hub(vertex H) and an 

outlier(vertex O). 
 

Here, we consider undirected and unweighted graphs. 
Given a graph G={V,E}, where V is a set of vertices(or 
nodes); and E is set of pairs of distinct vertices, that is 
edges(or links). Before presenting the proposed method, 
some fundamental definitions employedd by the 
algorithm should be provided.  

a. Problem Expression 
The structure of a vertex is described by its 

neighborhood. A formal definition of vertex structure 
)(vΓ is given as: Let Vv∈ , the structure of v is defined 

by its neighborhood, denoted by 
}{}),(|{)( vEwvVwv ∪∈∈=Γ  

Note that neighborhood of vertex v, )(vΓ , also 
includes v in addition to all neighbors of v. For instance, 
considering Fig.1, )1(Γ would be {1, 2, 6, 5, H}. Having 

)(vΓ , now we can formulize similarity function, which is 
run for every edge, Ewv ∈},{ , in the network. We call the 
similarity function structural similarity because it is 
solely derived from vertex structure )(vΓ . The structural 
similarity between two vertices is measured by 
normalized common neighbors, which is also called 
cosine similarity commonly used in information retrieval. 
If we only use the number of shared neighbors, hub 
vertices, such as H in Fig.1, will be clustered into either 
of the clusters or two clusters will be unreasonably 
merged. Therefore, we normalize number of common 
neighbors by the geometric mean of the two 

neighborhoods' size. Note that In Fig.1, vertex H should 
be identified as a hub, shared in neighborhood of both 
clusters. 
        Utilizing vertex structure, we give structural 
Similarity σ (v,w) which is denoted by: 

)()(

)()(
),(

wv

wv
wv

ΓΓ

ΓΓ
=

∩
σ  

When a member of a cluster shares a similar 
structure with one of its neighbors, their computed 
structural similarity will be large. Obviously structural 
similarity is symmetric, σ(v,w)=σ(w,v). Structural 
similarity between v and w, σ (v, w), would be greater 
than zero if and only if v and w are vertices of an edge 

Ee∈ . Under this circumstance, structural similarity 
takes values between 0 and 1. However, structural 
similarity should be restricted to control expansion of the 
cluster. Therefore, we apply a threshold ε to the 
computed structural similarity when assigning cluster 
membership, formulized in the following ε-neighborhood 
definition. 
        The ε-Neighborhood of a vertex Vv∈  is denoted 
by: }),(|)({)( εσε ≥Γ∈= wvvwvN . 

When a vertex shares structural similarity with 
enough neighbors, it becomes a expander or seed for a 
cluster. Such a vertex is called a kernel vertex. Kernel 
vertices are a special class of vertices that have a 
minimum of µ  neighbors with a structural similarity that 
greater than or equals to the threshold ε. From kernel 
vertices we grow the clusters. In this way, only the 
parameters µ  and ε determine the clustering of network. 
For a given ε, the minimal size of a cluster is determined 
by µ . If a vertex w is in ε-neighborhood of a kernel 
vertex v, vertex w should be included into the same 
cluster with vertex v, because they are connected and 
share a similar structure. This concept is known as direct 
structural reachability. 

Direct structural reachability is symmetric for any 
pair of kernels. However, it is asymmetric if one of the 
vertices is not a kernel. Also the property of direct 
structural reachability is basis for the cluster expansion. A 
newly formed cluster C consists of a kernel vertex v and 
v's ε-neighborhood. Then we try to expand cluster C 
through any vertex w in v's ε-neighborhood. This 
approach guarantees that vertex w is directly structure-
reachable from vertex v. Iterative queries for direct 
structural reachability usually adds more and more 
vertices into the current cluster.  

A simple example is shown in Fig.2, in which 
similarities between vertices are given. Under the 
conditions of µ = 2 and ε= 0.6, the possible scenario is as 
follows: We find 1 as the first kernel vertex since 
structural similarity between 1 and 2 is greater than ε, 0.6. 
Now a cluster of {1, 2} is formed, and it should be 
expanded if possible. At the second step we look for any 
vertex that is similar to 2. Among neighbors of 2, vertex 
5 is selected and inserted into the current cluster {1, 2} 
due to similarity value of 0.75 between 2 and 5. After the 
insertion, the cluster has now three vertices {1, 2, 5}. At 

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 133

© 2011 ACADEMY PUBLISHER



 

 

this stage of algorithm, it is noticeable that vertex 1 and 2 
are kernel vertices; 2 is directly structure-reachable from 
1; and 5 is directly structure-reachable from 2. 

 
Figure 2. A simple network showing structural reachability. 

 
After given example, we introduce another property 

of the proposed algorithm: structural reachability, which 
can be considered as chained form of direct structural 
reachability. The structural reachability is transitive, but it 
is asymmetric. It is only symmetric for a pair of kernels, 
as appears in previous example. More specifically, the 
structural reachability is a transitive closure of direct 
structural reachability. 

Two non-kernel vertices in the same cluster may not 
be structure-reachable because the kernel condition may 
not hold for them. But they still belong to the same 
cluster because they both are structure-reachable from the 
same kernel. This idea is known as structural connectivity, 
and explained more formally as follows: A vertex Vv∈  
is structure-connected to a vertex Vw∈  w.r.t ε and µ , if 
there is a vertex Vu∈  such that both v and w are 
structure-reachable from u . The structural connectivity 
is a symmetric relation. For the structure-reachable 
vertices, it is also reflective. Now we are ready to define a 
cluster as structure-connected vertices, which is maximal 
w.r.t. structural reachability. 

A non-empty subset VC ⊆  is called a structure-
connected cluster w.r.t ε and µ , if all vertices in C are 
structure-connected and C is maximal w.r.t structure 
reachability. The proposed algorithm finds all clusters 
w.r.t ε and µ . However, there might be some isolated 
vertices that are not assigned to clusters. If this is the case, 
we categorize each of those vertices either as a hub or an 
outlier. When an isolated vertex Vv∈  has neighbors 
belonging to two or more different clusters, it is labeled 
as a hub vertex. Otherwise, an outlier.  

In practice, the definitions of a hub and an outlier are 
flexible. It may be more useful to regard a hub as a 
special kind of outlier, since both are isolated vertices. 
The more clusters in which an outlier has neighbors, the 
more strongly that vertex acts as a hub between those 
clusters. Likewise, a vertex might bridge only two 
clusters, but how strongly it is viewed as a hub may 
depend on how aggressively it bridges them.  

b. The Breadth-First-Search Based Algorithm 
In this section, we describe the proposed algorithm 

which implements the search for clusters, hubs and 
outliers in complex network. The search begins by first 
visiting each vertex once to find structure-connected 
clusters.  

Given graph G=<V,E>, parameters ε and µ which 

are described in the preceding section, the main process 
of the proposed algorithm is depicted as the following 
steps.  

Step1: All vertices in V are marked as unclustered; 
Step2: For each unclustered vertex v∈V, check 

whether v is a kernel vertex. If v’s ε-neighborhood  
contains at least µ vertices, then v is a kernel vertex, or it 
is not a kernel vertex. 

Step3: If v is a kernel, a new cluster with ClusterID is 
created, which expands from v.  

Step 3.1: Starting with an arbitrary kernel and search 
for all vertices that are structure-reachable from v, thus 
the complete cluster containing vertex v is found. The 
new clusterID is assigned to all vertices found in this 
step.  

Step 3.2: All vertices in ε-neighborhood of vertex v 
are inserted into a queue. For each vertex in the queue it 
computes all directly structural reachable vertices and 
inserts these vertices into the queue which are still 
unclustered.  

Step 3.3: Repeat Step3.2 until the queue is empty. 
Step4: If v is not a kernel, mark v as a non-member. 
Step5: Go to Step2 until all vertices in V are checked. 
Step6: Further classify each non-member vertex as 

hub or outlier. If a vertex has links to more than one 
cluster, it is be marked as a hub. Otherwise it is an outlier. 

The algorithm performs one pass of a network and 
finds all structure-connected clusters for a given 
parameter setting (ε and µ). The non-member vertices can 
be further classified as hubs or outliers. This final 
classification is done according to what is appropriate for 
the network.  

At the same time, the results of the proposed 
algorithm do not depend on the order of processed 
vertices, i.e. the obtained clustering of network is 
determinate, including number of clusters and association 
of kernels to clusters. 

c. Experiment Results and Evaluation 
We evaluate the proposed algorithm using both 

computer-generated network and real networks. The 
performance of the proposed algorithm is compared with 
FastModularity, a fast modularity-based network 
clustering algorithm proposed by Clauset et al in [8,13], 
which is faster than many competing algorithms: its 
running time on a graph with n vertices and m edges is 
O(mdlog n).  

(1) Performance Analysis 
To evaluate the computational efficiency of the 

proposed algorithm we generate ten graphs with the 
number of vertices ranging from 1,000 to 1,000,000 and 
the number of edges ranging from 2,182 to 2,000,190. 
We adapted the construction as used in [6].  

We first empirically compared running time of the 
clustering algorithms. The experimental results 
demonstrated that the proposed algorithm is much faster 
with a linear running time in terms of the size of networks. 
The running time for FastModularity and the proposed 
algorithm on the synthetic graphs are plotted in Fig.3 and 
Fig.4. They show that the performance of the proposed 
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method is in fact linear w.r.t the number of vertices and 
the number of edges, while FastModularity’s 
performance is basically quadratic and scales poorly for 
large graphs. 

 
Figure 3. Running Time(Vertices). 

 

 
Figure 4. Running Time(Edges). 

 (2)  Computer Generated Network 
Fig.5 is a simple synthetic network with 17 vertices, 

including hubs and outliers. The clustering results of the 
proposed algorithm, using the parameters (ε=0.7, µ =2) 
are shown in Fig.6. The results demonstrate that the 
proposed algorithm successfully detected all the 
clusters(marked in different shapes: Parallelogram and 
Diamond) , hubs (node 1 and 3) and outliers(node 12,16 
and 17). 

 
Figure 5.  Synthetic network. 

 
Figure 6.  The result of the presented algorithm. 

(3)  Real network 

① Zachary Karate Club network 

The first real dataset is the Zachary Karate Club 
network. The karate club network is a social network 
consisting of 34 nodes representing people from a karate 
club at an American university and edges representing 
friendships between them. This network was compiled by 
Zachary [14] who was studying the social interactions 
between the members of the club. During the course of 
the study a dispute between the administrator of the club 
and the instructor of the club resulted in the split of the 
club into two. The instructor opened another club with 
about half the members from the original club. The 
original karate club network is shown in Fig.7, the round 
nodes indicate the instructors group and the square nodes 
indicate the administrators group. Fig.8 shows results 
clustered using the proposed algorithm. It exactly attains 
two clusters. More satisfying, hubs and outliers are 
correctly identified: Node colors correspond to different 
clusters; Triangle nodes(Node 3,9,14,32) denote Hubs; 
Diamond node(Node 12) denotes Outlier. 

 
Figure 7. Original actual Zachary karate club dataset. 

 

 
Figure 8. Clustering results of the Zachary karate club dataset. 

 

② Bottlenose Dolphins network 

The second example is the bottlenose dolphins 
network. The Community structure in the social network 
of bottlenose dolphins datasets contains an undirected 
social network of frequent associations between 62 
dolphins in a community living off Doubtful Sound, New 
Zealand, as assembled by Lusseau et al. in 2003 [15,16], 
extracted using the algorithm of Girvan and Newman 
[17]. In Fig.9, the squares and circles denote the primary 
split of the network into two groups. Traditional 
algorithm can detect clusters, but fail to denote hubs and 
outliers [17]. The proposed algorithm outperforms 
existing algorithm by detecting hubs(triangle nodes) and 
outliers(diamond nodes) as well as two clusters in 
accordance with the original, as shown in Fig.10. 

Though the algorithm can find hubs and outliers and 
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outperforms other algorithms in speed, it needs two input 
parameters and is not suitable for dynamic network. 

 
Figure 9. The Original Bottlenose Dolphins network. 

 

 
Figure 10. Bottlenose Dolphins network Clustered by the proposed 

algorithm. 
 
To summarize, the network clustering methods 

discussed in this section aim to find clusters such that 
there are many connections between vertices within the 
same clusters and few without. The clusters are of various 
shapes such as cliques and stars. While all these network 
clustering methods successfully find clusters probably 
including clique-shaped clusters, they are generally 
unable to identify star-shaped clusters that are common in 
scale free networks. We propose a novel approach for 
finding clusters from complex networks in the followings 
sections. 

III.  THE NOVEL CLUSTERING APPROACH 

A. Conception  and Formulation 
We present the novel clustering algorithm in this 

section. The main idea of our clustering algorithm is 
based on the observation that nodes within a cluster have 
more links connecting to nodes of the same cluster. This 
cliquishness of nodes in clusters is used to define our 
cluster. We assume that the network is represented as an 
undirected graph G=<V, E>, where V is set of nodes and 
E is set of undirected pairs of nodes.  

Given a graph G=<V,E>, neighborhood of v is a set of 
nodes that are directly connected to v, formally:  

            N(v) = {w|(v,w)∈E}     (1) 
For any node v∈V, we measure the ability of v to 

attract neighbors. We call this ability “attractiveness”, 
which is measured by the fraction of shared neighbors. 
Given a graph G=<V,E>, v,w∈V and w∈N(v), the 
attractiveness of v to w is measured by the fraction of 
neighbors of w and also neighbors of v, formally: 

)(
1)()(

),(
wN

wNvN
wv

+
=

∩
α    (2) 

where •  operator is the cardinality, i.e. the number of 
elements. The nominator is the cardinality of common 
neighbors plus v, because v is also a neighbor w. 

The sufficient condition for w, (w ∈ N(v)) to be in the 
same cluster as v is that the number of links from {w, 
N(w)} that connect to v must be more than half the total 
number of links radiating from w, formally: α(v, w) > 0.5. 
In this case, w is called a subordinate of v. w is a 
subordinate of v, if w is a neighbor of v and α(v, w) > 0.5. 
We call all subordinates of v the “subordinate 
neighborhood.” The subordinate neighborhood of v is all 
the neighbors of v that are subordinates of v, formally: 

}5.0),()({)( >∧∈= wvvNwwvN αα   (3) 

For any natural number k (k∈ * and * = {1, 2,…}), 
k-subordinate neighbors of v are (k-1)-subordinates that 
satisfy the following condition: 

}5.0),()(|{)( 1 >∧∈= − wvvNwwvN kkk ααα   (4) 

where 
|)(|

1|)()(|
),(

1

wN
wNvN

wv
k

k +
=

− ∩αα  and α1(v, w) = α(v, w), 

)()(1 vNvN αα = , and )()(0 vNvN =α . 
We need to identify nodes that can form a cluster with 

their subordinate neighbors. This ability, we call it 
“charisma,” can be measured by the fraction of 
subordinate neighbors in the neighborhood. The 1-
charisma of v is the fraction of subordinate neighbors in 
the neighborhood, formally: 

                
)(
)(

)(1

vN
vN

v αχ =      (5) 

For any k ∈ *, k-charisma of v is the fraction of k-
subordinate neighbors in (k-1)-subordinate neighbors, 
formally:  

)(

)(
)(

1 vN

vN
v

k

k
k

−
=

α

α
χ     (6) 

where χ1(v)= χ(v).  If 0)(1 =− vN k
α , thenχ k (v) = 0. 

The maximal k-charisma is the charisma, which 
measures the ability of a node to build a cluster with its k-
subordinate neighborhood. For any k ∈ *, the maximal 
k-charisma is the charisma, formally: 

)}({max)( vv k

k
χχ =    (7) 

In graph theory, a path is a sequence of nodes such 
that from each of its nodes, there is a link to the next 
nodes in the sequence. Given a graph G=<V, E>, a path, 
p, is a sequence of nodes p=<v1, v2, …, vn> such that (vi, 
vi+1)∈E, where i =1, 2, …, n-1. A sub-graph is connected 
if there is a path between any pair of nodes in the 
component. 

Given a graph G=<V,E>, a sub-graph G'=<V',E'>, 
where V'⊆ V and E'⊆ E, is connected if ∀(v,w), where v, 
w ∈ V', ∃si ∈V', i=1,2,…k, such that p = <v,s1,s2,…,sk,w> 
is a path(Connectedness). 

A cliquishness set is a set of nodes where more than 
half of its links connects to nodes in the same set. Given a 
graph G=<V,E>, a set C ⊆ V  is cliquish if ∀ v∈C, more 
than 50% of the neighbors of v, N(v) are members of C, 
formally: 
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}5.0)()(:{ >∈∀= vNvNCCvvC ∩   (8) 
A set of nodes, C ⊆ V, is a connected cliquish set if: 

(1) (Connectedness): there is a path between any pair of 
nodes in C; (2) (Cliquishness): for every node v in C, 
above 50% of N(v) are members of C, formally: 

5.0
)(

)(
>

vN
vNC ∩     (9) 

For a given graph, a cluster is set of nodes that are 
connected, cliquish, as well as maximal in terms of 
connectedness and cliquishness. 

A cluster is a connected cliquish set C, which is 
maximal (Maximality), i.e., there is no superset D, D⊃C, 
which satisfies both connectedness and cliquishness. We 
want to find nodes that can build a cluster with its k-
subordinate neighbors. If a node can form a cluster with 
all its k-subordinate neighbors, we call it k-core. A formal 
definition of k-core is as follows: For any k and i ∈ *, a 
node v is a k-core if it satisfies both of the following 

conditions: (1) ( )1)(minarg == vk i

i
χ ; (2) 5.0

)(

)(
>

vN

vN k
α . We 

call k the core-level of v. The first condition above 
implies all subordinate neighbors of v being cliquish. The 
second condition implies over 50% of v’s neighbors are 
cliquish, too. Therefore, v can build a cluster with its 
subordinate neighbors.  

There may be nodes not belonging to any clusters due 
to the violation of either connectedness or cliquishness of 
a cluster definition. We call them “nonmembers” because 
they are not members of any cluster, and they are either 
isolated (called outliers) or connect multiple clusters with 
cliquishness to any of them less than or equal to 
50%(called hubs). 

B. The Novel  Algorithm 
In this section, we describe the proposed algorithm, 

which implements the search for clusters in a network or 
graphs.  The clusters have to satisfy connectedness, 
cliquishness, and maximality conditions based on our 
cluster definition. The general process of the proposed 
Algorithm(named NovelCluster) includes four steps: 

Step 1: All nodes in V are marked as unclassified.  
Step 2: Calculate core levels for all nodes. For all 

v∈V, test if v is a k-core in terms of 
5.0)()(1)( ≤∨≠ vNvNv kk

αχ . If the condition satisfies, 

it means that v is a k-core, then insert v into an array 
core[k]. The k-cores of the same core-level k are inserted 
into the same array. 

Step 3: The k-cores of the same core-level k are 
inserted into the same array, so finding clusters starting 
from k-cores with the smallest core level k. For all v in 
core[i], if v is unclassified, create a new cluster C and 
assign it a new Cluster ID. Let C = {v}∪Nα

k (v) (here, 
Nα

k (v) hasn’t been clustered), and label all nodes in C as 
classified, then goto next step (expand initial cluster C by 
its neighbors). 

Step4: Maximally expanding C with its neighbors, it 
is a breadth-first-expansion of the current cluster. (1) For 
all neighbors of C, if v is unclassified, insert candidate v 

into queue Q; (2) Expand C with candidate in Q. If Q is 
not empty, take the following two steps repeatedly: (1) 
Remove first element of Q; (2) Check for cliquishness. If 
|C∩N(v)|/|N(v)|>0.5, insert v into C. For all w∈N(v), if w 
is unclassified, then w is a new candidate for C. 

The clustering procedure repeated for all core-levels 
in ascending order until all k-cores are examined. After 
the clustering procedure is finished, the unclassified 
nodes can be further classified as either outliers or hubs. 
Some application does not allow outliers or hubs. In this 
case, we can assign all nonmembers to clusters based on 
the number of links to the clusters weighted by the 
charisma. The core’s charisma is 1 based on our 
definition. 

From above, we can draw the following three 
conclusions: (1) The discovered clusters by the algorithm 
satisfy all conditions in our cluster definition: 
connectedness, cliquishness, and maximality; (2) The 
results of the algorithm do not depend on the order of 
processed vertices; (3) It is clear that the proposed 
algorithm doesn’t require any input parameter, which is 
advantageous for dynamic networks. 

C. Complexity Analysis 
Given a graph with m edges and n vertices, the 

proposed method first finds all structure-connected 
clusters w.r.t. a given parameter setting by checking each 
vertex of the graph. This entails retrieval of all the 
vertex’s neighbors. Using an adjacency list, a data 
structure where each vertex has a list of which vertices it 
is adjacent to, the cost of a neighborhood query is 
proportional to the number of neighbors, that is, the 
degree of the query vertex. Therefore, the total cost is 
O(deg(v1)+deg(v2)+…deg(vn)), where deg(vi) is the 
degree of vertex vi, i = 1,2,…,n. If we sum all the vertex 
degrees in G, we count each edge exactly twice: once 
from each end. Thus the running time is O(m). We also 
derive the running time in terms of the number of vertices, 
should the number of edges be unknown. In the worst 
case, each vertex connects to all the other vertices for a 
complete graph. In the worst case the graph is complete 
and the running time is O(n(n-1)), or O(n2). However, 
real networks are generally sparse with a power law 
degree distribution [18]. The expected number of 
neighobors is a constant [19]. For these networks the 
running time will be in liner proportion to the number of 
vertices in the graph, i.e. O (|V|). 

One type of network is the random graph, studied by 
Erdös and Rényi [20]. Random graphs are generated by 
placing edges randomly between vertices. Random 
graphs have been employed extensively as models of real 
world networks of various types, particularly in 
epidemiology. The degree of a random graph has a 
Poisson distribution: 
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which indicates that most nodes have approximately the 
same number of links (close to the average degree 
E(k)=z). In the case of random graphs the complexity of 
the proposed algorithm is O(n). Therefore, the complexity 
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in terms of the number of edges in the graph for the 
proposed algorithm is in general linear. The complexity 
in terms of the number of vertices is quadratic in the 
worst case of a complete graph. 

IV.  EXPERIMENTAL RESULTS AND EVALUATION 

In this section we evaluate the algorithm using both 
synthetic and real datasets. The performance of the 
proposed algorithm is compared with FastModularity, a 
fast modularity-based network clustering algorithm 
proposed by Clauset et al in [8], which is faster than 
many competing algorithms: its running time on a graph 
with n vertices and m edges is O(mdlog n) where d is the 
depth of the dendrogram describing the hierarchical 
cluster structure. We implemented the new algorithm in 
C++. We used the original source code of FastModularity 
by Clauset et al [13]. 

The real dataset we examine is the 2006 NCAA 
Football Bowl Subdivision (formerly Division 1-A) 
football schedule. This example is inspired by the set 
studied by Newman and Girvan [6], who consider 
contests between Div. 1-A teams in 2000. Our set is more 
complex, considering all contests of the Bowl 
Subdivision schools including those against schools in 
lower divisions. Figure 11 shows this network with 
schools in the same conference identified by color using 
the proposed method. Figure 12 is the similar result using 
the FastModularity Algorithm. 

 
Figure 11. NCAA Football Bowl Subdivision Schedule Clustered by 

the Proposed Algorithm 

 
Figure 12. NCAA Football Bowl Subdivision Schedule Clustered by 

FastModularity Algorithm 

From Figure 11 and Figure 12, we can see the 

proposed method can detect outliers, but the 
FastModularity algorithm just classify these outliers into 
different clusters. 

To evaluate the ability to detect clusters of various 
shapes, we generate synthetic networks, consisting of 
both cliques and stars. One example of the networks is 
shown in Figure 13 to Figure 15. The clustering result of 
the proposed method (Figure 13), SCAN [19](Figure 
14)), and CMN [4] (Figure 15) is plotted using colors to 
represent clusters. The results demonstrate that only the 
proposed method can accurately detect both star- and 
clique-shaped clusters simultaneously. 

 
Figure 13. The clustering results of the proposed algorithm 

 
Figure 14. The clustering results of SCAN 

 
Figure 15. The clustering results of CMN 
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V.  CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a novel structural clustering 
method for graphs/networks. Through theoretical analysis 
and extensive experiments, we can conclude that the 
proposed method is significantly more accurate and 
efficient than other algorithms, especially in detecting the 
star-shaped clusters that are common in scale free 
networks. 

Data clustering is a field of active research in machine 
learning and data mining. Most of the work has focused 
on static data sets. There has been little work on 
clustering of dynamic data. In the future, we will study 
clustering algorithm on dynamic data set as a set of 
elements whose parameters change over time. A flock of 
flying birds is an example of a dynamic data set. We will 
be interested in exploring algorithms are capable of 
finding relationships among the elements in a dynamic 
data set. 
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