
Using Dominance for Aiding the Search-Based

Testing to Overcome the Limitations of the

Control-Dependencies

Ahmed S. Ghiduk
Faculty of Science, Beni-Suef University, Beni-Suef, Egypt

Email: asaghiduk@{yahoo.com OR gmail.com}

Abstract—Search-based optimization techniques have been

utilized for a number of software engineering activities. The

representation of the problem and the definition of the

fitness function (FF) are two key ingredients for the

application of search-based optimization to software

engineering problems. Therefore, a well-defined fitness

function is essential to the effectiveness and efficiency of the

search-based testing (SBT). Several search based test-data

generation techniques have been developed. A wide range of

these techniques utilized the control dependencies (CD) in

the control-flow graph of the program under test for

guiding the search in the direction of finding test data. To

direct the SBT to generate test data, Ghiduk et al. have

presented a search-based technique that utilizes the

dominances (Dom) between the nodes of the control-flow

graph (CFG) of the program under test. In this paper, we

investigate the efficiency and effectiveness of dominances in

a control-flow graph against the control dependencies in

guiding the SBT for generating test data. The paper

provides a number of structures programming which

challenge the SBT that is guided by the control dependencies

to find test data. The paper introduces two schemes for

overcoming these problems. The first scheme improves the

definitions of the fitness functions of the previous work to

overcome the control-dependencies problems. The second

scheme presents a general form for a fitness function in

terms of dominances and postdominances nodes. This

function enhances significantly the efficiency of the SBT;

consequently the SBT overcomes the control-dependencies

problems. In addition, the paper compares between the

efficiency of dominances and control dependencies in

guiding SBT with proper examples from the literatures.

Index Terms—search-based testing; genetic algorithms, test-

data generation, dominance, control dependencies

I. INTRODUCTION

Search-based optimization techniques (e.g., simulated

annealing, genetic algorithms, ant colony and particle

swarm) have been applied to a wide variety of software

engineering activities including cost estimation, next

release problem, and test-data generation [1]. Genetic

algorithms have been the most widely employed search
technique in search-based testing.

However, no matter what search technique is

employed, it is the fitness function that captures the

crucial information; it differentiates a good solution from

a poor one, thereby guiding the search. Thus, a well-

designed fitness function is essential to the effectiveness

and efficiency of search-based testing. Several search

based test-data generation techniques have been

developed. A lot of these techniques guide the search to

find the test data using the control dependencies in the
control-flow graph of the program under test.

Search based test-data generation work had focused on

finding test data to satisfy a number of control-flow and

data-flow testing criteria (e.g., paths, branches,

statements, and def-use [2, 3]). McMinn [4] surveyed the

previous work undertaken in this area.

Pargas et al. [2] used the control-dependence graph of

the program under test to define the fitness function. The

fitness function is the number of predicates on the

executed path that is common with the predicates on a

control-dependence path of the target structure (e.g.,
statements and branches).

To direct the search, Tracey [5] used the following

formula:

)1(

 dist

dependent

executed
FFT

where dependent is the number of the control-dependence

nodes for the target structure, executed is the number of

successfully executed control-dependence nodes, and dist
is the branch distance calculation preformed at the

branching node.

Wegener et al. [6] modified the Tracey's function by

mapping dist into the range [0, 1] (called m_dist). The

fitness function is zero if the target structure is executed,

otherwise, the fitness value is:

FFW=m_dist+ approximation level------------------ (2)

where approximation level = (dependent - executed - 1).

In the work of Wang et al. [7], a flattened control-flow

graph and a flattened control-dependence graph for the

switch-case are presented and a fitness calculation

approach is proposed for the switch-case structure. The
formula:

FFWa= normalize(dist)+approximation level -----(3)

where normalize(dist) = 1 - 1.001-dist is used to find the

fitness value. When the execution diverges away at a

switch branching node, the branch distance (dist) is |expr-

C|+1, where expr is the value of the expression after the

switch keyword, and C is the constant for the desired case

branch. When the execution diverges away at other

1270 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.11.1270-1278

branching node, the branch distance is calculated by

Tracey's method [5].

Ghiduk et al. [3] presented genetic algorithms based

technique, which generates test data to satisfy a wide

range of data-flow testing criteria. The technique applies

the concepts of dominance relations between the nodes of

the control-flow graph to define a multi-objective fitness

function to evaluate the generated test data.

 McMinn [4] has discussed the problems of the fitness

functions which are based on the control dependencies.

In this paper, we investigate the efficiency of the
dominance in the control-flow graph of the program

under test to overcome the problems which due to using

the control dependencies for guiding the SBT to find test

data. The paper gives many key problems of the SBT

which is guided by the control dependencies. The paper

introduces two schemes for overcoming these problems.

The first scheme redefines the fitness functions of the

previous work to overcome the control-dependencies

problems. The second scheme presents a general form for

a new fitness function in terms of the dominances and

postdominances in the control-flow graph of the program
under test. This function significant improves the

efficiency of the SBT; consequently the search overcomes

the problems of the control dependencies. In addition, we

use many proper examples from the literatures to

compare between the efficiency of dominances and

control dependencies in guiding SBT.

The rest of the paper is organized as follow. Section II

gives some basic concepts and definitions. Section III

introduces a number of the problems of the control

dependencies based fitness functions. Section IV presents

two schemes and the key ingredients to overcome these
problems. Section V provides the related work. Section

VI gives the conclusions and future work.

II. BASIC CONCEPTS

A. The Control-Flow Graph

A program’s structure is represented by a graphical

representation called control-flow graph. A control-flow
graph G = (V, E) with two distinguished nodes n0 (the

unique entry) and nk (the unique exit), consists of a set V

of nodes, where each node represents a statement, and a

set E of directed edges, where a directed edge e = (n, m)

is an ordered pair of two adjacent nodes, called tail and

head of e, respectively. A path P in a control-flow graph

is a finite sequence of nodes connected by edges. Figure

1(a) and Figure 1(b) give an example program Program1

and its control-flow graph, respectively.

B. Dominances

Let G = (V, E) be a control-flow graph with two

distinguished nodes n0 and nk, the unique entry and exit

nodes, respectively. A node n dominates a node m if

every path P from the entry node n0 to m contains n [8].

The dominance nodes in a control-flow graph can be

obtained using the algorithm of Lengauer and Trajan [8].

Using dominance, one can obtain the dominator tree
DT(G) (whose nodes represent the control-flow graph

nodes) rooted at n0. A tree DT(G) = (V, E) is a control-

flow graph in which one distinguished node n0, called the

root, is the head of no edges; every node n except the root

n0 is a head of just one edge and there exists a (unique)

dominance path dom(n) (order sequence of nodes) from

the root n0 to each node n [11]. Figure 1(c) gives the

dominator tree of Program1. The dominance path of node

9 is dom(9) = entry, 1, 2, 5, 6, 7, 9.

A node m postdominates by node n in a control-flow

graph iff m ≠ n and every path from n to the exit contains

m.

Using postdominance, one can obtain the
postdominator tree PDT(G) (whose nodes represent the

control-flow graph nodes) rooted at nk. A tree PDT(G) =

(V, E) is a control-flow graph in which one distinguished

node nk, called the root, is the head of no edges; every

node n except the root nk is a head of just one edge and

there exists a (unique) postdominance path pdom(n)

(order sequence of nodes) from the root nk to each node n

[11]. Figure 2(a) gives the postdominator tree of

Program1. The postdominance path of node 9 is pdom(9)

= 9, 10, 6, 11, exit.

C. Control Dependencies

For nodes n and m in a control-flow graph, m is control

dependent on n iff (1) there exists a path P from n to m
with all node x in P (excluding n and m) postdominated

by m (2) n is not postdominated by m where, nodes

represent statements, and edges represent the control

dependencies between statements [2]. Figure 2(b) gives

the control-dependence graph of Program1. The control-

dependence graph can be constructed using the method of

Ferrante et al. [9].

Figure 2. Postdominator tree of Program 1 (a), Control-dependence graph of Program 1 (b).

4

entry

1

2
3

5

6

exit

9

10

8 7

11

T

entry

1 2 5

T T

T

4 3

F

T

6

T

10

7 11

F

T

T

F

9 8

T

(a) (b)

(b) (c) (a)

Figure 1. Program1 (a), its Control-Flow Graph (b), and its Dominator Tree (c).

#include <iostream.h>
void main()

{

 int a, b, c, n;
1 cin >> a >> b;
2 if(a < 6)

3 c = a;
 else

4 c = b;
5 n = c;
6 while(n < 8)

 {
7 if(b > c)

8 c = 2;
 else

9 n = n + c + 7;
10 n = n + 1;

 }
11 cout << a << b << n;

 }

4

entry

1

2

3

5

6

exit
9 10 8

7
11

T

T F

4

5

6

exit

entry

1

2

3

T F

9

10

8

F 7
11

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1271

© 2010 ACADEMY PUBLISHER

D. Genetic Algorithms

The basic concepts of the genetic algorithm (GA)

were developed by Holland [10]. GA creates a population

of individuals represented by chromosomes, which are

typically encoded solutions to a problem. The
chromosomes then undergo a process of evolution

according to rules of breeding. Each individual receives a

measure of its fitness in the population. Breeding selects

individuals with high fitness values in the population, and

through crossing a new population is derived. The basic

algorithm of GA is given below.
Simple Genetic Algorithm ()

{ initialize population;

evaluate population;

while termination criterion not reached

{ select solutions for next population;

perform crossover and mutation;

evaluate population;

}

}

The previous algorithm will iterate until the population

has evolved to form a solution to the problem, or until a

maximum number of iterations have occurred.

III. THE CONTROL-DEPENDECNIES PROBLEMS IN GUIDING

SBT

In this section, we introduce some key problems of

using the control dependencies in the control-flow graph

to guide the SBT. We utilize many proper examples from

the literatures to show the problems of control

dependencies in guiding SBT.

1. The first problem is determining the control-

dependence path for the statements following
unstructured transfers of control, such as goto,
continue, and break [2, 4] and repeat-until structure
(do-while structure) [12].

For example, consider the control-flow graph
(CFG) in Figure 3(a). This control-flow graph was

taken from the work of Ball and Horwitz [12]. The

dominator tree of the control-flow graph CFG is

given in Figure 3(b). Figure 4(a) gives the

postdominator tree of the control-flow graph CFG.

The control-dependence graph of the control-flow

graph CFG is given in Figure 4(b).

In this example, suppose that the testing criterion

is the all-statements criterion (all-nodes criterion) and

the target structure is node 5 the shaded node in

Figures 3(a), 3(b), 4(a), and 4(b). In addition, suppose
that TD1 and TD2 are two individuals in a population

(i.e., two groups of test data). The tests TD1 and TD2

execute the path EP1 = (entry, T), (1, F), 7, exit and

the path EP2 = (entry, T), (1, T), (2, T), (3, F), (6, T),

7, exit in the control-flow graph CFG, respectively.

In this case, there are two control-dependence paths

from the entry node to the target node (node 5). These

two control-dependence paths are CDP1 and CDP2. The

path CDP1 is (entry, T), (1, T), (2, F) and the path CDP2

is (entry, T), (1, T), (2, T), (3, T).

Let us compute the fitness values for TD1 and TD2 by
using the fitness functions of Pargas, Tracey, and

Wegener.

 According to the fitness functions of Pargas et al. [2],
the fitness value of TD1 is 1 (the number of predicates
on the executed path EP1 that is common with the
predicates on CDP1 and CDP2 the two control-
dependence paths of 5).

The fitness value of TD2 is 2 (the number of

predicates on the executed path EP2 that is common

with the predicates on CDP1) or 3 (the number of

predicates on the executed path EP2 that is common

with the predicates on CDP2).

Consequently, TD1 has two identical fitness values

1 but TD2 has two different fitness values 2 and 3.

 According to the fitness functions of Tracey [5], the

fitness value of TD1 is dist
3

1
 or dist

4

1 (by

substituting in equation (1)). Where, executed = 1 the
number of successfully executed control dependent
nodes on path EP1 and dependent = 3 or 4 the number
of the control dependence nodes for the target node
(node 5) on the two control-dependence paths CDP1
and CDP2, respectively.

The fitness value of TD2 is dist
3

2
 or

dist
4

3 (by substituting in equation (1)). Where,

executed = 2 or 3 the number of successfully executed

control dependent nodes on path EP2 and dependent =

3 or 4 the number of the control dependence nodes for

node 5 on the two control-dependence paths CDP1

and CDP2, respectively.

Figure 3. A control-flow graph CFG (a), and its dominator tree (b).

T

T

T

T

T

entry

2

1

7

exit

4

5

3

6 F

F

F

F

F

(a)

3

6 4

2

1

entry

7

5

(b)

(a)

3

6

exit

2

5

1

4

7

F
T

6

T

T

7 1

T

entry

T

4

T

F

5

3

2

T

(b)

Figure 4. Postdominator tree of CFG (a), and Control-dependence graph of CFG (b).

1272 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

Consequently, both TD1 and TD2 have two

different fitness values (dist
3

1
and dist

4

1 for

TD1 and dist
3

2
 and dist

4

3 for TD2).

 According to the wok of Wegener et al. [6] the fitness
value of TD1 is equal to m_dist + 1 or m_dist + 2 (by
substituting in equation (2)). Where, executed = 1 the
number of successfully executed control dependent
nodes on path EP1 and dependent = 3 or 4 the number
of the control dependence nodes for node 5 on the two
control-dependence paths CDP1 and CDP2,
respectively.

The fitness value of TD2 is equal to m_dist (by

substituting in equation (2)). Where, executed = 2 or 3

the number of successfully executed control

dependent nodes on path EP2 and dependent = 3 or 4

the number of the control-dependence nodes for node

5 on the two control-dependence paths CDP1 and
CDP2, respectively.

Consequently, TD1 has two different fitness values

(m_dist + 1 or m_dist + 2) but TD2 has two identical

fitness values (m_dist).

From the previous discussion of the example, we

can conclude that the fitness functions which were

used by the search-based test-data generation

techniques of Pargas et al. [2], Tracey [5], and

Wegener et al. [6] cannot evaluate the individuals

(TD1 and TD2) (i.e., these functions cannot find the

fitness values of TD1 and TD2) because all of these
fitness functions use the dependent (the number of the

control-dependence nodes for the target structure) as a

vital term of their definitions. Therefore, all of these

fitness functions will fail in determining a unique set

of dependent nodes for the target (node 5)

subsequently cannot find the fitness value.

2. The second problem is the poor search performance in
the case of selection structure nested within repetition
structure (e.g., if structure within for structure) [4].

Figure 5 which was presented by McMinn [4]

demonstrates the problem of structures nested within

loops. Figure 5 gives an example program

(loop_example) for if structure nested in for structure

to the left and its control-flow graph to the right.

Figure 6 shows the control-dependencies graph of

the loop_example to the left and its dominator tree to
the right.

Node 3 (the shaded node in Figure 5(b)) is the

structure to be covered (i.e., the target of the search).

In fact, paths taking the false branch from node 2 can

still execute node 3 in subsequent iterations of loop.

Therefore, node 3 is not control dependent on node 2.

Consequently, the search does not receive guidance

regarding the fact that the true branch from node 2 must

be covered to reach the target statement. This problem

results in poor search performance.
For example, suppose that TD1 and TD2 are two

test data which execute the two paths P1 and P2,

respectively. Where, P1 = entry, 1, 2, 1, exit, and P2 =

entry, 1, exit.

Similar to the example in the first problem in this

section, we can compute the fitness values of TD1 and

TD2 using the fitness functions of Pargas et al. [2], Tracey

[5], and Wegener et al. [6].

According to the fitness functions of Pargas, both
TD1 and TD2 have the same fitness value (the value is

1 because there is one predicate on the executed paths

P1 and P2 common with the control-dependencies

path of node 3). Similarly, both the fitness functions

of Tracey and Wegener will assign for each of TD1

and TD2 the same approximation level.

From the previous discussion of the example, we

can conclude that the control-dependencies based

fitness functions do not give any guidance for the

search and cause a poor in the search performance.

3. The third problem is assignment of the approximation
level for some classes of program with unstructured
control flow [13].

Figure 7 which is taken from the work of Baresel

et al. [13] demonstrates the problem of the assignment

of approximation level for program with unstructured
control flow such as switch-case structure. Figure 7(a)

shows the code of the switch-case structure and

Figure 7(b) gives its control-flow graph. Figure 7(c)

gives the control-dependencies graph of this structure

and Figure 8 gives its dominator tree.

Suppose that the target of the search is the

execution of node 6 (the shaded node in figures 7(b)

and 7(c)). However, there are three different control-

dependent paths from the entry node through node 6;

the first path is entry, 1, 5, 6, the second path is entry,

1, 2, 6, and the third path is entry, 1, 2, 3, 5, 6 (see
Figure 7(c)) and two possibilities for node 2; the first

path is 2, 3, 4, 5, 6 and the second path is 2, 3, 6.

Similar to the computation of the fitness values in

the first and the second problems, one can compute

the fitness values and the approximation levels for the

third problem by using the functions of Pargas et al.

entry void loop_example (int i)

 {

 int n;
1. for (n = 0 ; n <= 10; n++)

 {

2. if (n == 10 && i == 0)

 {

3. // target statement

 }

 }

exit }

 (a) (b)

Figure 5. Loop example (a), with its control flow graph (b)

T
F

F

T

entry

1

2

3

exit

Figure 6. Control-dependence graph of loop_example (a), its dominator

tree (b), and its postdominator tree (c)

T
F

T

entry

1

2

3

exit

(b) (a)

entry

1

2 3 F

(c)

1

entry 2

3

exit

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1273

© 2010 ACADEMY PUBLISHER

[2], Tracey [5], and Wegener et al. [6]. Consequently,

there are two fitness values and/or two approximation

level values possibilities (since two of the paths are of

the same length). This problem results in misleading

of the search.

IV. OVERCOMING THE PROBLEMS OF CONTROL

DEPENDENCIES

In this section, we introduce two schemes for

overcoming the problems of using the control-

dependencies in the control-flow graph for guiding the

search-based testing techniques to generate the test data.

Our two schemes depend on using the dominances in the

control-flow graph instead of the control-dependencies to

define the fitness function. We use the same examples in

section III to show the efficiency of dominances in
guiding SBT against control dependencies.

The key ingredients for using the dominances in the

control-flow graph to define the fitness function are:
1. According to the definition of the dominance in the

control-flow graph, there is a unique path between
any two dominated nodes. Therefore, using
dominance will overcome the problem of determining
the control-dependencies path for some structures.
Where some structures have multi-control-
dependencies paths for the target structure such as the
cases of unstructured transfers and do-while structure.

2. From the definition of postdominance, there is a
unique path between any two postdominated nodes.
Thus, using postdominance can overcome the
problems of assignment the approximation level for
some structures.

From the above two key ingredients, our proposal to

overcome the problems which are related to the control-

dependencies has two schemes. The first scheme is

redefining the previous fitness functions using the

dominances instead of the control dependencies. The

second scheme is constructing a general form for the

fitness function using the dominances and

postdominances in the control-flow graph.

A. The first scheme: redefining the previous fitness

functions

The main idea of the first scheme of our proposal is

replacement the control-dependencies based terms in

the definitions of the previous related fitness functions

(i.e., Pargas, Tracey, and Wegener fitness functions)

with dominances-based terms.

According to our first scheme, the redefined fitness

functions of Pargas, Tracey, and Wegener will be as

follows.

 The redefined fitness function of Pargas (RFFP) is the
number of nodes on the executed path that is common
with the nodes on the dominance path of the target
structure.

 The redefined fitness function of Tracey (RFFT) is the
following formula:

)4(
min

 dist

ateddo

executed
RFFT

where dominated is the number of the dominance

nodes for the target structure, executed is the number

of successfully executed dominance nodes, and dist is

the branch distance calculation preformed at the

branching node.

 The redefined fitness function of Wegener (RFFW) is
zero if the target structure is executed, otherwise, the
fitness value is:

RFFW = m_dist + approximation level ----------(5)

where approximation level = (dominated-executed).

To explain the efficiency of the new versions

(RFFP, RFFT, and RFFW) of the fitness functions in

overcoming the problems of the control-dependencies

based functions, consider the control-flow graph
(CFG) and its dominator tree in Figures 3(a) and 3(b),

respectively.

Suppose also that the target structure is node 5 the

shaded node in Figures 3(a) and 3(b). In addition,

suppose that TD1 and TD2 are two test cases. TD1 and

TD2 execute the path EP1 = entry, 1, 7, exit and the

path EP2 = entry, 1, 2, 3, 6, 7, exit in the control-flow

graph CFG, respectively, see Figure 3(a). We have

illustrated that the old versions of these fitness

functions cannot evaluate the tests TD1 and TD2

because they assign more than one fitness value for
each of them.

The computation of the fitness values for TD1 and

TD2 using the new functions (i.e., RFFP, RFFT, and

RFFW) is depicted in the following paragraphs.

 According to RFFP the new version of Pargas, the
fitness value of TD1 is computed as follows:
Where the path EP1 = entry, 1, 7, exit is executed

by TD1 and the dominance path dom(5) of node 5

is dom(5) = entry, 1, 2, 5. Therefore, the fitness

value of TD1 is RFFP(TD1)=2 because entry and 1

switch (x)

{

1. case 1:

2. if (condition_1)

 return;

3. if (condition_2)

 break;

4. case 2:

5. if (condition_3)

 break;

return;

 }

6. // target statement

(a)

Figure 7. Unstructured control flow example (a), its control-flow graph

(b), and its control-dependence graph (c).

(b)

1

entry

exit

2

4

5

6

3

T

F

T

F

T

F

F

T

(c)

5

6

entry

1

2

4

3

F

T

F

F

T

F

F F

Figure 8. Dominator of the unstructured control flow example.

1

entry

2

4

5

6

3

1274 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

are the only common nodes between EP1 and

dom(5). In fact, RFFP(TD1) is unique value.

Similarly, RFFP(TD2)=3 and it is also a single

value.

 According to RFFT the new version of Tracey, the

fitness value of TD1 is dist
4

2
and the fitness

value of TD2 is dist
4

3
. It is clear that, the

fitness values of TD1 and TD2 are unique values.

 According to RFFW the new version of Wegener
the fitness value of TD1 is m_dist +2 and the
fitness value of TD2 is m_dist +1. It is clear that,
the fitness values of TD1 and TD2 are also unique
values.

From the above example, we can conclude that the

new versions of the fitness functions of Pargas,

Tracey, and Wegener succeeded to overcome the first

problem of the control-dependencies based fitness
functions by generating unique value for each test

case.

Concerning the second problem, consider the

example with the second problem in Figure 5. In this

example the target node is node 3 and the test cases

are TD1 and TD2 which execute the two paths P1 =

entry, 1, 2, 1, exit, and P2 = entry, 1, exit,

respectively. From Figure 6(b), the dominance path of

node 3 is dom(3)=entry, 1, 2, 3.

 According to RFFP the new version of Pargas the
fitness value of TD1 is 3 and the fitness value of
TD2 is 2.

 According to RFFT the new version of Tracey the

fitness value of TD1 is dist
4

3
 and the fitness

value of TD2 is dist
4

2
.

 According to RFFW the new version of Wegener
the fitness value of TD1 is m_dist +1 and the
fitness value of TD2 is m_dist +2.

From the above example, we can conclude that the
new versions of the fitness functions of Pargas,

Tracey, and Wegener succeeded to overcome the

second problem of the control-dependencies based

fitness functions by improving the search in the

convergence direction.

Concerning the third problem, consider the

example with the third problem in Figure 7. In this

example the target node is node 6. In addition, there

are three control-dependencies paths from entry to

node 6 but the path dom(6)=entry, 1, 2, 3, 6 is the

only dominance path from the entry to node 6.
Therefore, each function of the new versions of the

fitness functions of Pargas, Tracey, and Wegener will

find a single fitness value for the test cases;

consequently all of them will overcome the third

problem.

The computation of the fitness values for TD1 and

TD2 using the new version of the fitness functions is

as follows.

 According to RFFP the fitness value of TD1 is 2
and the fitness value of TD2 is 5.

 According to RFFT the fitness value of TD1 is

dist
5

2
 and the fitness value of TD2

is dist
5

5
.

 According to RFFW the fitness value of TD1 is
m_dist +3 and the fitness value of TD2 is zero.
It is clear that TD2 covers the target node (node 6).

The above discussion shows the efficiency of

dominances in guiding SBT against control dependencies.

We can replace all the pervious fitness functions by a

unique fitness function. In the next section we introduce

the definition of this fitness function.

B. The second scheme: constructing a general form for

the fitness function.

The second scheme focuses on constructing a general

form for the fitness function based on the dominances and

postdominances relationships in the control-flow graph of

the program under test.

From the definitions of the dominance and
postdominance (implication) relations which is given by

Bertolino and Marré [11], we can define the essential

path for any node n in a control-flow graph of a program

as follows.

Definition 1: Essential Path

For any node n in a control-flow graph G = (V, E) of a

program with two distinguished nodes n0 (the unique

entry) and nk (the unique exit), there is a path

kqqqmmm nnnnnnnnnP
ji
,,...,,,,,...,,,

21210

where nnnnn
immm ,,...,,,

210 are nodes of the dominator

tree of the control-flow graph G and

kqqq nnnnn
j
,,...,,,

21
 are nodes of the postdominator

tree of the control-flow graph G, such that any path

covers n has to cover all the other nodes of P. Then, P is

called the essential path of n. The path P is the

concatenation of the dominance path of node n and the

postdominance path of n.
For example the dominance path of node 5 in Figure

3(b) is entry, 1, 2, 5 and the postdominance path of 5 in

Figure 4(a) is 5, 6, 7, exit. Therefore, the essential path of

node 5 is entry, 1, 2, 5, 6, 7, exit.

The key idea of our suggested fitness function is how

far is the executed path from covering the essential path

of the target? In other words, on the essential path of the

target how many nodes in the front of the target without

covering and how many nodes in behind it without

covering? Consequently, our fitness function measures

the coverage ratio of the essential path of the target.
Therefore, the general form of the fitness function is:

FF= fit_value + approximation_value;

where the fit_value is a function in dominance nodes, and

the approximation_value is a function in postdominance

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1275

© 2010 ACADEMY PUBLISHER

nodes. The fit_value is computed from the following

formula.

Total_dom

Common_dom
fit_value

2

1

where Common_dom is the number of nodes on the

executed path that is common with the nodes on the

dominance path of the target structure and Total_dom is

the total number of nodes on the dominance path of the

target structure. In addition, the approximation_value is

computed from the following formula.

domTotal_post

tdomCommon_pos
valueionapproximat

2

1
_

where Common_postdom is the number of nodes on the

executed path that is common with the nodes on the

postdominance path from the target structure to the root

of the postdominator tree and Total_postdom is the total

number of the nodes on this postdominance path.
The target is covered when the fitness function FF

assigns the value 1.

To illustrate the efficiency of the new fitness function

in overcoming the problems of the control dependencies

based fitness functions:

 Concerning the first problem, consider the example in
Figures 3 and 4. In addition, suppose that TD1 and
TD2 are two test cases which execute the path EP1 =
(entry, T), (1, F), 7, exit and the path EP2 = (entry, T),
(1, T), (2, T), (3, F), (6, T), 7, exit in the control-flow
graph CFG, respectively and the target structure is
node 5 the shaded node in Figures 3 and 4.

From the dominator tree and the postdominator
tree which are given in Figures 3(b) and 4(a),

respectively, the essential path P of node 5 is entry, 1,

2, 5, 6, 7, exit. In addition, the dominance path of

node 5 is entry, 1, 2, 5 and the postdominance path of

5 is 5, 6, 7, exit.

For the first test case TD1, the common nodes

between the executed path EP1 = (entry, T), (1, F), 7,

exit and the dominance path of node 5 dom(5)=entry,

1, 2, 5 are entry, and 1. Therefore, Common_dom = 2

and Total_dom = 4. In addition, the common nodes

between the executed path EP1 and the postdominance

path of 5 pdom(5)=5, 6, 7, exit are 7, and exit.
Therefore, Common_postdom = 2 and Total_postdom

= 3.

The fitness value of TD1 according to the new

fitness function

FF = fit_value + approximation_value =

domTotal_post

tdomCommon_pos

Total_dom

Common_dom

2

1

2

1

58.0
3

2

2

1

4

2

2

1

For the second test case TD2, the common nodes

between the executed path EP2 = (entry, T), (1, T), (2,

T), (3, F), (6, T), 7, exit and the dominance path of

node 5 are entry, 1, and 2. Therefore, Common_dom =

3 and Total_dom = 4. In addition, the common nodes

between the executed path EP2 and the postdominance

path of 5 are 6, 7, and exit. Therefore,

Common_postdom = 3 and Total_postdom = 3.

The fitness value of TD2 according to the new

fitness function FF = fit_value +

approximation_value =

domTotal_post

tdomCommon_pos

Total_dom

Common_dom

2

1

2

1

88.0
3

3

2

1

4

3

2

1

From the fitness values of the two test cases TD1 and

TD2 we can conclude that our suggested fitness function

is more efficiency than the old versions of the previous

fitness functions because it succeeded to evaluate TD1

and TD2 by finding a unique fitness value for each of

them. In addition, it has the ability to distinguish and

differentiate between the two test cases. It is clear that the

fitness value of TD2 is greater than the fitness value of

TD1 because the executed path of TD2 is closer to cover

the target node than the executed path of TD1.

Consequently, the new fitness function can easily order
the generated test cases.

 Concerning the second problem, consider the example
in Figure 5 and Figure 6 which demonstrate the
problem of structures nested within loops. Suppose
that TD1 and TD2 are two tests which execute the two
paths P1= entry, 1, 2, 1, exit, and P2 = entry, 1, exit,
respectively. Node 3 in Figures 5 and 6 is the structure
to be covered.

From the dominator tree and the postdominator

tree which are given in Figures 6(b) and 6(c),

respectively, the essential path P of node 3 is entry, 1,

2, 3, 1, exit. In addition, the dominance path of node 3

is entry, 1, 2, 3 and the postdominance path of 3 is 3,
1, exit.

For the first test case TD1, the common nodes

between the executed path P1 and the dominance path

of node 3 are entry, 1, and 2. Therefore,

Common_dom = 3 and Total_dom = 4. In addition,

the common nodes between the executed path P1 and

the postdominance path of 3 are 1 and exit. Therefore,

Common_postdom = 2 and Total_postdom = 3.

The fitness value of TD1 according to the new

fitness function FF = fit_value +

approximation_value =

domTotal_post

tdomCommon_pos

Total_dom

Common_dom

2

1

2

1

71.0
3

2

2

1

4

3

2

1

For the second test case TD2, the common nodes

between the executed path P2 and the dominance path

of node 3 are entry and 1. Therefore, Common_dom =

2 and Total_dom = 4. In addition, the common nodes

between the executed path P2 and the postdominance

path of 3 are 1 and exit. Therefore, Common_postdom
= 2 and Total_postdom = 3.

The fitness value of TD2 according to the new

fitness function FF = fit_value +

approximation_value =

1276 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

domTotal_post

tdomCommon_pos

Total_dom

Common_dom

2

1

2

1

58.0
3

2

2

1

4

2

2

1

We have showed that node 3 is dominated by node 2.

Therefore, our dominance-based fitness function assigns

different values for TD1 and TD2. In contrast node 3 is not

control dependent on node 2. Therefore, the control-

dependencies based fitness functions assign for each of

TD1 and TD2 the same value.

 Concerning the third problem, consider the example
with the third problem in Figure 7. In this example the
target node is node 6. In addition, there are three
control-dependencies paths from entry to node 6. In
contrast there is only one dominance path from the
entry to node 6 and one postdominance path from
node 6 to exit. Therefore, our fitness function will
assign a unique value for each of the two test cases
TD1 and TD2. Consequently our new fitness function
will overcome the third problem.

One can compute the two fitness values of TD1 and

TD2 by the same method of the first and the second

problems.

The above discussion has showed that using
dominances and postdominances for defining the fitness

function enhances significantly the efficiency of the SBT;

consequently SBT overcomes the control-dependencies

problems.

Although RFFP, RFFT, RFFW and the general fitness

function depend on dominances and postdominances,

each function has a different definition. Therefore, there

is no any correlation between the fitness values calculated

using RFFP, RFFT, and RFFW and the fitness values

calculated using the general formula of the fitness

function for the test cases TD1 and TD2.

V. THE RELATED WORK

In this section, we discuss how the pervious works deal

with the control dependencies problems.

The work of Parags et al. [2] does not address any of

the above problems of the control dependencies.

Baresel et al. [13] treat branches in the second problem

that miss the target in iterations of the loop as critical

branches. Therefore, node 3 is treated as if it were

control dependent on node 2. In order to circumvent this

problem, Tracey [5] examines the branch distance during

each iteration of the loop and uses the minimum branch
distance obtained for computing the final fitness value.

For the third problem, McMinn [4] claims that there is

two plausible solutions to this problem include optimistic

and pessimistic approximation level allocation strategies.

In an optimistic strategy, a control dependent branching

node is allocated its approximation level on the basis of

the shortest control dependent path from itself to the

target node. In this way the approximation level of node

2 is 1 on the basis of the direct path (2, 3, 6) through node

6. In the pessimistic strategy, a branching node is

allocated its approximation level on the basis of the

longest control dependent path to the target node. In this

scheme node 2 would be assigned an approximation level

of 3 on the basis of the path 2, 3, 4, 5, 6.

Baresel et al. [13] used both optimistic and pessimistic

strategies in the initial experiments. They show that the

different strategies have different effects on the progress

of the search. They cannot conclude which strategy works

best in general.

For switch-case problem, Wang et al. [7] converted the

control-flow graph and the control-dependencies graph

for the switch-case into a flattened control-flow graph
and a flattened control-dependence graph. Consequently,

a fitness calculation approach is proposed for the switch-

case structure which is based on alternative critical

branches for the switch-case.

VI. CONCLUSIONS AND FUTURE WORK

Search-based optimization techniques have been

applied to a wide variety of software engineering

activities. Genetic algorithms have been the most widely

employed search technique in search-based testing.

The representation of the problem and the definition

of the fitness function are two key ingredients for the
application of search-based optimization to software

engineering problems. Therefore, a well-defined fitness

function is essential to the efficiency of SBT.

This paper introduced many key problems of using

the control-dependencies in the control-flow graph to

guide the search-based testing for generating test data. In

addition, the paper presented two schemes for

overcoming these problems. These schemes employed the

dominances in the control-flow graph instead of the

control-dependencies for guiding the search-based testing

to find the test data. The first scheme redefined the fitness
functions of the previous related work by replacement the

control-dependencies based terms in the definitions of

these fitness functions with dominances-based terms. The

second scheme provided a general form for the fitness

function with dominances- and postdominance-based

terms for guiding the SBT.

The paper presented a theoretical comparison between

the efficiency of dominances and control dependencies in

guiding SBT by using proper examples from the

literatures. The presented comparison showed the ability

of the proposed schemes to overcome the problems of

using the control-dependencies in the control-flow graph
to guide the SBT to generate the test data.

Our future work will focus on conducting an

empirical study to show how much the efficiency of the

generated test data improved, after applying the control

dependency-based and dominance-based approach to

some real projects, respectively. In addition, we will use

dominance relationship in the control flow graph to solve

other fitness value calculation problems. One of the open

problems is how we can apply the dominance to generate

feasible path cover for a given test coverage criterion.

ACKNOWLEDGMENT

The author would like to thank the reviewers of the first

International Symposium on Search-Based Software

JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010 1277

© 2010 ACADEMY PUBLISHER

Engineering (SSBSE2009) and the 16th Asia-Pacific

Software Engineering Conference (APSEC2009) for their

valuable comments and suggestions to improve the fast

abstract and the short paper of this work, respectively.

REFERENCES

[1] M. Harman, "The current state and future of search based
software engineering," Proc. of the International
Conference on Future of Software Engineering (FOSE 07),
May 2007, pp. 342-357.

[2] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test data
generation using genetic algorithms” Journal of Software
Testing, Verifications and Reliability, vol. 9, pp. 263-282,
1999.

[3] A. S. Ghiduk, M. J. Harrold, M. R. Girgis, “Using genetic
algorithms to aid test-data generation for data flow
coverage,” Proc. of 14th Asia-Pacific Software Engineering
Conference (APSEC 07), Dec. 2007, pp. 41-48.

[4] P. McMinn, "Search-based software test data generation: A
survey," Journal of Software Testing Verification and
Reliability, vol. 14, no. 2, June 2004, pp. 105-156.

[5] N. Tracey, "A search-based automated test data generation
framework for safety critical software," Ph. D. thesis,
University of York, 2000.

[6] J. Wegener, K. Buhr, and H. Pohlheim, "Automatic test
data generation for structural testing of embedded software
systems by evolutionary testing." In Proc. of the 2002
Genetic and Evolutionary Computation Conference
(GECCO ’02), 2002, pp 1233–1240.

[7] Y. Wang, Z. Bai, M. Zhang, W. Du, Y. Qin, and X. Liu,
"Fitness calculation approach for the switch-case construct
in evolutionary testing." In Proc. of the 10th Annual
Conference on Genetic and Evolutionary Computation
(GECCO ’08), 2008, pp 1767– 1774.

[8] T. Lengauer and R. E. Trajan, "A fast algorithm for finding
dominators in a flowgraph." ACM Transactions on
programming Languages and Systems, vol. 1, 1979, pp.
121-141.

[9] J. Ferrante, K. Ottenstein, and J. Warren, " The program
dependence graph and its use in optimization," ACM
Transaction in Programing Langauges and Systmes , Vol.
9, No. 5, 1987, pp. 319-349.

[10] J. Holland, Adaptation in Natural and Artificial Systems,
ISBN 0 472 08460 7. University of Michigan Press, Ann
Arbor, MI, 1975.

[11] A. Bertolino, M. Marrè, “Automatic generation of test path
sets based on the flow analysis of computer programs”,
IEEE Transactions on Software Engineering, Vol. 20, No.
12, Dec. 1994, pp. 885-899.

[12] T. Ball, and S. Horwitz, "Constructing control flow from
control dependence," TR-92-1091, University of
Wisconsin-Madison, June 1992.
http://www.cs.wisc.edu/wpis/papers/tr92-1091.ps

[13] A. Baresel, H. Sthamer, and M. Schmidt, "Fitness function
design to improve evolutionary structural testing," In
Proceedings of the Genetic and Evolutionary Computiation
Conference (GECCO 2002), pp. 1329-1336, New York,
USA, 2002. Morgan Kaufman.

Ahmed S. Ghiduk is an assistant

professor at Beni-Suef

University, Egypt. He received

the BSc degree from Cairo

University, Egypt, in 1994, the

MSc degree from Minia
University, Egypt, in 2001, and a

Ph.D. from Beni-Suef University,

Egypt in joint with College of

Computing, Georgia Institute of Technology, USA, in

2007. His research interests include software engineering

especially search-based software testing, genetic

algorithms, and ant colony and web application testing.

Currently, Ahmed S. Ghiduk is an assistant professor at

College of Computers and Information Systems, Taif

University, Saudi Arabia. One can connect Ahmed S.

Ghiduk on asaghiduk@yahoo.com or gamil.com.

1278 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER

http://www.cs.wisc.edu/wpis/papers/tr92-1091.ps

