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Abstract—For the task of classification, the quality of rule 
set is usually evaluated as a whole rather than evaluating 
the quality of a single rule. The present investigation 
proposes a hybrid classifier named FDF. By redefining 
information gain from the general sense of Information 
theory, rule sets are built and combined to be decision forest 
by down-top learning strategy. The finial decision tree nodes 
contain univariate splits as regular decision trees, but the 
leaves contain Naive Bayes. Empirical studies on a set of 
natural domains show that FDF has clear advantages with 
respect to the probabilistic performance. 

 
Index Terms—rule set, decision forest, Information 

theory 

I.  INTRODUCTION 

Classification is a fundamental issue in machine 
learning and data mining. Research in the rule induction 
field has been carried out for more than 30 years and has 
certainly produced a large number of algorithms. One of 
the most attractive ways to describe classification process 
is to use logical rules, which can be easily extracted from 
decision trees. However, these are usually obtained from 
the combination of a basic rule induction algorithm with a 
new evaluation function. In the present study, decision 
tree as rule induction extracts an initial rule set for any 
classification problem. One of the biggest constraints in 
using decision tree for data mining is the problem of 
scaling up the methods to handle the huge size of the data 
sets and their high dimensionality [1]. 

On the other hand, a fully trained tree is often pruned 
to improve the generalization accuracy and help to 
overcome the problem of overfitting [2]. Researchers 
tried to integrate all possible situations into a single tree. 
But decision tree structures can vary substantially when a 
small number of training samples are added or deleted 
from the training set. This instability affects the 
classification decisions made by the trees [3].  

The hybrid approach for classification involves 
specific levels of knowledge where the hierarchy is 
defined in terms of concept granularity and specific 
interfaces [4]. It has been shown to be fundamental for 
efficient and intelligent behavior and it should be applied 
to learning and classification tasks as well. The concept 
of reductionism is a common practice in the development 

of intelligent systems, to design solutions to complex 
problems through a stepwise decomposition of the task 
into successive modules. In the context of classification, 
hybrid architectures, consisting of connectionist networks 
and symbolic methods, would thus combine the merits of 
“holistic template matching” with those of “discrete” 
methods using numerical and symbolic values, 
respectively [5]. 

Naive Bayes is one of the most widely used classifier 
in interactive applications due to its computational 
efficiency, competitive accuracy, direct theoretical base, 
and its ability to integrate the prior information with data 
sample information [6]. Although its conditional 
independence assumption is rarely valid in practical 
learning problems, experiments on real world data have 
repeatedly shown it to be competitive with much more 
sophisticated induction algorithms [7, 8]. Since the leaves 
of decision tree consist of very few samples, we suppose 
that the distribution of those samples approximately 
satisfies the conditional independence assumption. If the 
leaves are replaced by Naive Bayes, the advantages of 
both decision tree (i.e., segmentation) and Naive Bayes 
(evidence accumulation from multiple attributes) can be 
utilized simultaneously. 

 In this paper, we introduce an innovative hybrid 
model named Flexible Decision Forest (FDF) to explore 
this problem. The general information gain, which is 
defined as a scoring metric, can be used to construct 
logical rules and that will be finally combined to be 
several tree structures called decision forest. Thus the 
learning strategy is down-top rather than top-down.  

The rest of this paper is organized as follows: Section 
II starts by giving the necessary background concerning 
the classification technique, and then the definition of 
information gain from the general sense of Information 
theory. Section III gives examples to illustrate the down-
top building strategy and Naive Bayes leaf node. Section 
IV presents and analyzes experimental results carried out 
on UCI machine learning repository. Section V wraps up 
the discussion. 

II.  CLASSIFIER AND INFORMATION THEORY 

Classification represents an important task in machine 
learning and data mining applications. Researchers 
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commonly induce a classifier from a set of historical 
examples (training set) with known class values and then 
use the induced classifier to predict the class value (the 
category) of new objects given the values of their 
attributes (features). Given the training set S consisting of 
n predictive attributes {X1, …, Xn} and class label C. The 
classifier learned from set S should describe the 
relationship between X1, …, Xn and C: 

Classifier: X1, …, Xn→C 

Most classification algorithms tried to represent all 
information that training set S contains, but neglect the 
relationship between attribute values of test samples since 
they have no class label and thus considered to be 
incomplete. The class label of test sample t={x1, …, xn} 
(where lower-case letters denote specific values taken by 
corresponding attributes. for sample, xi represents the 
event that Xi=xi.) is determined by the classifier induced. 
If the information of t is implicated in set S, the 
classification result may be right at best; but if not, the 
result may be wrong very likely.   

Classical Information theory based decision tree 
algorithms can roughly describe the correlation that 
training set implicates [2]. It requires each classification 
process should start from the root node. But is it 
appropriate for all test samples? Most classification 
algorithms (including decision tree) learn from training 
set and build just one model, which is believed to match 
all possible situations. We think otherwise. The nature of 
classification problem should be: mine fully the 
relationship between attribute values of t based on the 
information provided by training set S and create a 
specific subclassifier to determine the corresponding 
class label. That is:  

SubClassifier: x1, …, xn→C 

The impact caused by other attribute values that not 
appear in t should be minimized. In other words, one 
should, first, determine the source(s) of uncertainty 
ingrained in our mathematical model, and then use the 
suitable measure of uncertainty relatively to each source. 
In this paper, we build one submodel for each test sample. 
And for this, we first redefine one basic concept of 
Information theory, Shannon Information gain. 

Researchers are accustomed to applying Information 
theory to create classifier. Information theory, sometimes 
referred to as classical Information theory as opposed to 
Algorithmic Information theory, provides a mathematical 
model for communication. It is the theoretical foundation 
of modern digital communication and was invented in the 
1940's by Claude E. Shannon. Though Shannon was 
principally concerned with the problem of electronic 
communications, the theory has much broader 
applicability. Entropy of Information theory characterizes 
the (im)purity of an arbitrary collection of samples. 

2( ) ( ) log ( )
c C

Entropy S P c P c
∈

= −∑  

Definition 1. Information gain Gain(S, X) of an 
attribute X, relative to a collection of samples S, is 
defined as 

( )

| |( , ) ( ) ( )
| |

x
x

x Values X

SGain S X Entropy S Entropy S
S∈

= − ∑  (1) 

where Values(X) is the set of all possible values for 
attribute X, and Sx is the subset of S for which attribute X 
has value x. The first term in (1) is just the entropy of the 
original collection S and the second term is the expected 
value of the entropy after S is partitioned using attribute X.  

Note the expected entropy described by this second 
term is simply the sum of the entropies of each subset Sx, 
weighted by the fraction of samples | Sx |/|S| that belong to 
Sx. Gain(S, X) measures the expected reduction in entropy 
caused by knowing all the values of attribute X. That is 
why classical Information theory based classifier has only 
one model. Gain(S, X) is the expected reduction in 
entropy caused by partitioning the samples according to X. 
It can be represented as: 

( )

| |( , ) ( ( ) ( ))
| |

x
x
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SGain S X Entropy S Entropy S
S∈
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According to the discussion described above, we only 
care about the attribute values that appear in sample t. 
From the general sense of Information theory we defined 
general information gain as follows. 

Definition 2. General information gain GenGain (S, x) 
of an attribute value x, relative to a collection of samples 
S, is defined as  

| |( , ) ( ( ) ( ))
| |

x
x

SGenGain S x Entropy S Entropy S
S

= −   (3) 

Obviously, when attribute X takes different values, 
GenGain (S, x) will correspondingly take different values. 
Thus a dynamic subclassifier that can better match 
current sample will be created. Each sample corresponds 
to one subclassifier, but each subclassifier may 
correspond to several samples. 

III.  FLEXIBLE DECISION FOREST 

A.  Down-top Building Strategy 
A standard tree induced by applying top-down strategy 

consists of a number of branches, one root, a number of 
nodes and a number of leaves. Each branch corresponds 
to one classification rule, which is a chain of nodes from 
root to a leaf; and each node involves one attribute.  

In contrast, FDF proposed here applies a rather 
contrary building strategy: down-top. The induction 
process is illustrated as follows: in the building phase, the 
training set is recursively partitioned by discrete attribute 
values which maximize general information gain. Then 
for every partition, a new node is added to the branch. For 
a sample t={x1, …, xn} in training set S, suppose attribute 
value x1 is selected for further partitioning the set into 
subset T1 which satisfies X1= x1. New node for T1 is 
created and added to the branch as children of the node 
for S. And partition T1 is then recursively partitioned. If 
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Figure 1.  Decision tree structure corresponding to S. 
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Figure 2.  Decision forest structure corresponding to S. 
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Figure 3.  Example of Naïve Bayes structure. 

in partition T1 all the records have identical class label 
then T1 will not partitioned, and the leaf corresponding to 
it is labelled with the corresponding class. At last, each 
training sample corresponds to a specific branch or 
classification rule. If several rules are the same, they can 
express the same part of the structural information 
present in the data. Then combine different branches with 
the same root node to build a complete decision tree. As 
Table I shows, let S be the data set composed of eight 
samples {S1, S2, …, S8} which are characterized by two 
attributes {A, B}. The first seven samples constitute 
training set and S8 the test set.  

The decision tree and FDF algorithm will get the 
structures as Fig.1 and Fig.2 show, respectively.  

Take S6 for an example, since GenGain(S,a1)> 
GenGain(S,b2), attribute value a1 is selected to further 
partition S into subset T1 which satisfies A=a1. Then node 
A=a1 is created and added to the branch as one root node 
for S. Consequently attribute value b2 is selected to 
partition T1 into subset T2 which satisfies B=b2. Since all 
the records have identical class label c2, partitioning stops 

and the classification rule for S6 is created. 

B.  Naive Bayes Leaf  Node 
Naive Bayes provides a simple and effective approach 

to classifier learning. It comes originally from work in 
pattern recognition and is based on one assumption that 
given class label C predictive attributes {X1, …, Xn} are 
conditionally independent. Its structure can be depicted as 
Fig.3 shows. 

However its attribute independence assumption rarely 
holds in real world problems. Many researchers try to 
adjust data distribution to approximate the independence 
assumption and then improve upon the prediction 
accuracy [9]. A straightforward approach to overcome the 
limitation of Naive Bayes is to combine its structure with 
other data mining models to represent explicitly the 
dependencies among attributes.  

To classify a new sample, having only values of all its 
attributes, decision tree algorithms start with the root of 
the constructed tree and follow the path corresponding to 
the observed value of the attribute in the interior node of 
the tree. This process is continued until a leaf is 
encountered. Finally, we use the associated label to 
obtain the predicted class value of the sample at hand. 
But decision tree constructed from a training set usually 
does not retain its accuracy over the whole sample space 
due to over-training or over-fitting. Therefore, a fully 
grown decision tree needs to be pruned by removing the 
less reliable branches to obtain better classification 
performance over the whole sample space even though it 
may have a higher error over the training set. By contrast, 
the over-training problem does not exist for FDF 
algorithm. If an unlabeled sample does not match any 
decision tree, by calculating GenGain(S, x) a new branch 
for a certain decision tree can be created. This branch is 
different from existing branches but can best match 
current sample.  

The Information theory based technique improves the 
flexibility and scalability of decision tree algorithm 
greatly. As to test sample S8, it match both subtrees. But 
by computing general information gain, the class label 
should be c1 since GenGain(S,b1)> GenGain(S, a2).  And 
from Table I we can get the same result since there are 
two samples that satisfy B=b1 and have class label c1, but 
only one sample satisfies A=a2 and has class label c2. So 
c1 seems much more reasonable. But from Fig.1, classical 
decision tree algorithm will get another result, c2. The 
learning procedure of the FDF algorithm is described as 
follows: 

--------------------------------------------------- 
Step 1: Calculate Entropy(C) to identify the class in 

the training set S. 

TABLE I.   
EXAMPLE OF DATA SET S 

Sample A B C 

S1 a0 b0 c1 

S2 a0 b1 c1 

S3 a0 b2 c1 

S4 a1 b0 c2 

S5 a1 b1 c1 

S6 a1 b2 c2 

S7 a2 b0 c2 

S8 a2 b1 ? 
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Figure 4.  The Pcost ratio of FDF and Random Forest 

Step 2: Given a training sample si with attribute values 
{x1,…, xn}, calculate general information gain GenGain(S, 
xj) (1≤ j ≤ n) in turn. 

Step 3: Generate the root node attribute Xj which 
maximize GenGain(S, xj) (1≤j≤n). Verify if the generated 
node satisfies the stopping criteria. 

 (a) If yes, exit and the learning procedure stops;  
 (b) Else, node Xj is created and added to the branch as 

one root node for S. 
Step 4: Compute for each attribute value, among those 

that have not been used so far, its general information 
gain, corresponding to the training subset which satisfies 
Xj = xj. Children nodes are then created and added to the 
branch in turn until subset has the same class label or 
stopping criteria is satisfied. At last, the classification rule 
of si is created. 

Step 5: Repeat the same process for each training 
sample from Step 3. Stop when all classification rules are 
created for training set. 

Step 6: Combine classification rules with the same 
root node into one decision tree. 

--------------------------------------------------- 
Decision forest is the most general form of classifiers, 

since it allows both serial and parallel combinations of 
arbitrary discriminators. In such methods a set of decision 
trees are constructed and new samples are classified by 
taking a vote on the results of these trees. The intuitive 
explanation for the success of ensemble learning is that 
mistakes made by individual classifiers are corrected by 
complementary results submitted by other classifiers in 
the committee. According to Occam's razor rule, a shorter 
assumption may be believable and a longer one is more 
likely to be a coincidence. If the descendant node satisfies 
specific stopping criterions, create a Naive Bayes as the 
leaf node and return. 

IV.  EXPERIMENTS 

In order to test the soundness of the method proposed, 
this section describes preliminary experiments designed 
to compare FDF with Random Forest. The experiments 
were run on 10 data sets from the UCI machine learning 
repository. The classification performance was evaluated 
by 10 independent 10-fold cross-validations tests. 

 To construct discretizations for learning, we used a 
variant of the method of Fayyad and Irani [10], using 
only the training data, in the manner described in [11]. 
These preprocessing stages were carried out by the 
MLC++ system. And the experiments with the various 
learning procedures were carried out on exactly the same 

training sets and evaluated on exactly the same test sets. 
At each test, the results for Random Forests are returned 
by forests with 1000 trees.  

In this paper, we are keen to compare the ensemble 
algorithms from the view of probabilistic performance. In 
many domains, like oncological and other medical data, 
not only the class predictions but also the probability 
associated with each class is essential. To compare 
probabilistic prediction performances, we use a metric 
called probabilistic costing (or log loss) [12], defined as  

                             
cos

1

log( )
n

t i
i

P P
=

= −∑                           (4) 

where n is the total number of test data and Pi is the 
probability assigned by the model to the true (correct) 
class associated with test sample. The probabilistic 
costing is equivalent to the accumulated code length of 
the total test data encoded by an inferred model. As the 
optimal code length can only be achieved by encoding 
with the real probability distribution of the test data, it is 
obvious that a smaller probabilistic costing indicates a 
better performance on overall probabilistic prediction. 

To obtain Pcost for Random Forest, the probabilistic 
prediction for each test sample is calculated by 
arithmetically averaging the probabilistic predictions 
submitted by each iteration. Experimental study showed 
that promising results can be achieved using not only 
single classifiers but ensembles of multiple classifiers. 
From Fig.4 we can see that, in terms of logarithm of 
probability (Pcost) bit costing, FDF has achieved better 
(lower) probabilistic costing on average compared to 
Random Forest. The superior performance on 
probabilistic prediction of the FDF can be attributed to 
the fact that a necessary and sufficient condition for an 
ensemble of classifiers to be more accurate than any of its 
individual members is that the classifiers are accurate and 
diverse. To satisfy this condition, each decision tree 
should learn on different parts of the training set by 
varying the training sets and by varying the attributes (or 
metric) used.   

The distributions of different attribute values are 
uneven, some may distribute closely, some may distribute 
sparsely. And when some attribute values are set, the 
conditional distribution of other attribute values will be 
even more complex. Just as we introduced in Section I, 
FDF satisfies the necessary and sufficient condition for 
an ensemble of classifiers to be more accurate, i.e., each 
of its individual subtrees is accurate and diverse. 
Different tree structures learned from different training 
set subspaces, which are incompatible and can represent 
multi-level semantic knowledge. But Random Forest 
algorithm (or other decision tree ensemble learning 
algorithms) tried to build different tree structures by 
artificially selecting different data subset and determine 
the tree numbers. All these human factors may affect the 
classification performance negatively.  

V.  CONCLUSIONS 
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The top-down induction of decision tree is one of the 
most popular approaches that have been used on a variety 
of real-world data mining tasks. In this paper, by 
combining Naive Bayes as leaf nodes, our novel down-
top decision tree generating scheme is capable of 
constructing a decision forest with a large number of 
distinct highly performing decision trees. The proposed 
scheme exploits the potential of using different 
classification rules to improve the predictive accuracy of 
ensemble classifiers, especially its performance will not 
be affected by any human intervention. It is reasonable to 
believe that replacing the preliminary model with well 
developed and more elaborate models to approximate the 
posterior probabilities of the inferred trees can further 
enhance the results. 
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