
Applying Reinforcement Learning for the AI in a
Tank-Battle Game

Yung-Ping Fang
Department of Information Management

National University of Kaohsiung,
No. 700, Kaohsiung University Road, Kaohsiung, 811 Taiwan

sangis228@gmail.com

I-Hsien Ting
 Department of Information Management

National University of Kaohsiung,
No. 700, Kaohsiung University Road, Kaohsiung, 811 Taiwan

iting@nuk.edu.tw
TEL:+886-7-5919751

Abstract—Reinforcement learning is an unsupervised
machine learning method in the field of Artificial
Intelligence and offers high performance in simulating the
thinking ability of a human. However, it requires a trial-
and-error process to achieve this goal. In the research field
of game AIs, it is a good approach that can give the non-
player-characters (NPCs) in digital games more human-like
qualities. In this paper, we try to build a Tank-battle
computer game and use the methodology of reinforcement
learning for the NPCs (the tanks). The goal of this paper is
to make this game become more interesting due to the
enhanced interactions with the more intelligent NPCs.

Index Terms—artificial intelligence, reinforcement learning

I. INTRODUCTION

Artificial Intelligence plays an important role in
modern computer games, as a well-designed AI allows
games to become more entertaining and challenging.
Therefore, how to give Non-Player-Characters (NPCs)
more human-like thinking and abilities and also give
players more fun from the interaction with NPCs, are
very important considerations in the area of game AI.

 Currently, there are a range of different types of
digital games (shown in TABLE 1[3] below).

Although there are so many types of games, the
moving path of NPCs is usually a critical factor. If we
want the NPCs to behave like human beings, the first
thing is that they should move to the meeting point.
Therefore, it is of interest to find the best moving path
and policy for NPCs. In this paper, the algorithm of
reinforcement learning will be used as the main technique
to solve the above problem.

Reinforcement Learning is one of the unsupervised
machine learning methods in the area of artificial
intelligence. The methodology has been developed based
on the concept of “trial-and-error”, and the result of each
“trial-and-error” action will be saved as a “delay reward”.
The ultimate goal of reinforcement learning is to give the
machines human-like thinking and abilities.

TABLE I. The categories of digital games

Genre Examples
Classic board Chess, Checkers
Adventure Bonji’s Adventures in Calabria
Team Sports RoboCup Soccer
Real-time Individual Bilestoad ,Space Invaders
Real-time God SimCity
Discrete Strategy Freeciv
Real-time Strategy Wargus

Although the methodology of reinforcement learning

can provide the AI agents with a good ability to act as
human beings, there are few applications that have
applied it in the computer game context. In this paper, we
attempt to add reinforcement learning to the NPCs of a
tank-battle game. The main design of the game AI is only
a simple random selection meant to select all possible
paths in the game space. Players can always hide in a
corner, waiting for the passing of the NPCs. The players
can then attack and defeat NPCs accordingly.

Therefore, the purpose of this paper is to improve the
wisdom of the NPCs when they are walking in the game.
The NPCs will learn which places are dangerous and
which may hide player characters through reinforcement
learning. By doing this, the NPCs will not be easily
defeated by silly maneuvers and the game can be a better
experience.

However, the major problem of reinforcement learning
is it needs a lot of time for the AI learn the best solution.
In order to deal with this problem, the concept of fuzzy
logic will be used in this paper to improve the capability
for reinforcement learning.

The paper is organized as follows. In Section 2, the
related works and literature regarding reinforcement
learning and game AI will be reviewed. In Section 3, we
will describe the research methodology and process of the
paper with the experimental process and framework
discussed in section 4. In Section 5, the results of the
experiment and related analyses will be included. This

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1327

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.12.1327-1333

paper is concluded in section 6, and suggestions of future
researches also provided.

II. RELATED WORKS

Game AI is one of the most important AI issues, for
the following two reasons: the first is that AI enhanced
computer games are more entertaining for people than
traditional games are and thus the players will be
attracted to, and play the games, continuously; the second
reason is that the solutions of the game AI are represented
as functions or algorithms to resolve many AI problems
and . therefore, if good answers can be discovered by
game AI, they can help us to find good methods for
solving questions in the real world [4].

In previous studies, most game AIs were designed to
focus on board games (such as Checkers, Poker and
Puzzles, etc.). However, the subject of applying game AI
to different types of digital games has been discussed in
more and more recent studies [3].

TABLE II presents some current related research
covering digital games, although different types of
machine learning methodology have been used in these
studies. However, there are still some unresolved
problems in these studies and we expected they could
perhaps be solved by using the algorithm of
reinforcement learning.

TABLE II. Related game AI researches

Method Research Author

Case-Based
Reasoning

Learning to Win: Case-
Based Plan Selection in a
Real-Time Strategy Game

David W. Aha
et al.

Genetic
Algorithm

Improving Adaptive Game
AI With Evolutionary

Learning

Marc Ponsen
and Pieter
Spronck

Neural
Network

Evolving Game NPCs
Based on Concurrent

Evolutionary
Neural Networks

XiangHua Jin, et
al.

Reinforcement learning is a machine learning

methodology typically formulated as Markov Decision
Processes [9]. In the previous research three different
types of approaches have been used in reinforcement
learning: LMS (Least Mean Squares), ADP (Adaptive
Dynamic Programming) and TD (Temporal Difference
Learning) [8].

LMS is designed to calculate the distance between the
final state and all states (or for some cases, compute the
probability of achieving the final state). Then, it will
refresh all values during every step. This method has
some drawbacks, e.g. slow convergence, so it needs a
large amount of time to find the best result [9][11].

ADP is a method that uses a dynamic programming
based skill. It uses a policy iteration algorithm to
calculate a value, and then an estimated model will be

created to fit. Furthermore, since the model changes with
each observation this method will converge faster than
when using LMS; however it still has some shortcomings
in applying it to a large state space [11].

TD, just like the name, is intended to find the
difference between one state and a later state. It means
that we will change the utility value to adapt to a later
state’s expected value. By refreshing each of the values
and results, it will then find the best policy to achieve the
goal [9]. In reinforcement learning, the TD method would
possibly be the best method so far. The TD method is
based on the following formula: (*) Uπ means the utility
of state under the policy . s means the current state, and
s’ means the next state. α is a learning rate in the
formulation [11].

All we have talked about above though are cases in a
known environment, so, they are not suitable methods for
applying to an unknown environment. Because most real
environments are unknown environments, Q-Learning [2]
therefore would be a good solution to solve the problems
faced in an unknown environment. For the ADP method,
Q-Learning means to compute the Q-value (a value that
varies according to the actions and states). The Q-value is
determined by translating the original model to a new
model through considering the expected best value in all
actions space. The formula for the Q-learning based TD
method is Eq. (1):

) s)Q(a,-) s',γmaxQ(a'+α(R(s)+) sQ(a,←s)Q(a, (1)

The difference between Q-learning and the

original formulation is in the use of th o of Q-value and
expecting maximum value from experience [8]. Related
applications of applying Q-learning in game AI have
been developed for a long period of time. However, the
major type of the applications are board games [4], and
there are few cases where it has been applied to complex
computer games, such as real-time games [6][12][13].
Thus, our purpose in this paper is to use these methods as
applied to a tank-battle like computer game, and make
implementations to demonstrate the research results.
 There is another popular algorithm of
reinforcement learning known as the SARSA (State-
Action-Reward-State-Action) algorithm. The formula for
the SARSA algorithm is Eq. (2)

) s)Q(a,-) s',γQ(a'+α(R(s)+) sQ(a,←s)Q(a, . (2)

The major difference between the Q-Learning and
SARSA algorithms is that the SARSA algorithm is a on-
policy algorithm, and the Q-Learning is a off-policy
algorithm. Thus, the SARSA algorithm is unnecessary to
calculate the maximum Q-value of the next state.

The process of reinforcement learning is shown in Fig.
1. At first, the agent will explore the environment and
then carry out a rational action. After the action, every
action will affect the environment, and related reward
will be generated to judge this action. This process forms
a reinforcement learning circle. After performing many

1328 JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

reinforcement learning circles, the agent will learn the
best policy in handling the unknown environment.

 Figure 1. Reinforcement learning

The disadvantage of reinforcement learning is that the
algorithm needs to try many times to get enough rewards
for deciding suitable policy. Currently, some researchers
have devoted themselves to dealing with this problem,
such as by means of hierarchical reinforcement learning
(HRL) [7]. In this paper, we will try to apply fuzzy logic
in reinforcement learning to solve this problem. Fuzzy
logic emerged as a consequence of 1965’s fuzzy set
theory by Zadeh, L.[5]. It has being applied to many
fields of research, such as computer science, financial
engineering, management, control, etc.

III. RESEARCH METHODOLOGY

The pilot study of this paper is shown in Fig. 2. In this
paper, we firstly need to build a game as the experimental
environment. Therefore, a game editor engine will be
used as a base to make a tank-battle game. Then, the
game AI that uses reinforcement learning algorithm will
be applied to the original NPCs (tanks) in the game. In
the paper, two experiments will be carried out based on
different experimental methods; one where the NPC tank
moves from point to point, and another where the NPC
tank moves in different ways. After the experiments, the
results will be recorded and discussed. In the end, we
have some conclusions about the experiments and the
reinforcement learning method.

Fig. 3 shows the research methodology of this paper
and the meaning of each component of the figure in
explained below.

(1) Tank game: we use a game engine to build a tank

game.
(2) Reinforcement learning: Applying the algorithm of

reinforcement learning to NPC tanks.
(3) Fuzzy Logic: The concepts of fuzzy logic and fuzzy

sets will be used to improve the performance of
reinforcement learning.

(4) Experiment and Analysis: According to the results
found, we can then adjust the value of the
parameters to find the best fuzzy function.

Figure 2 .pilot study

 Figure 2. Pilot study

Figure 3. The Research methodology

IV. EXPERIMENT DESIGN

In order to implement the reinforcement learning
algorithm based game AI, the world editor of Warcraft III
[1] has been selected to create a game to simulate a tank-
battle game (see Fig. 4). At first, the whole map will be
divided into areas from left to right. The NPC tank will
move randomly towards the left or right side of the map.

Figure 4. The game screenshot

Game Editor
Engine

Tank Battle
Game

Add Reinforcement Learning in
our game

Tank moves from
point to point

Tank moves in
different ways

Experiment
and obtain results to analyze

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1329

© 2010 ACADEMY PUBLISHER

In the game, the player will fire at several fixed areas
(see Fig. 5). Once the tank is hit by the player in a
particular area, the probability of moving to the area will
be reduced next time. The formula is Eq. (4).

f(x)=(10-A)B (4)
Where f(x) is the probability of moving, A is the

number of times the tank died, and B is a random value.
The tank will not move to an area, if it has been killed
more than 10 times there. However, this experiment only
deals with the linear situation, and it should be a two-
dimensional space in a true game map. Moreover, it is not
true reinforcement learning as it only considers previous
experiences and has not gone on to make an
”Exploration” process.

Figure 5. The attacking screenshot of the player

Therefore, we will make some revisions to the game,
by dividing the map into a two-dimensional 5x3 space
(see Fig. 6). In this map, the tank will start from a
beginning point and move to the ending point (see Fig.
7). When the tank has been attacked, the result will be
saved as a negative reward. The probability of moving to
this area is updated by using the TD method. The formula
for this is Eq. (3):

f(xi)=f(xi)+0.2(R(xi)+f(xj)-f(xi)) (3)

In this formula, f(xi) is the probability to move

previously and f(xj) is the probability to move now. R(x)
is the reward, and the parameter 0.2 is our learning
parameter. After approximately 15 rounds, this tank will
not move to the area where it will be attacked.

Figure 6. A 5x3 map and the attack point

Figure 7. The ending points

However, the result still does not fulfill the “Expand”

characteristic of reinforcement learning. A reinforcement
learning based AI should unceasingly attempt the
exploration of different areas, even if an area had been
attacked, as a player will not only attack the same areas,
they may also change their attack target to other areas. In
this situation, the previous dangerous area will become a
safe one. Thus, we need the ”positive” reward to
reconsider the previous dangerous area to improve the
game AI.

In the next experiment, we expect to create a game like
Fig. 8. The players can shoot NPC tanks and NPC tanks
try to move to some goal points. Furthermore, there are
some walls that can the NPC can use to defend itself from
attack by the players.

In this experiment, the NPC only moves from one area
to another. In fact, the moving path of a tank should be
considered as one path, but not only from one area to
another. It is therefore necessary to create a table to
record all possible paths for a map. When a tank has been
shooting down in this path, the path will be given a
negative reward. Simultaneously, other paths will be
given a positive reward. TABLE III shows an example of
how 6 possible paths on a 3x3 map are recorded, and how
the detailed steps of each path are recorded as well.

Figure 8. The concept graph of the tank game

1330 JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

TABLE III. The possible ways

 Step 1 Step 2 Step 3 Step 4
policy a left left down down
policy b left down Left down
policy c left down down left
policy d down left Left down
policy e down left down left
policy f down down Left left

Figure 9. screenshot of experiment 3

In Fig. 9, the flash technique is used to create a

game for tank-battle game simulation. The game is
designed as a 3*3 map (see Fig. 9). There is a starting
point in the upper right and ending point in the lower left
of the map. In this game, the tank can only move left or
down. So there are six policies for reinforcement learning
in this game (see table III). In this game, some bombs
will be located in the map and will try to attack the tank.
If a tank is hit by any one of the bombs, the tank will be
destroyed and it is the end of this turn of the experiment.

The reward function of this experiment is shown in
TABLE IV. The values of reward function are set by our
previous work: try-error to find those appropriate values.

TABLE IV. The reward function of the reinforcement
learning algorithm

State s R(s)

Tank hits bomb，this policy: -10

Tank hits bomb，another policy: +5

Tank successful moves to end point
this policy:

+20

Tank successful moves to end point
another policy:

-10

The experiment can be divided into two different

parts. The first one is fixed reward, and the other is fuzzy
reward. In the second part of the experiment, we use
fuzzy reward “x*R(s)” to substitute for the original
reward “R(s)”. The variable x stands for the degree of
danger. It is calculated by the fuzzy function M (s) (see
Fig. 10 and Eq. (5).).

 (5)

Figure 10. The fuzzy function

 We use a fuzzy function to represent the degree of
hazard in a ‘danger value’ of Xi. This value of Xi begins
from 0. When NPC tank hits a bomb, the danger variable
of the policy is defined as Xi=Xi+1. If tanks hits a bomb
twice in a row, then the variable will be set as Xi=Xi+2.
Furthermore, if the tank hits a bomb three times in a row,
then the variable is Xi=Xi+3 and the maximum value is
+3. The meaning of this function is that if the tank hits
the bomb under the same policy, it indicates that this
policy is very dangerous and the danger variable
accumulation speed is higher. On the other hand, the
other j (j≠i) policy the danger variables are Xj=Xj-1
which have an equal accumulation effect, and the
maximum value is -3.

TABLE V shows an example of the fuzzy based
reinforcement learning function. In the example, the tank
hits the bomb in 1, 2, 3, 6, 8, 9 rounds.

TABLE V. An example of the fuzzy based reinforcement
learning function

Round 1 2 3 4 5 6 7 8 9
Result + + + - - + - + +

Change
value

1 2 3 2 0 1 0 1 2

Total X 1 3 6 4 4 5 5 6 8

V. EXPERIMENT RESULT

The first experiment results for this paper are shown in
figure 11. The y-axis of the table is number of steps that
the tank moved, and the x-axis is the number of
simulation times. For example, in the first simulation, the
NPC tank was attacked after four steps moving but in the
second the tank was attacked after only one step moving.

In the figure, when the learning factor becomes 0
(about 10 times), the tank will learn how to survive and it
is difficult to beat. The result indicates that the tank

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1331

© 2010 ACADEMY PUBLISHER

already has some learning ability. However, in the
experiment, the tank is only moving by one path from the
right or left side of the map, it is therefore necessary to
consider the second experiment in this paper.

Figure 11. The result of experiment 1

The result of the second experiment is shown in
figure 12. In this experiment, the tank was moving from a
fixed starting point, and would then move randomly left,
down or up until it was attacked or reached the ending
point. In this experiment, we ran the simulation about
twenty times. The blue points in the figure mean that the
tank has been attacked before achieving the ending point.
The red points mean that the tank achieved the ending
point and survived. The results show that more times the
simulation is run, the higher probability that the tank can
move to the ending point. Furthermore, the more times
the simulation is run, the more steps the tank can move
before it is attacked or achieved the ending point.

Figure 12. The result of experiment 2

The results of the two parts of experiment 3 are
shown in TABLE VI. There are ten different times of the
experiment (ID1~10). E1 is the experiment with a fixed
reward, and E2 is the experiment with a fuzzy reward.
The value in the table is total turns when there is only one
policy. In figure 13, the y-axis is the number of turns
when there is only one policy, and the x-axis is the total
number of simulation times. It is shown that the fuzzy
reward can reduce the execution time and the
performance of the reinforcement learning with fuzzy
reward can be clearly improved.

TABLE VI. The performance evaluation

ID E1 E2

1 58 29
2 52 28

3 54 24

4 59 25

5 55 26

6 52 32

7 56 27
8 54 28
9 47 30
10 59 23
mean 54.6 25.6667

success rate 0.56 0.67

Figure 13. The result of experiment 3

VI. CONCLUSIONS & FUTURE RESEARCH

In this paper, the reinforcement learning method has
been applied with the NPCs in order to improve a game
AI. This method will allow the NPCs to become more
human, and players can have more fun through playing
the game. The experiment was divided into two parts: in
the first part the tank was moving from point to point; but
the tank can move by different ways in the second part.

In game AI, the reinforcement learning method doesn’t
show better performance than other machine learning
methods. However, it indicates a good ability in acting
like a real human. In other words, the reinforcement
learning isn’t intended to produce a perfect AI that makes
no any mistakes, but instead tries to be a reasonable AI
which can act like a human. Under this principle,
reinforcement learning presents a great performance in
the area of game AI.

We had successfully used fuzzy logic in the
reinforcement learning by changing fixed reward to fuzzy

1332 JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010

© 2010 ACADEMY PUBLISHER

reward. The performance evaluation of the paper shows
that the execution time can be reduced and the
performance of reinforcement learning can be improved.

 In the future, we expect to find some better ways to
deal with this problem. Furthermore, there are some
research issues we will focus in the future. For example,
reinforcement learning for multi-agents (NPCs) games or
real-time games which are also big challenges for game
AI.

REFERENCES
[1] Blizzard, “world editor of warcraft III”, [Available at

http://classic.battle.net/war3/faq/worldeditor.shtml](Access
date: 20 May 2009).

[2] C. J. C. H. Watkins, “Learning from Delayed Rewards.”,
PhD thesis, King’s College, Cambridge, 1989.

[3] D. W. Aha, M. Molineaux and M. Ponsen, “Learning to
Win: Case-Based Plan Selection in a Real-Time Strategy
Game”, In Proceedings of International Conference on
Case-Based Reasoning, Chicago, USA , 23-26 August
2005, pp. 5-20.

[4] I. Ghory, “Reinforcement learning in board games.”,
Technical Report of Department of CS , University of
Bristol, 2004

[5] L. Zadeh, "Fuzzy sets", Information and Control, 8: 338-
353, 1965

[6] M. McPartland and M. Gallagher, “Creating a Multi-
Purpose First Person Shooter Bot with Reinforcement
Learning” In Proceedings of IEEE Computational
Intelligence and Games, Perth, Australia, 15 - 18
December 2008, pp. 143-150.

[7] M. Ponson, P. Spronck and K. Tuyls, “Hierarchical
Reinforcement Learning with Deictic.” In Proceedings of
the BNAIC, 2006

[8] P. Melenchuk, E. Wong, W. Yuen, K. Wong, “CPSC 533
Reinforcement Learning”, [Available at http://
pages.cpsc.ucalgary.ca/~jacob/Courses/Winter2000/CPSC
533/Pages/CPSC-533-CourseOutline.html](Access date:
15 May 2009).

[9] R. Sutton and A. Barto, Reinforcement learning :an
introduction, Mass, Cambridge, 1988

[10] S. Epstein, “Games & Puzzles”, [Available at
http://www.aaai.org/AITopics/pmwiki/pmwiki.php/AITopi
cs/Games] (Access date: 21 May 2009).

[11] S. Russell and P. Norvig, Artificial Intelligence A Modern
Approach, Prentice Hall, New Jersey, 2003.

[12] S. Wender and I. Watson, “Using Reinforcement Learning
for City Site Selection in the Turn-Based Strategy Game
Civilization IV”, In Proceedings of IEEE Computational
Intelligence and Games, Perth, Australia , 15 – 18
December 2008, pp. 372-377.

[13] Y. Björnsson, V. Hafsteinsson, A. Jóhannsson and E.
Jónsson, “Efficient Use of Reinforcerment Learning in A
Computer Game” In Proceedings of International Journal
of Intelligent Games & Simulation, 2008.

JOURNAL OF SOFTWARE, VOL. 5, NO. 12, DECEMBER 2010 1333

© 2010 ACADEMY PUBLISHER

