
Data Exchange: Algorithm for Computing Maybe 
Answers for Relational Algebra Queries

 
S. M. Masud Karim 

 Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh. 
E-mail: masud@cse.ku.ac.bd 

 
 
 

Abstract—The concept of certain answers is usually used in 
the definition of the semantics of answering queries in data 
exchange. But as certain answers are defined as a relation 
without null values, the approaches for answering queries 
over databases do not always lead to semantically correct 
answer. In order to obtain all possible semantically correct 
answers, maybe answers have been considered along with 
certain answers. In this paper, an algorithm is presented 
that produces semantically correct maybe answers to simple 
relational algebra queries over target schemas of data 
exchange under the closed world assumption. As there may 
be infinitely many maybe answers, sophisticated and 
restricted representation techniques are used to represent 
them compactly. Then using the compact representation, an 
algorithm to compute possible (i.e., maybe) answers 
incrementally is designed. Finally the algorithm is 
implemented for a fragment of relational algebra. 
 

Index Terms—close world assumption, data exchange, 
maybe answers, query answering. 

I.  INTRODUCTION 

Data exchange, also known as data translation is the 
problem of transforming a given instance of a source 
database schema to an instance of a target database 
schema by satisfying a set of constraints and reflecting 
the given source data as accurately as possible. The 
accuracy and completeness of data exchange largely 
depend on the semantics of the data exchange problem 
and are best verified by answering queries over target 
instances in such a way that is semantically consistent 
with the source data. In [8], the concept of maybe 
answers is coined in the definition of the semantics of 
answering queries and a finite representation, referred to 
as fair representation of the maybe answers is defined. 
But that finite representation fails to address various 
simple query answering scenarios. This paper redefines 
the finite representation and presents an algorithm to 
compute possible answers using the defined 
representation.  

Combining specifications provided in [1, 4, 7, 8, 9], it 

can be stated that a data exchange setting is a triple 
( )Σ= ,,τσE , where σ  is the source schema, τ  is the 

target schema and Σ  is a set of constraints. The goal of a 
data exchange problem associated with a data exchange 
setting is to find a target instance T of a given source 
instance S such that S and T satisfy all constraints in Σ  
and produce answers to the queries written over τ  in 
such a way that is semantically consistent with the 
information in S over σ . The target instance T is called a 
solution of the data exchange problem.  

One of the most crucial observations of data exchange 
problem is that a given instance of data exchange 
problem may have infinitely many solutions; again there 
may be no solution. Another crucial observation of data 
exchange problem is the conceptual difficulty associated 
with the context of query answering. As there may be 
many solutions for a given instance of data exchange 
problem, each will produce its own answer for a specific 
query, that means, there will be as many answers for a 
specific query as the solutions. Therefore, the question 
comes into attention that what makes an answer ‘right’?  

It was shown in [3, 4] that the canonical universal 
solution and the core are good for answering conjunctive 
queries with inequalities. The concept of certain answers, 
the answers that occur in the intersection of all possible 
answers is used in the definition of the semantics of 
answering queries. But as certain answers are defined as 
a relation without null values, approaches for answering 
queries over databases lead to semantically incorrect 
answers. In [8], the concept of both maybe answers (the 
union of all possible answers) and certain answers are 
combined at the levels of individual solutions and all 
solutions.  

In [3, 4], Open World Assumption (OWA) is used, 
while Closed World Assumption (CWA) is considered as 
the standard assumption for data exchange in [8]. While 
OWA permits new facts to be added to the databases, 
CWA does not allow adding new facts to database except 
those consistent with one of the incomplete tuples in the 
database. In [5], an alternative approach based on the 
concept of locally-controlled open world database is 
introduced. In this approach, portions of a database in the 
traditional closed world database can be defined as open. 
This concept is used in [9] as a standard for schema 
mapping and data exchange.  
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The purpose of this paper is to present an algorithm 
that produces all possible semantically correct answers to 
queries posed against relational schemas under the closed 
world assumption. This purpose is associated with the 
following specific objectives: (i) As maybe answers are 
inherently infinite, a sophisticated and restricted finite 
representation has been developed in order to provide the 
user an upper approximation for the possible answers of 
a query, (ii) an algorithm has been designed to compute 
possible answers incrementally, and (iii) finally the 
algorithm has been implemented for a fragment of 
relational algebra (i.e. a simple set of SQL queries). 

II.  LITERATURE REVIEW 

A. Data Exchange Problem  
A data exchange setting is a triple ( )Σ= ,,τσE , where 

σ  is the source schema, τ  is the target schema (it is 
assumed that there is no common relation names in σ  
andτ ) andΣ  is a set of constraints. The set Σ  is a 
combination of two sets, denoted tst Σ∪Σ=Σ , where stΣ  
provides the specification of the relationship between the 
source and the target schemas (i.e., source-to-target 
dependencies, in short STDs) and tΣ  expresses data 
dependencies on the target schema. The focus of 
attention is restricted only to two types of constraints: 
tuple-generating dependencies (TGDs) and equality-
generating dependencies (EGDs). The data exchange 
setting in consideration is assumed to be associated with 
a finite set of TGDs as stΣ  (i.e., STDs) and a finite set of 
EGDs and target TGDs as tΣ . When writing a TGD or 
EGD, the universal quantifiers are usually omitted. 

Definition 2.1 (Data Exchange Problem): A data 
exchange problem associated with a data exchange 
setting E is the function problem: find a target instance T 
of a given source instance S such that S and T satisfy all 
constraints inΣ , provided that such a target instance 
exists. •   

The target instance T is called a solution of S under the 
data exchange setting E. It is showed in [7] that, if there 
is no constraint (dependency in the form of EGDs and 
TGDs) on target schema, then solutions always exist. 

B. Database with Incomplete Information 
The most common concept used for modeling 

incomplete information in the context of relational 
databases is null value. A null value is placed for an 
attribute of a relation whose value cannot be represented 
by an ordinary constant. The unknown null value 
represents that the attributes value is missing or not 
known. The nonexistent null value represents that value 
of an attribute in a tuple does not exist. Most of the 
researchers consider the null values as existent but 
unknown in the context of data exchange. Assume that 
CONSTANT is the set of all ordinary values (constants). 
Let NULL be an infinite set of values, called marked null 
values such that CONSTANT∩NULL = ∅. A database 
instance with incomplete information is an instance 

whose domain is a subset of CONSTANT∪NULL. Usually 
source instances are complete relational databases, i.e., 
their domains are subsets of CONSTANT and target 
instances are relational databases with incomplete 
information. 

C. Valuation  
A valuation is a partial map :v  NULL →  CONSTANT. 

If T is an instance with incomplete information and v is a 
valuation defined on all the nulls in T, then ( )Tv  be the 
instance of the same schema over CONSTANT in which 
every null ⊥  present in T is replaced by ( )⊥v . Then a 
potential infinite object REP ( )T  can be defined as 

REP ( ) ( ){ }TvT = ,                             (1) 

where v is a valuation. 

D. Universal Solution 
The notation of homomorphism is used to provide the 

algebraic specifications of universal solution and core.  
Definition 2.2 (Homomorphism): For any two 

instances 1T  and 2T over any arbitrary schema, where 
domains of instances are subsets of CONSTANT∪NULL, a 
homomorphism 21: TTh →  is defined in [3] as a 
mapping function from CONSTANT∪NULL ( )1T  to 
CONSTANT∪NULL ( )2T  such that: 
• For every constant c ∈  CONSTANT, ( ) cch = .  
• For every fact ( )tP  of 1T , there is a fact ( )( )thP in 

2T , where for any ( )nxxxt ,...,, 21= , ( )th  is defined 
as ( ) ( ) ( )( )nxhxhxh ,...,, 21 . •  

This definition of homomorphism also implies 
mapping from NULL to CONSTANT∪NULL. In order to 
obtain the same complete instances as REP ( )T , this 
definition of homomorphism is slightly modified in [8] 
by assuming the mapping from NULL only to NULL and 
then a partial valuation is performed.  

Definition 2.3 (Universal Solution): A solution T for 
a source instance S is called a universal solution for S, if 
for every solution T ′  for S, there is homomorphism 

TTh ′→: . •   
The canonical universal solution of a given source 

instance S is denoted as CANSOL ( )T . The concept of 
universal solution suffers from the fact that there may be 
multiple, non-isomorphic universal solutions for a source 
instance under a given data exchange setting. Therefore, 
the notation of cores of universal solutions is defined in 
[4] and it is denoted as CORE(T) for solutions T. 

E.  Data Exchange Solutions under CWA 
In [8], CWA is chosen as the standard assumption for 

data exchange and CWA-solutions are considered as the 
solutions. The concept of justification is taken into 
account in [8, 9] for generating the CWA-solutions. This 
can easily be verified that CWA-solutions are universal 
solutions in the terminology of [3]. For every CWA-
solution T, the following inclusions hold:  
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REP(CORE(T)) ⊆  REP(T) ⊆  REP(CANSOL(T)). 

F. Certain Answers and Maybe Answers 
The certain answers of a query Q are the tuples that 

occur in the intersection of all Q(T) on all the solutions T. 
If the collection of all solutions for S under the data 
exchange setting E is defined as SOLUTION(E, S), the 
certain answers of Q on T with respect to E, denoted 
CERTAIN(Q, S), is a set  

CERTAIN(Q, S) = ( ){ ∈∩ TTQ | SOLUTION ( )}SE, .  (2) 

On the other hand, the maybe answers of a query Q 
are the tuples that occur in the union of all answers of the 
query Q(T) on all the solutions T in SOLUTION(E, S). The 
maybe answers of Q on T with respect to E, denoted 
MAYBE(Q, S), is a set  

MAYBE(Q, S) = ( ){ ∈∪ TTQ | SOLUTION ( )}SE, .   (3) 

To evaluate Q on an instance T with nulls, the set 
( ){ ∈RRQ | REP ( )}T  is normally considered. The lower 

and upper approximations are defined respectively as  

( ) ( ){ ∈∩=∇ RRQTQ | REP ( )}T ,                (4) 

( ) ( ){ ∈∪=∆ RRQTQ | REP ( )}T .                (5) 

G. Semantics of Query Answering 
There are primarily two different ways to obtain the 

answers to queries over different solutions: (i) by 
computing the certain answers which are true for all 
solutions (this semantics used in [2]) and (ii) by 
collecting tuples true in some solutions. The combination 
of certain and maybe answers at the levels of individual 
solutions and all solutions give rise to four reasonable 
semantics for query answering. For a source instance S 
under a data exchange setting E, these are defined in [8] 
as certain answers semantics, potential certain answers 
semantics, persistent maybe answers semantics and 
maybe answers semantics. 

H. Representation of Maybe Answers 
In [8], a finite representation of maybe answers 
( )TQ∆  is defined using a different valuation, termed as 

strict valuation, which states 1-to-1 mapping from the set 
of nulls in a tuple of a solution T to CONSTANT such that 
no value of strict valuation occurs as a constant in T. For 
a T and a query Q, a table W is termed as fair 
representation of ( )TQ∆ , if  

{∪ REP ( ) } ( )TQWtts ∆=∈| .                 (6) 

Here, REP ( ) ( ){ }tvTts = , where v stands for strict valuations. 

It is further stated in [8] that if ( )2211 ,,, ⊥⊥ aa  is in a fair 

representation of ( )TQ∆ , then for every pair ⎟
⎠
⎞⎜

⎝
⎛ ′′

21 , aa  of 

constants not present in T, the tuple ⎟
⎠
⎞⎜

⎝
⎛ ′′

2211 ,,, aaaa is in 

( )RQ  for some ∈R  REP ( )T . 
It can be verified that such a simple table W is not 

enough to hold all representative information of ( )TQ∆ . 
Again, by applying valuation with any combination of 
constants does not always give maybe answers satisfying 
the predicate. 

III.  PROPOSED METHOD  

In query answering scenarios, two extreme semantics: 
certain answers semantics, CERTAIN ( )SQ,∇  and maybe 
answers semantics, MAYBE ( )SQ,∆  are used. Since both 
can be computed over CANSOL(S) [8], query answering 
can be done for simple relational queries. Simple positive 
SQL queries considered for the experiment are of the 
following general format: 
SELECT Attribute-list  
FROM Relation-list  
WHERE Predicate.  

Relation-list consists of any n relations iR  with 
Ni ≤≤1 . Attribute-list has one or more of ( )sAij , where 

ijA  stands for the j-th attribute from iR . The value of j 
depends on the arity of the associated relation iR  and it 
may be different for different relations, i.e., for different 
values of i. Predicate, denoted by P consists of 

mppp ∧∧∧ L21 , i.e., conjunction of m atomic 
expressions of the form p: X op Y, where op is any binary 
operator from the set { }≠≤≥<>= ,,,,, . One of the two 
operands X and Y of p: X op Y must be an attribute from 
any iR . In order to distinguish between projection and 
predicate attributes, a superscript is used: s for 
projection-attributes (attributes in SELECT clause) and w 
for predicate-attributes (attributes in WHERE clause). 
The other operand may be either any constant value or 
another attribute from any iR . When both operands are of 
the form w

ijA , they might be either from the same relation 
or two different relations. 

A. Computing Certain Answers 
When a positive relational query Q is posed over a 

schemaτ , the certain answers ( )TQ∇  are computed 
using the naive evaluation method [6] on the canonical 
solution T over τ . The null variables are treated as 
constants and general query evaluation is applied to T in 
order to get Q(T). Finally, the tuples with nulls are 
discarded to get ( )TQ∇ . 

B. Computing Maybe Answers 
The system is initialized with a canonical solution and 

a pre-processing metadata (the pre-processing is 
explained later). All the attributes stored in the relational 
databases are of type text (or varchar). The constants are 
inserted in its original form in texts. Each null is 
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represented by distinct text with a common prefix pattern 
__ n . Nulls of an attribute domain are distinguished by 

numbering (1, 2, ...) and nulls of different attribute 
domains are distinguished by naming. 

B.1. Pre-processing 
In order to reduce the work load during the 

computation of maybe answers, pre-processing can be 
applied to a canonical solution T. Pre-processing may 
include identification of null/constant presences for 
attributes, computation of the common attributes in 
relations etc. Pre-processing on the attributes uses two 
Boolean parameters, hasNull and hasConstant, 
confirming whether a specific attribute has null values 
and constant values, respectively. Note that, out of the 
four combinations for the possible values of these two 
parameters, (TRUE, TRUE) is most common in data 
exchange. The combination (FALSE, FALSE) is an 
impossible one and hence is never used. The attributes 
with no nulls, having parameters value (FALSE, TRUE) 
and with only nulls with parameters value (TRUE, 
FALSE) are vital in data exchange. 

B.2. Query Rearrangement 
As Qs are simple relational algebra queries, they can 

easily be rearranged to obtain better performance in join 
operation. In order to reduce the storage complexity 
during the join operations, the projection can be pushed 
in, i.e., projection is performed before join operation. The 
concept of restriction will be useful during the query 
rearrangement process.  

Definition 3.1 (Restriction): The set of all atomic       
expressions rp   with mr ≤≤1  is called the restriction 
of P to iR , if all the attributes used in the atomic 
expressions are only from iR . •   

Restriction of P to iR  is denoted by REST ( )iP R . This 
definition can be extended for a relation-pair.  

Definition 3.2 (Extended Restriction): The extended 
restriction of P to a relation-pair ( )ji RR ,  with ji ≠  is 
the set of all atomic expressions rp  in P that include 
only attributes of ji RR ∪ . •   

When a query Q is posed to any n relations of an      
instance T with N relations NRRR ,,, 21 L , 
• First projection operation is performed on each of 

the n relations using c
il

w
ik

s
ij AAA ∪∪ , where c

ilA  are 
the attributes in iR  that also present in at least one of 
the (n – 1) relations (superscript c stands for 
common attributes in different relations). Note that 
three different j, k, l are used to avoid ambiguity, but 
they can also represent the same value(s).  

• Then, the restrictions of P to relations and extended 
restrictions of P to relation-pairs are identified.      
Finally, each of the ∈p Rest ( )iP R  is applied to iR  
using valuation to compute the tuples incrementally 
upon which ∈p Rest ( )iP R  holds.  

B.3. Join Operations 
The basic idea for the null variables in the join 

operation as follows: 
• Nulls of different attribute domains are different i.e., 

jlik ≠⊥⊥  for any ji ≠  and any k, l,  
• Nulls of the same attribute domain are same i.e., 

kjki=⊥⊥  for any ji ≠  and any fixed k. 
Now join operation, referred to as join around nulls, in 

short JAN and denoted by ⊗  can be described as (i) to 
perform the Cartesian product on the targeted relations, 
and (ii) to discard the tuples with different constant   
values for the common attribute(s). 

B.4. Compact Representation 
After performing query rearrangement and, then 

applying join operation and extended restrictions of P to 
relation-pairs iteratively, a combined relation is obtained. 
Finally by performing projection operation using 
projection attributes on the combined relation, an 
intermediate representation, W (with another table C for 
indicating the conditions) of maybe answers ( )TQ∆  is 
obtained. Finally, ( )TQ∆  can be expressed as 

{∪ REP ( ) } ( )TQWttx ∆=∈| .             (7) 

Here, REP ( )tx is obtained using Eq. (1) by satisfying 
conditions in C.  

B.5. Putting All Together 
First, the query Q is analyzed and decomposed to 

get s
ijA , w

ikA , c
ilA  of all n query-relations. 

Next, for each relation iR  of the n query-relations, 
where Ni ≤≤1 , do the followings: 
• Perform projection operation on iR  using 

c
il

w
ik

s
ij AAA ∪∪ , where j, k, l are integers.  

• Identify the restriction of P to iR , i.e., REST ( )iP R  
and apply each atomic expression ∈p  REST ( )iP R   
on iR  using valuation. 

• Identify the extended restrictions of P to relation-
pairs. 

A set of n relations is produced with possibly less 
arity, where all tuples of a relation are satisfied by               
corresponding restriction of that relation. Then any two 
of the n relations are combined into a single relation, rc 
by applying JAN and each of the atomic expression p of 
the restrictions of P to the relation-pair is checked on rc 
using valuation. The conditions in p are stored in a table 
C. Then, JAN is again applied to rc and another relation 
from among n – 2 relations and extended restrictions of a 
relation-pair are checked on rc if the relation-pair is a 
subset of already combined relations. Finally, table W is 
obtained by performing projection operation on the 
combined relation using { }s

ijA∪  of all relations nRi ∈ -
query-relations. The combined ( )CW ,  provides compact 
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representation of the maybe answers ( )TQ∆ . The table C 
can only be omitted in special cases. 

It is claimed in [8] that, a fair representation of 
( )TQ∆  can be constructed in polynomial time for a 

positive relational algebra query. Initial results using 
queries consist of only equality (i.e., =) on attributes with 
nulls and others operators (e.g., ≤≥<> ,,, ) on attributes 
without nulls justify this claim.  

But this claim fails in case of queries including 
≤≥<> ,,,  on attributes with nulls. The main reason of this 

failure is that a simple table is not enough to represent 
maybe answers in such situations. Hence, the theorem 
can be modified as follows: 

Theorem 3.1: If a positive relational query Q is       
executed on a canonical solution T, an intermediate                 
representation, W of ( )TQ∆  can be constructed in 
polynomial time, where Q consists of only equality (=) 
on attributes with nulls and others operators ( ≤≥<> ,,, ) 
on attributes without nulls. •  

In the algorithm, the query rearrangement phase and 
joining phase just rearrange and organize the query-
relations in order to improve the query evaluation. In 
valuation phase, answers are obtained by assigning 
constant to null (if only one of the operands of ‘=’ is 
null) and renaming two nulls to a new null variable (if 
both operands are null). The main idea behind this 
operation is that the infinitely many maybe answers form 
equivalence-classes. The implemented algorithm returns 
each of these equivalence-classes only once, as nulls are 
renamed considering equivalent (i.e., using the 
isomorphic property). Based on the work done in this 
paper, it can be stated that 

Theorem 3.2: If a generalized relational query with 
inequalities Q is executed on a canonical solution T, an 
intermediate representation, ( )CW ,  of ( )TQ∆  can be 
constructed in polynomial time. •  

IV.  EXPERIMENTAL RESULT 

The proposed algorithm is implemented in a restricted 
setting. It is assumed that all the SQL queries posed to 
the system are syntactically correct. The operation 
process of the described algorithm is experimented using 
different scenarios of data exchange setting. The system 
is experimented using simple positive queries as well as 
queries with inequalities. Couples of the scenarios are 
explained below: 

Example 4.1 (People-Person): Consider a canonical 
solution is given in Table I. Table II shows the result of 
the preprocessing. If the following SQL statement 
SELECT person.name, people.name 
FROM person, people 
WHERE person.name = people.name;  
is executed on the canonical solution, output (in Table 
III) is produced after applying query rearrangement and 
join operation using valuation. Note that new null 
variable (i.e., _n_name_3) is generated by renaming nulls 
in the last tuple of Table III. 

 
TABLE I 

CANONICAL SOLUTION FOR PEOPLE-PERSON 
 

name name 
Tanisha Tanisha 

_n_name_1 

 

_n_name_2 
(a) people  (b) person 

 
TABLE II 

PREPROCESSING FOR PEOPLE-PERSON 
 

Attribute type relations hasNull hasConstant 
name String person, 

people 
TRUE TRUE 

 
TABLE III 

MAYBE ANSWERS FOR PEOPLE-PERSON 
 

people.name person.name 
Tanisha Tanisha 
Tanisha _n_name_2 

_n_name_1 Tanisha 
_n_name_3 _n_name_3 

 
Example 4.2 (Tabulation): Consider another simple 

canonical solution given in Table IV, which shows marks 
obtained by students in a particular course. The result of 
the preprocessing is given in Table V. Now “to list the 
students who have obtained at least 27 in the first test”, 
the SQL expression, Q27 is written as  
SELECT marks.roll, marks.test1 
FROM marks 
WHERE marks.test1 >= 27. 

As it is a single relation, query rearrangement only 
drop attributes of other than the set {roll, test2} and no 
join operation is needed. 
 

TABLE IV 
RELATION marks 

 

roll test1 test2 test3 
s970227 29 27 29 
s970232 _n_test1_1 23 25 
s970239 _n_test1_2 _n_test2_1 29 

 
TABLE V 

PREPROCESSING FOR TABULATION 
 

Attribute type relations hasNull hasConstant 
roll String marks FALSE TRUE 
test1 Integer marks TRUE TRUE 
test2 Integer marks TRUE TRUE 
test3 Integer marks FALSE TRUE 

  
TABLE VI 

REPRESENTATION FOR QUERY Q27 ON TABULATION 
 

marks.roll marks.test1 
s970227 29 
s970232 _wn_test1_1 
s970239 _wn_test1_2 

(a) W 
 

attribute operator value 
test1 >= 27 

(b) C 
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It is clear from Table IV that the first tuple has a 
constant (i.e., 29) which satisfies the predicate and hence 
it is included in the representation. The second and third 
tuples have marked null variables (_n_test1_1 and 
_n_test1_2 respectively) and applying valuation, 
sometimes constants are mapped which satisfy the 
predicate (for constant values greater than or equal to 27) 
and sometimes does not satisfy (for constant values less 
than 27). A simple marked null variable cannot be used 
in the representation and for every valuation, correct 
answer is not obtained.  

Using the concept of adding condition to the 
conditional-table [6], a slightly modified null variable, 
termed as weighted marked null variable is used instead 
in W (see Table VI(a)). A separate table C given in Table 
VI(b) is used to add the condition i.e., define the range of 
the weighted marked null variable present in the 
representation. In table C, each tuple contains a 
condition, where value can be either a constant or an 
attribute-name. If it is an attribute-name, it means there 
has to be a comparison between the values of this 
attribute and the attribute in the ‘attribute’ field. When a 
weighted marked null variable is encountered in W 
during valuation, first the condition is taken from C for 
that attribute and then the condition is checked for all 
weighted marked null variable. If it is satisfied, the tuple 
is included as a maybe answer. 

Again, “to view the students who have obtained 
anything other than 27 in first test”, the SQL expression 
Qn27 is written as  
SELECT marks.roll, marks.test1 
FROM marks 
WHERE marks.test1 <> 27. 

The representation of the maybe answers is given in 
Table VII. Again, for getting the students who have got 
different marks in the first and second tests, the SQL 
query expression Qt1nt2 is written as  
SELECT marks.roll, marks.test1, marks.test2 
FROM marks 
WHERE marks.test1 <> marks.test2, 
the representation is obtained as given in Table VIII. 
Here, ‘test2’ in the value field indicates an operation 
between the values of ‘test1’ and ‘test2’. As the nulls are 
different on the last tuple of W in Table VIII, the 
valuation will be different. It can be remembered that for 
an equality (=), a new null is generated by renaming the 
nulls (see Example 4.1). 
 

TABLE VII 
REPRESENTATION FOR QUERY QN27 ON TABULATION 

 

roll test1 
s970232 _wn_test1_1 
s970239 _wn_test1_2 

(a) W 
 

attribute operator value 
test1 ≠  27 

(b) C 
 
 

Table VIII 
REPRESENTATION FOR QUERY QT1NT2 ON TABULATION 

 

roll test1 test2 
s970232 _wn_test1_1 23 
s970239 _wn_test1_2 _wn_test2_1 

(a) W 
 

attribute operator value 
test1 ≠  test2 

(b) C 
 

Example 4.3 (Recruitment): Consider a canonical 
solution is given in Table IX, where the term ‘cid’ means 
candidate-id, and the terms ‘exp-salary’ and ‘str-salary’ 
mean expected-salary and starting-salary respectively. 
Table X shows the result of the preprocessing. If the 
following SQL statement 
SELECT candidate.cid, candidate.age, candidate.post, 
candidate.exp-salary 
FROM candidate, position 
WHERE candidate.age <= 28 
AND position.str-salary >= candidate.exp-salary;  
is executed on the canonical solution, representation of 
the maybe answers is obtained as given in Table XII. 
 

TABLE IX 
RELATIONS FOR RECRUITMENT 

 

cid age post exp-salary 
1001 25 developer 20000 
1002 _n_age_1 _n_post_1 28000 
1003 _n_age_2 technician _n_exp-salary_1 
1004 29 _n_post_2 _n_exp-salary_2 

(a) candidate 
 

post str-salary 
analyst 25000 

developer 22000 
technician 17000 

(b) position 
 

TABLE X 
PREPROCESSING FOR RECRUITMENT 

 

Attribute type relations hasNull hasConstant 
cid Integer candidate FALSE TRUE 
age Integer candidate TRUE TRUE 
post String candidate, 

position  
TRUE TRUE 

exp-salary Integer candidate TRUE TRUE 
str-salary Integer position FALSE TRUE 

 
TABLE XI 

REPRESENTATION FOR QUERY ON RECRUITMENT 
 

candidate 
.cid 

candidate 
.age 

candidate 
.post 

candidate 
.exp-salary 

1001 25 developer 20000 
1003 _wn_age_2 technician _wn_exp-salary_1 

(a) W 
 

attribute operator value 
candidate.age <= 28 
position.str-

salary 
>= candidate.exp-

salary 
(b) C 
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Here the condition candidate.age <= 28 is a restriction 
to relation candidate. Applying this condition will drop 
the last tuple from relation candidate. The first tuple is 
added as a certain tuple, while the inner two are maybe 
tuples with a condition in table C. The other condition is 
an extended restriction to the relation-pair {candidate, 
position}. After applying JAN to relations candidate and 
position, this condition is applied to the combined 
relation. This will also add a condition to table C. 

V.  PERFORMANCE ANALYSIS 

Implemented system is evaluated using a combination 
of goal-based evaluation and IT-system as such [2]. 
Using a combination of criteria-based evaluation and IT-
system as such [2], it is ensured that no invalid criterion is 
assumed. The results of each phases like query 
rearrangement, join operation etc are compared with the 
definitions and each time expected outcomes are 
obtained. The proposed algorithm generated a finite 
intermediate representation W of this infinite object (with 
C), which is defined in Eq. [8].  

{∪ REP ( ) } (QWttx ∆=∈| CANSOL ( ))S .       (8) 

    The experimental results show that the implemented 
algorithm is complete, produces all the maybe answers.  
The implementation uses no relational database software-
specific macro; hence it can be implemented on any 
system. 

VI.  FUTURE WORKS 

The restricted implementation setting under CWA is 
tested with simple positive relational queries and 
generalized relational queries with inequalities. This can 
be extended for generalized queries with joins, e.g., 
queries on self-joined relations. More generalized data 
exchange setting with target dependencies can also be 
used to get all possible answers.   

VII.  CONCLUSION 

Maybe answers play a vital role in the study of data 
exchange. The maybe answers semantics provide an 
upper approximation for the answers to the queries. In 
this paper, the algorithm proposed in [11] is modified and 
implemented to compute the maybe answers 
incrementally under CWA. The results show that the 
algorithm generates all possible answers for generalized 
positive queries as well as queries with inequalities. 

 
 
 
 
 
 
 
 
 
 

ACKNOWLEDGEMENT 

I am grateful to Leonid Libkin for his initial concept 
and guideline. I also thank David Kensche for his helpful 
suggestions. 

REFERENCES 

[1] S. Abiteboul, P. Kanellakis and G. Grahne. On the 
Representation and Querying of Sets of Possible 
Worlds. Theoretical Computer Science 78 (1991), 
pp. 159-187. 

[2] S. Cronholm and G. Goldkuhl. Strategies for     
Information Systems Evaluation - Six Generic 
Types. Electronic Journal of Information Systems 
Evaluation Volume 6 Issue 2 (2003), pp.65-74. 

[3] R. Fagin, P.G. Kolaitis, R. Miller, L. Popa. Data 
Exchange: Semantics and Query Answering. In 
ICDT 2003, pp. 207-224. 

[4] R. Fagin, P.G. Kolaitis, L. Popa. Data Exchange: 
getting to the Core. PODS 2003, pp. 90-101. 

[5] G. Gottolob and R. Zicari. Closed World Databases 
Opened Through Null Values. VLDB 1988, pp. 50-
61. 

[6] T. Imielinski and W. Lipski. Incomplete Information 
in Relational Databases. Journal of the Association 
for Computing Machinery, Vol. 31, No.4, October 
1984, pp. 761-791. 

[7] P.G. Kolaitis. Schema Mappings, Data Exchange 
and Metadata Management. PODS 2005. 

[8] L. Libkin. Data Exchange and Incomplete 
Information. PODS 2006. June 26-28, 2006. 

[9] L. Libkin and C. Sirangelo. Data Exchange and 
Schema Mappings in Open and Closed Worlds. 
ACM SIGMOD/PODS 2008. June 9-12, 2008. 

[10] W. Lipski. On Semantic Issues Connected with 
Incomplete Information in Database. ACM Trans. 
Database Systems 4 (1979), pp. 262-296. 

[11] S. M. Masud Karim, Algorithm for Computing 
Maybe Answers in Data Exchange, In Proc. of 
International Conference on Computer and 
Information Technology (ICCIT) 2009, 21-23 
December 2009, Dhaka, Bangladesh. In Press.  

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 9

© 2011 ACADEMY PUBLISHER


