
Data Exchange: Algorithm for Computing Maybe
Answers for Relational Algebra Queries

S. M. Masud Karim

 Computer Science and Engineering Discipline, Khulna University, Khulna 9208, Bangladesh.
E-mail: masud@cse.ku.ac.bd

Abstract—The concept of certain answers is usually used in
the definition of the semantics of answering queries in data
exchange. But as certain answers are defined as a relation
without null values, the approaches for answering queries
over databases do not always lead to semantically correct
answer. In order to obtain all possible semantically correct
answers, maybe answers have been considered along with
certain answers. In this paper, an algorithm is presented
that produces semantically correct maybe answers to simple
relational algebra queries over target schemas of data
exchange under the closed world assumption. As there may
be infinitely many maybe answers, sophisticated and
restricted representation techniques are used to represent
them compactly. Then using the compact representation, an
algorithm to compute possible (i.e., maybe) answers
incrementally is designed. Finally the algorithm is
implemented for a fragment of relational algebra.

Index Terms—close world assumption, data exchange,
maybe answers, query answering.

I. INTRODUCTION

Data exchange, also known as data translation is the
problem of transforming a given instance of a source
database schema to an instance of a target database
schema by satisfying a set of constraints and reflecting
the given source data as accurately as possible. The
accuracy and completeness of data exchange largely
depend on the semantics of the data exchange problem
and are best verified by answering queries over target
instances in such a way that is semantically consistent
with the source data. In [8], the concept of maybe
answers is coined in the definition of the semantics of
answering queries and a finite representation, referred to
as fair representation of the maybe answers is defined.
But that finite representation fails to address various
simple query answering scenarios. This paper redefines
the finite representation and presents an algorithm to
compute possible answers using the defined
representation.

Combining specifications provided in [1, 4, 7, 8, 9], it

can be stated that a data exchange setting is a triple
()Σ= ,,τσE , where σ is the source schema, τ is the

target schema and Σ is a set of constraints. The goal of a
data exchange problem associated with a data exchange
setting is to find a target instance T of a given source
instance S such that S and T satisfy all constraints in Σ
and produce answers to the queries written over τ in
such a way that is semantically consistent with the
information in S over σ . The target instance T is called a
solution of the data exchange problem.

One of the most crucial observations of data exchange
problem is that a given instance of data exchange
problem may have infinitely many solutions; again there
may be no solution. Another crucial observation of data
exchange problem is the conceptual difficulty associated
with the context of query answering. As there may be
many solutions for a given instance of data exchange
problem, each will produce its own answer for a specific
query, that means, there will be as many answers for a
specific query as the solutions. Therefore, the question
comes into attention that what makes an answer ‘right’?

It was shown in [3, 4] that the canonical universal
solution and the core are good for answering conjunctive
queries with inequalities. The concept of certain answers,
the answers that occur in the intersection of all possible
answers is used in the definition of the semantics of
answering queries. But as certain answers are defined as
a relation without null values, approaches for answering
queries over databases lead to semantically incorrect
answers. In [8], the concept of both maybe answers (the
union of all possible answers) and certain answers are
combined at the levels of individual solutions and all
solutions.

In [3, 4], Open World Assumption (OWA) is used,
while Closed World Assumption (CWA) is considered as
the standard assumption for data exchange in [8]. While
OWA permits new facts to be added to the databases,
CWA does not allow adding new facts to database except
those consistent with one of the incomplete tuples in the
database. In [5], an alternative approach based on the
concept of locally-controlled open world database is
introduced. In this approach, portions of a database in the
traditional closed world database can be defined as open.
This concept is used in [9] as a standard for schema
mapping and data exchange.

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 3

© 2011 ACADEMY PUBLISHER
doi:10.4304/jsw.6.1.3-9

The purpose of this paper is to present an algorithm
that produces all possible semantically correct answers to
queries posed against relational schemas under the closed
world assumption. This purpose is associated with the
following specific objectives: (i) As maybe answers are
inherently infinite, a sophisticated and restricted finite
representation has been developed in order to provide the
user an upper approximation for the possible answers of
a query, (ii) an algorithm has been designed to compute
possible answers incrementally, and (iii) finally the
algorithm has been implemented for a fragment of
relational algebra (i.e. a simple set of SQL queries).

II. LITERATURE REVIEW

A. Data Exchange Problem
A data exchange setting is a triple ()Σ= ,,τσE , where

σ is the source schema, τ is the target schema (it is
assumed that there is no common relation names in σ
andτ) andΣ is a set of constraints. The set Σ is a
combination of two sets, denoted tst Σ∪Σ=Σ , where stΣ
provides the specification of the relationship between the
source and the target schemas (i.e., source-to-target
dependencies, in short STDs) and tΣ expresses data
dependencies on the target schema. The focus of
attention is restricted only to two types of constraints:
tuple-generating dependencies (TGDs) and equality-
generating dependencies (EGDs). The data exchange
setting in consideration is assumed to be associated with
a finite set of TGDs as stΣ (i.e., STDs) and a finite set of
EGDs and target TGDs as tΣ . When writing a TGD or
EGD, the universal quantifiers are usually omitted.

Definition 2.1 (Data Exchange Problem): A data
exchange problem associated with a data exchange
setting E is the function problem: find a target instance T
of a given source instance S such that S and T satisfy all
constraints inΣ , provided that such a target instance
exists. •

The target instance T is called a solution of S under the
data exchange setting E. It is showed in [7] that, if there
is no constraint (dependency in the form of EGDs and
TGDs) on target schema, then solutions always exist.

B. Database with Incomplete Information
The most common concept used for modeling

incomplete information in the context of relational
databases is null value. A null value is placed for an
attribute of a relation whose value cannot be represented
by an ordinary constant. The unknown null value
represents that the attributes value is missing or not
known. The nonexistent null value represents that value
of an attribute in a tuple does not exist. Most of the
researchers consider the null values as existent but
unknown in the context of data exchange. Assume that
CONSTANT is the set of all ordinary values (constants).
Let NULL be an infinite set of values, called marked null
values such that CONSTANT∩NULL = ∅. A database
instance with incomplete information is an instance

whose domain is a subset of CONSTANT∪NULL. Usually
source instances are complete relational databases, i.e.,
their domains are subsets of CONSTANT and target
instances are relational databases with incomplete
information.

C. Valuation
A valuation is a partial map :v NULL → CONSTANT.

If T is an instance with incomplete information and v is a
valuation defined on all the nulls in T, then ()Tv be the
instance of the same schema over CONSTANT in which
every null ⊥ present in T is replaced by ()⊥v . Then a
potential infinite object REP ()T can be defined as

REP () (){ }TvT = , (1)

where v is a valuation.

D. Universal Solution
The notation of homomorphism is used to provide the

algebraic specifications of universal solution and core.
Definition 2.2 (Homomorphism): For any two

instances 1T and 2T over any arbitrary schema, where
domains of instances are subsets of CONSTANT∪NULL, a
homomorphism 21: TTh → is defined in [3] as a
mapping function from CONSTANT∪NULL ()1T to
CONSTANT∪NULL ()2T such that:
• For every constant c ∈ CONSTANT, () cch = .
• For every fact ()tP of 1T , there is a fact ()()thP in

2T , where for any ()nxxxt ,...,, 21= , ()th is defined
as () () ()()nxhxhxh ,...,, 21 . •

This definition of homomorphism also implies
mapping from NULL to CONSTANT∪NULL. In order to
obtain the same complete instances as REP ()T , this
definition of homomorphism is slightly modified in [8]
by assuming the mapping from NULL only to NULL and
then a partial valuation is performed.

Definition 2.3 (Universal Solution): A solution T for
a source instance S is called a universal solution for S, if
for every solution T ′ for S, there is homomorphism

TTh ′→: . •
The canonical universal solution of a given source

instance S is denoted as CANSOL ()T . The concept of
universal solution suffers from the fact that there may be
multiple, non-isomorphic universal solutions for a source
instance under a given data exchange setting. Therefore,
the notation of cores of universal solutions is defined in
[4] and it is denoted as CORE(T) for solutions T.

E. Data Exchange Solutions under CWA
In [8], CWA is chosen as the standard assumption for

data exchange and CWA-solutions are considered as the
solutions. The concept of justification is taken into
account in [8, 9] for generating the CWA-solutions. This
can easily be verified that CWA-solutions are universal
solutions in the terminology of [3]. For every CWA-
solution T, the following inclusions hold:

4 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

REP(CORE(T)) ⊆ REP(T) ⊆ REP(CANSOL(T)).

F. Certain Answers and Maybe Answers
The certain answers of a query Q are the tuples that

occur in the intersection of all Q(T) on all the solutions T.
If the collection of all solutions for S under the data
exchange setting E is defined as SOLUTION(E, S), the
certain answers of Q on T with respect to E, denoted
CERTAIN(Q, S), is a set

CERTAIN(Q, S) = (){ ∈∩ TTQ | SOLUTION ()}SE, . (2)

On the other hand, the maybe answers of a query Q
are the tuples that occur in the union of all answers of the
query Q(T) on all the solutions T in SOLUTION(E, S). The
maybe answers of Q on T with respect to E, denoted
MAYBE(Q, S), is a set

MAYBE(Q, S) = (){ ∈∪ TTQ | SOLUTION ()}SE, . (3)

To evaluate Q on an instance T with nulls, the set
(){ ∈RRQ | REP ()}T is normally considered. The lower

and upper approximations are defined respectively as

() (){ ∈∩=∇ RRQTQ | REP ()}T , (4)

() (){ ∈∪=∆ RRQTQ | REP ()}T . (5)

G. Semantics of Query Answering
There are primarily two different ways to obtain the

answers to queries over different solutions: (i) by
computing the certain answers which are true for all
solutions (this semantics used in [2]) and (ii) by
collecting tuples true in some solutions. The combination
of certain and maybe answers at the levels of individual
solutions and all solutions give rise to four reasonable
semantics for query answering. For a source instance S
under a data exchange setting E, these are defined in [8]
as certain answers semantics, potential certain answers
semantics, persistent maybe answers semantics and
maybe answers semantics.

H. Representation of Maybe Answers
In [8], a finite representation of maybe answers
()TQ∆ is defined using a different valuation, termed as

strict valuation, which states 1-to-1 mapping from the set
of nulls in a tuple of a solution T to CONSTANT such that
no value of strict valuation occurs as a constant in T. For
a T and a query Q, a table W is termed as fair
representation of ()TQ∆ , if

{∪ REP () } ()TQWtts ∆=∈| . (6)

Here, REP () (){ }tvTts = , where v stands for strict valuations.

It is further stated in [8] that if ()2211 ,,, ⊥⊥ aa is in a fair

representation of ()TQ∆ , then for every pair ⎟
⎠
⎞⎜

⎝
⎛ ′′

21 , aa of

constants not present in T, the tuple ⎟
⎠
⎞⎜

⎝
⎛ ′′

2211 ,,, aaaa is in

()RQ for some ∈R REP ()T .
It can be verified that such a simple table W is not

enough to hold all representative information of ()TQ∆ .
Again, by applying valuation with any combination of
constants does not always give maybe answers satisfying
the predicate.

III. PROPOSED METHOD

In query answering scenarios, two extreme semantics:
certain answers semantics, CERTAIN ()SQ,∇ and maybe
answers semantics, MAYBE ()SQ,∆ are used. Since both
can be computed over CANSOL(S) [8], query answering
can be done for simple relational queries. Simple positive
SQL queries considered for the experiment are of the
following general format:
SELECT Attribute-list
FROM Relation-list
WHERE Predicate.

Relation-list consists of any n relations iR with
Ni ≤≤1 . Attribute-list has one or more of ()sAij , where

ijA stands for the j-th attribute from iR . The value of j
depends on the arity of the associated relation iR and it
may be different for different relations, i.e., for different
values of i. Predicate, denoted by P consists of

mppp ∧∧∧ L21 , i.e., conjunction of m atomic
expressions of the form p: X op Y, where op is any binary
operator from the set { }≠≤≥<>= ,,,,, . One of the two
operands X and Y of p: X op Y must be an attribute from
any iR . In order to distinguish between projection and
predicate attributes, a superscript is used: s for
projection-attributes (attributes in SELECT clause) and w
for predicate-attributes (attributes in WHERE clause).
The other operand may be either any constant value or
another attribute from any iR . When both operands are of
the form w

ijA , they might be either from the same relation
or two different relations.

A. Computing Certain Answers
When a positive relational query Q is posed over a

schemaτ , the certain answers ()TQ∇ are computed
using the naive evaluation method [6] on the canonical
solution T over τ . The null variables are treated as
constants and general query evaluation is applied to T in
order to get Q(T). Finally, the tuples with nulls are
discarded to get ()TQ∇ .

B. Computing Maybe Answers
The system is initialized with a canonical solution and

a pre-processing metadata (the pre-processing is
explained later). All the attributes stored in the relational
databases are of type text (or varchar). The constants are
inserted in its original form in texts. Each null is

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 5

© 2011 ACADEMY PUBLISHER

represented by distinct text with a common prefix pattern
__ n . Nulls of an attribute domain are distinguished by

numbering (1, 2, ...) and nulls of different attribute
domains are distinguished by naming.

B.1. Pre-processing
In order to reduce the work load during the

computation of maybe answers, pre-processing can be
applied to a canonical solution T. Pre-processing may
include identification of null/constant presences for
attributes, computation of the common attributes in
relations etc. Pre-processing on the attributes uses two
Boolean parameters, hasNull and hasConstant,
confirming whether a specific attribute has null values
and constant values, respectively. Note that, out of the
four combinations for the possible values of these two
parameters, (TRUE, TRUE) is most common in data
exchange. The combination (FALSE, FALSE) is an
impossible one and hence is never used. The attributes
with no nulls, having parameters value (FALSE, TRUE)
and with only nulls with parameters value (TRUE,
FALSE) are vital in data exchange.

B.2. Query Rearrangement
As Qs are simple relational algebra queries, they can

easily be rearranged to obtain better performance in join
operation. In order to reduce the storage complexity
during the join operations, the projection can be pushed
in, i.e., projection is performed before join operation. The
concept of restriction will be useful during the query
rearrangement process.

Definition 3.1 (Restriction): The set of all atomic
expressions rp with mr ≤≤1 is called the restriction
of P to iR , if all the attributes used in the atomic
expressions are only from iR . •

Restriction of P to iR is denoted by REST ()iP R . This
definition can be extended for a relation-pair.

Definition 3.2 (Extended Restriction): The extended
restriction of P to a relation-pair ()ji RR , with ji ≠ is
the set of all atomic expressions rp in P that include
only attributes of ji RR ∪ . •

When a query Q is posed to any n relations of an
instance T with N relations NRRR ,,, 21 L ,
• First projection operation is performed on each of

the n relations using c
il

w
ik

s
ij AAA ∪∪ , where c

ilA are
the attributes in iR that also present in at least one of
the (n – 1) relations (superscript c stands for
common attributes in different relations). Note that
three different j, k, l are used to avoid ambiguity, but
they can also represent the same value(s).

• Then, the restrictions of P to relations and extended
restrictions of P to relation-pairs are identified.
Finally, each of the ∈p Rest ()iP R is applied to iR
using valuation to compute the tuples incrementally
upon which ∈p Rest ()iP R holds.

B.3. Join Operations
The basic idea for the null variables in the join

operation as follows:
• Nulls of different attribute domains are different i.e.,

jlik ≠⊥⊥ for any ji ≠ and any k, l,
• Nulls of the same attribute domain are same i.e.,

kjki=⊥⊥ for any ji ≠ and any fixed k.
Now join operation, referred to as join around nulls, in

short JAN and denoted by ⊗ can be described as (i) to
perform the Cartesian product on the targeted relations,
and (ii) to discard the tuples with different constant
values for the common attribute(s).

B.4. Compact Representation
After performing query rearrangement and, then

applying join operation and extended restrictions of P to
relation-pairs iteratively, a combined relation is obtained.
Finally by performing projection operation using
projection attributes on the combined relation, an
intermediate representation, W (with another table C for
indicating the conditions) of maybe answers ()TQ∆ is
obtained. Finally, ()TQ∆ can be expressed as

{∪ REP () } ()TQWttx ∆=∈| . (7)

Here, REP ()tx is obtained using Eq. (1) by satisfying
conditions in C.

B.5. Putting All Together
First, the query Q is analyzed and decomposed to

get s
ijA , w

ikA , c
ilA of all n query-relations.

Next, for each relation iR of the n query-relations,
where Ni ≤≤1 , do the followings:
• Perform projection operation on iR using

c
il

w
ik

s
ij AAA ∪∪ , where j, k, l are integers.

• Identify the restriction of P to iR , i.e., REST ()iP R
and apply each atomic expression ∈p REST ()iP R
on iR using valuation.

• Identify the extended restrictions of P to relation-
pairs.

A set of n relations is produced with possibly less
arity, where all tuples of a relation are satisfied by
corresponding restriction of that relation. Then any two
of the n relations are combined into a single relation, rc
by applying JAN and each of the atomic expression p of
the restrictions of P to the relation-pair is checked on rc
using valuation. The conditions in p are stored in a table
C. Then, JAN is again applied to rc and another relation
from among n – 2 relations and extended restrictions of a
relation-pair are checked on rc if the relation-pair is a
subset of already combined relations. Finally, table W is
obtained by performing projection operation on the
combined relation using { }s

ijA∪ of all relations nRi ∈ -
query-relations. The combined ()CW , provides compact

6 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

representation of the maybe answers ()TQ∆ . The table C
can only be omitted in special cases.

It is claimed in [8] that, a fair representation of
()TQ∆ can be constructed in polynomial time for a

positive relational algebra query. Initial results using
queries consist of only equality (i.e., =) on attributes with
nulls and others operators (e.g., ≤≥<> ,,,) on attributes
without nulls justify this claim.

But this claim fails in case of queries including
≤≥<> ,,, on attributes with nulls. The main reason of this

failure is that a simple table is not enough to represent
maybe answers in such situations. Hence, the theorem
can be modified as follows:

Theorem 3.1: If a positive relational query Q is
executed on a canonical solution T, an intermediate
representation, W of ()TQ∆ can be constructed in
polynomial time, where Q consists of only equality (=)
on attributes with nulls and others operators (≤≥<> ,,,)
on attributes without nulls. •

In the algorithm, the query rearrangement phase and
joining phase just rearrange and organize the query-
relations in order to improve the query evaluation. In
valuation phase, answers are obtained by assigning
constant to null (if only one of the operands of ‘=’ is
null) and renaming two nulls to a new null variable (if
both operands are null). The main idea behind this
operation is that the infinitely many maybe answers form
equivalence-classes. The implemented algorithm returns
each of these equivalence-classes only once, as nulls are
renamed considering equivalent (i.e., using the
isomorphic property). Based on the work done in this
paper, it can be stated that

Theorem 3.2: If a generalized relational query with
inequalities Q is executed on a canonical solution T, an
intermediate representation, ()CW , of ()TQ∆ can be
constructed in polynomial time. •

IV. EXPERIMENTAL RESULT

The proposed algorithm is implemented in a restricted
setting. It is assumed that all the SQL queries posed to
the system are syntactically correct. The operation
process of the described algorithm is experimented using
different scenarios of data exchange setting. The system
is experimented using simple positive queries as well as
queries with inequalities. Couples of the scenarios are
explained below:

Example 4.1 (People-Person): Consider a canonical
solution is given in Table I. Table II shows the result of
the preprocessing. If the following SQL statement
SELECT person.name, people.name
FROM person, people
WHERE person.name = people.name;
is executed on the canonical solution, output (in Table
III) is produced after applying query rearrangement and
join operation using valuation. Note that new null
variable (i.e., _n_name_3) is generated by renaming nulls
in the last tuple of Table III.

TABLE I

CANONICAL SOLUTION FOR PEOPLE-PERSON

name name
Tanisha Tanisha

_n_name_1

_n_name_2
(a) people (b) person

TABLE II

PREPROCESSING FOR PEOPLE-PERSON

Attribute type relations hasNull hasConstant
name String person,

people
TRUE TRUE

TABLE III

MAYBE ANSWERS FOR PEOPLE-PERSON

people.name person.name
Tanisha Tanisha
Tanisha _n_name_2

_n_name_1 Tanisha
_n_name_3 _n_name_3

Example 4.2 (Tabulation): Consider another simple

canonical solution given in Table IV, which shows marks
obtained by students in a particular course. The result of
the preprocessing is given in Table V. Now “to list the
students who have obtained at least 27 in the first test”,
the SQL expression, Q27 is written as
SELECT marks.roll, marks.test1
FROM marks
WHERE marks.test1 >= 27.

As it is a single relation, query rearrangement only
drop attributes of other than the set {roll, test2} and no
join operation is needed.

TABLE IV
RELATION marks

roll test1 test2 test3
s970227 29 27 29
s970232 _n_test1_1 23 25
s970239 _n_test1_2 _n_test2_1 29

TABLE V

PREPROCESSING FOR TABULATION

Attribute type relations hasNull hasConstant
roll String marks FALSE TRUE
test1 Integer marks TRUE TRUE
test2 Integer marks TRUE TRUE
test3 Integer marks FALSE TRUE

TABLE VI

REPRESENTATION FOR QUERY Q27 ON TABULATION

marks.roll marks.test1
s970227 29
s970232 _wn_test1_1
s970239 _wn_test1_2

(a) W

attribute operator value
test1 >= 27

(b) C

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 7

© 2011 ACADEMY PUBLISHER

It is clear from Table IV that the first tuple has a
constant (i.e., 29) which satisfies the predicate and hence
it is included in the representation. The second and third
tuples have marked null variables (_n_test1_1 and
_n_test1_2 respectively) and applying valuation,
sometimes constants are mapped which satisfy the
predicate (for constant values greater than or equal to 27)
and sometimes does not satisfy (for constant values less
than 27). A simple marked null variable cannot be used
in the representation and for every valuation, correct
answer is not obtained.

Using the concept of adding condition to the
conditional-table [6], a slightly modified null variable,
termed as weighted marked null variable is used instead
in W (see Table VI(a)). A separate table C given in Table
VI(b) is used to add the condition i.e., define the range of
the weighted marked null variable present in the
representation. In table C, each tuple contains a
condition, where value can be either a constant or an
attribute-name. If it is an attribute-name, it means there
has to be a comparison between the values of this
attribute and the attribute in the ‘attribute’ field. When a
weighted marked null variable is encountered in W
during valuation, first the condition is taken from C for
that attribute and then the condition is checked for all
weighted marked null variable. If it is satisfied, the tuple
is included as a maybe answer.

Again, “to view the students who have obtained
anything other than 27 in first test”, the SQL expression
Qn27 is written as
SELECT marks.roll, marks.test1
FROM marks
WHERE marks.test1 <> 27.

The representation of the maybe answers is given in
Table VII. Again, for getting the students who have got
different marks in the first and second tests, the SQL
query expression Qt1nt2 is written as
SELECT marks.roll, marks.test1, marks.test2
FROM marks
WHERE marks.test1 <> marks.test2,
the representation is obtained as given in Table VIII.
Here, ‘test2’ in the value field indicates an operation
between the values of ‘test1’ and ‘test2’. As the nulls are
different on the last tuple of W in Table VIII, the
valuation will be different. It can be remembered that for
an equality (=), a new null is generated by renaming the
nulls (see Example 4.1).

TABLE VII
REPRESENTATION FOR QUERY QN27 ON TABULATION

roll test1
s970232 _wn_test1_1
s970239 _wn_test1_2

(a) W

attribute operator value
test1 ≠ 27

(b) C

Table VIII
REPRESENTATION FOR QUERY QT1NT2 ON TABULATION

roll test1 test2
s970232 _wn_test1_1 23
s970239 _wn_test1_2 _wn_test2_1

(a) W

attribute operator value
test1 ≠ test2

(b) C

Example 4.3 (Recruitment): Consider a canonical
solution is given in Table IX, where the term ‘cid’ means
candidate-id, and the terms ‘exp-salary’ and ‘str-salary’
mean expected-salary and starting-salary respectively.
Table X shows the result of the preprocessing. If the
following SQL statement
SELECT candidate.cid, candidate.age, candidate.post,
candidate.exp-salary
FROM candidate, position
WHERE candidate.age <= 28
AND position.str-salary >= candidate.exp-salary;
is executed on the canonical solution, representation of
the maybe answers is obtained as given in Table XII.

TABLE IX
RELATIONS FOR RECRUITMENT

cid age post exp-salary
1001 25 developer 20000
1002 _n_age_1 _n_post_1 28000
1003 _n_age_2 technician _n_exp-salary_1
1004 29 _n_post_2 _n_exp-salary_2

(a) candidate

post str-salary
analyst 25000

developer 22000
technician 17000

(b) position

TABLE X
PREPROCESSING FOR RECRUITMENT

Attribute type relations hasNull hasConstant
cid Integer candidate FALSE TRUE
age Integer candidate TRUE TRUE
post String candidate,

position
TRUE TRUE

exp-salary Integer candidate TRUE TRUE
str-salary Integer position FALSE TRUE

TABLE XI

REPRESENTATION FOR QUERY ON RECRUITMENT

candidate
.cid

candidate
.age

candidate
.post

candidate
.exp-salary

1001 25 developer 20000
1003 _wn_age_2 technician _wn_exp-salary_1

(a) W

attribute operator value
candidate.age <= 28
position.str-

salary
>= candidate.exp-

salary
(b) C

8 JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011

© 2011 ACADEMY PUBLISHER

Here the condition candidate.age <= 28 is a restriction
to relation candidate. Applying this condition will drop
the last tuple from relation candidate. The first tuple is
added as a certain tuple, while the inner two are maybe
tuples with a condition in table C. The other condition is
an extended restriction to the relation-pair {candidate,
position}. After applying JAN to relations candidate and
position, this condition is applied to the combined
relation. This will also add a condition to table C.

V. PERFORMANCE ANALYSIS

Implemented system is evaluated using a combination
of goal-based evaluation and IT-system as such [2].
Using a combination of criteria-based evaluation and IT-
system as such [2], it is ensured that no invalid criterion is
assumed. The results of each phases like query
rearrangement, join operation etc are compared with the
definitions and each time expected outcomes are
obtained. The proposed algorithm generated a finite
intermediate representation W of this infinite object (with
C), which is defined in Eq. [8].

{∪ REP () } (QWttx ∆=∈| CANSOL ())S . (8)

 The experimental results show that the implemented
algorithm is complete, produces all the maybe answers.
The implementation uses no relational database software-
specific macro; hence it can be implemented on any
system.

VI. FUTURE WORKS

The restricted implementation setting under CWA is
tested with simple positive relational queries and
generalized relational queries with inequalities. This can
be extended for generalized queries with joins, e.g.,
queries on self-joined relations. More generalized data
exchange setting with target dependencies can also be
used to get all possible answers.

VII. CONCLUSION

Maybe answers play a vital role in the study of data
exchange. The maybe answers semantics provide an
upper approximation for the answers to the queries. In
this paper, the algorithm proposed in [11] is modified and
implemented to compute the maybe answers
incrementally under CWA. The results show that the
algorithm generates all possible answers for generalized
positive queries as well as queries with inequalities.

ACKNOWLEDGEMENT

I am grateful to Leonid Libkin for his initial concept
and guideline. I also thank David Kensche for his helpful
suggestions.

REFERENCES

[1] S. Abiteboul, P. Kanellakis and G. Grahne. On the
Representation and Querying of Sets of Possible
Worlds. Theoretical Computer Science 78 (1991),
pp. 159-187.

[2] S. Cronholm and G. Goldkuhl. Strategies for
Information Systems Evaluation - Six Generic
Types. Electronic Journal of Information Systems
Evaluation Volume 6 Issue 2 (2003), pp.65-74.

[3] R. Fagin, P.G. Kolaitis, R. Miller, L. Popa. Data
Exchange: Semantics and Query Answering. In
ICDT 2003, pp. 207-224.

[4] R. Fagin, P.G. Kolaitis, L. Popa. Data Exchange:
getting to the Core. PODS 2003, pp. 90-101.

[5] G. Gottolob and R. Zicari. Closed World Databases
Opened Through Null Values. VLDB 1988, pp. 50-
61.

[6] T. Imielinski and W. Lipski. Incomplete Information
in Relational Databases. Journal of the Association
for Computing Machinery, Vol. 31, No.4, October
1984, pp. 761-791.

[7] P.G. Kolaitis. Schema Mappings, Data Exchange
and Metadata Management. PODS 2005.

[8] L. Libkin. Data Exchange and Incomplete
Information. PODS 2006. June 26-28, 2006.

[9] L. Libkin and C. Sirangelo. Data Exchange and
Schema Mappings in Open and Closed Worlds.
ACM SIGMOD/PODS 2008. June 9-12, 2008.

[10] W. Lipski. On Semantic Issues Connected with
Incomplete Information in Database. ACM Trans.
Database Systems 4 (1979), pp. 262-296.

[11] S. M. Masud Karim, Algorithm for Computing
Maybe Answers in Data Exchange, In Proc. of
International Conference on Computer and
Information Technology (ICCIT) 2009, 21-23
December 2009, Dhaka, Bangladesh. In Press.

JOURNAL OF SOFTWARE, VOL. 6, NO. 1, JANUARY 2011 9

© 2011 ACADEMY PUBLISHER

