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Abstract—Search-based optimization techniques have been 

utilized for a number of software engineering activities. The 

representation of the problem and the definition of the 

fitness function (FF) are two key ingredients for the 

application of search-based optimization to software 

engineering problems. Therefore, a well-defined fitness 

function is essential to the effectiveness and efficiency of the 

search-based testing (SBT). Several search based test-data 

generation techniques have been developed. A wide range of 

these techniques utilized the control dependencies (CD) in 

the control-flow graph of the program under test for 

guiding the search in the direction of finding test data. To 

direct the SBT to generate test data, Ghiduk et al. have 

presented a search-based technique that utilizes the 

dominances (Dom) between the nodes of the control-flow 

graph (CFG) of the program under test. In this paper, we 

investigate the efficiency and effectiveness of dominances in 

a control-flow graph against the control dependencies in 

guiding the SBT for generating test data. The paper 

provides a number of structures programming which 

challenge the SBT that is guided by the control dependencies 

to find test data. The paper introduces two schemes for 

overcoming these problems. The first scheme improves the 

definitions of the fitness functions of the previous work to 

overcome the control-dependencies problems. The second 

scheme presents a general form for a fitness function in 

terms of dominances and postdominances nodes. This 

function enhances significantly the efficiency of the SBT; 

consequently the SBT overcomes the control-dependencies 

problems. In addition, the paper compares between the 

efficiency of dominances and control dependencies in 

guiding SBT with proper examples from the literatures.  
 

Index Terms—search-based testing; genetic algorithms, test-

data generation, dominance, control dependencies 

I. INTRODUCTION 

Search-based optimization techniques (e.g., simulated 

annealing, genetic algorithms, ant colony and particle 

swarm) have been applied to a wide variety of software 

engineering activities including cost estimation, next 

release problem, and test-data generation [1]. Genetic 

algorithms have been the most widely employed search 
technique in search-based testing. 

However, no matter what search technique is 

employed, it is the fitness function that captures the 

crucial information; it differentiates a good solution from 

a poor one, thereby guiding the search. Thus, a well-

designed fitness function is essential to the effectiveness 

and efficiency of search-based testing. Several search 

based test-data generation techniques have been 

developed. A lot of these techniques guide the search to 

find the test data using the control dependencies in the 
control-flow graph of the program under test. 

Search based test-data generation work had focused on 

finding test data to satisfy a number of control-flow and 

data-flow testing criteria (e.g., paths, branches, 

statements, and def-use [2, 3]). McMinn [4] surveyed the 

previous work undertaken in this area.  

Pargas et al. [2] used the control-dependence graph of 

the program under test to define the fitness function. The 

fitness function is the number of predicates on the 

executed path that is common with the predicates on a 

control-dependence path of the target structure (e.g., 
statements and branches).  

To direct the search, Tracey [5] used the following 

formula: 

)1(







 dist

dependent

executed
FFT  

where dependent is the number of the control-dependence 

nodes for the target structure, executed is the number of 

successfully executed control-dependence nodes, and dist 
is the branch distance calculation preformed at the 

branching node. 

Wegener et al. [6] modified the Tracey's function by 

mapping dist into the range [0, 1] (called m_dist). The 

fitness function is zero if the target structure is executed, 

otherwise, the fitness value is: 

FFW=m_dist+ approximation level------------------ (2) 

where approximation level = (dependent - executed - 1). 

In the work of Wang et al. [7], a flattened control-flow 

graph and a flattened control-dependence graph for the 

switch-case are presented and a fitness calculation 

approach is proposed for the switch-case structure. The 
formula: 

FFWa= normalize(dist)+approximation level -----(3)  

where normalize(dist) = 1 - 1.001-dist is used to find the 

fitness value. When the execution diverges away at a 

switch branching node, the branch distance (dist) is |expr-

C|+1, where expr is the value of the expression after the 

switch keyword, and C is the constant for the desired case 

branch. When the execution diverges away at other 
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branching node, the branch distance is calculated by 

Tracey's method [5]. 

Ghiduk et al. [3] presented genetic algorithms based 

technique, which generates test data to satisfy a wide 

range of data-flow testing criteria. The technique applies 

the concepts of dominance relations between the nodes of 

the control-flow graph to define a multi-objective fitness 

function to evaluate the generated test data. 

 McMinn [4] has discussed the problems of the fitness 

functions which are based on the control dependencies. 

In this paper, we investigate the efficiency of the 
dominance in the control-flow graph of the program 

under test to overcome the problems which due to using 

the control dependencies for guiding the SBT to find test 

data. The paper gives many key problems of the SBT 

which is guided by the control dependencies. The paper 

introduces two schemes for overcoming these problems. 

The first scheme redefines the fitness functions of the 

previous work to overcome the control-dependencies 

problems. The second scheme presents a general form for 

a new fitness function in terms of the dominances and 

postdominances in the control-flow graph of the program 
under test. This function significant improves the 

efficiency of the SBT; consequently the search overcomes 

the problems of the control dependencies. In addition, we 

use many proper examples from the literatures to 

compare between the efficiency of dominances and 

control dependencies in guiding SBT. 

The rest of the paper is organized as follow. Section II 

gives some basic concepts and definitions. Section III 

introduces a number of the problems of the control 

dependencies based fitness functions. Section IV presents 

two schemes and the key ingredients to overcome these 
problems. Section V provides the related work. Section 

VI gives the conclusions and future work.  

II. BASIC CONCEPTS 

A.  The Control-Flow Graph 

A program’s structure is represented by a graphical 

representation called control-flow graph. A control-flow 
graph G = (V, E) with two distinguished nodes n0 (the 

unique entry) and nk (the unique exit), consists of a set V 

of nodes, where each node represents a statement, and a 

set E of directed edges, where a directed edge e = (n, m) 

is an ordered pair of two adjacent nodes, called tail and 

head of e, respectively. A path P in a control-flow graph 

is a finite sequence of nodes connected by edges. Figure 

1(a) and Figure 1(b) give an example program Program1 

and its control-flow graph, respectively. 

B.  Dominances 

Let G = (V, E) be a control-flow graph with two 

distinguished nodes n0 and nk, the unique entry and exit 

nodes, respectively. A node n dominates a node m if 

every path P from the entry node n0 to m contains n [8]. 

The dominance nodes in a control-flow graph can be 

obtained using the algorithm of Lengauer and Trajan [8]. 

Using dominance, one can obtain the dominator tree 
DT(G) (whose nodes represent the control-flow graph 

nodes) rooted at n0. A tree DT(G) = (V, E) is a control-

flow graph in which one distinguished node n0, called the 

root, is the head of no edges; every node n except the root 

n0 is a head of just one edge and there exists a (unique) 

dominance path dom(n) (order sequence of nodes) from 

the root n0 to each node n [11]. Figure 1(c) gives the 

dominator tree of Program1. The dominance path of node 

9 is dom(9) = entry, 1, 2, 5, 6, 7, 9. 

A node m postdominates by node n in a control-flow 

graph iff m ≠ n and every path from n to the exit contains 

m. 

Using postdominance, one can obtain the 
postdominator tree PDT(G) (whose nodes represent the 

control-flow graph nodes) rooted at nk. A tree PDT(G) = 

(V, E) is a control-flow graph in which one distinguished 

node nk, called the root, is the head of no edges; every 

node n except the root nk is a head of just one edge and 

there exists a (unique) postdominance path pdom(n) 

(order sequence of nodes) from the root nk to each node n 

[11]. Figure 2(a) gives the postdominator tree of 

Program1. The postdominance path of node 9 is pdom(9) 

= 9, 10, 6, 11, exit. 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

C.  Control Dependencies 

For nodes n and m in a control-flow graph, m is control 

dependent on n iff (1) there exists a path P from n to m 
with all node x in P (excluding n and m) postdominated 

by m (2) n is not postdominated by m where, nodes 

represent statements, and edges represent the control 

dependencies between statements [2]. Figure 2(b) gives 

the control-dependence graph of Program1. The control-

dependence graph can be constructed using the method of 

Ferrante et al. [9]. 

Figure 2. Postdominator tree of Program 1 (a), Control-dependence graph of Program 1 (b). 
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Figure 1. Program1 (a), its Control-Flow Graph (b), and its Dominator Tree (c). 

#include <iostream.h> 
void main() 

{ 

 int a, b, c, n; 
1  cin >> a >> b; 
2  if(a < 6) 

3  c = a; 
                  else 

4  c = b; 
5  n = c; 
6  while(n < 8) 

 { 
7  if(b > c) 

8  c = 2; 
                        else 

9  n = n + c + 7; 
10  n = n + 1; 

 } 
11  cout << a << b << n; 

 } 
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D.  Genetic Algorithms 

The basic concepts of the genetic algorithm (GA) 

were developed by Holland [10]. GA creates a population 

of individuals represented by chromosomes, which are 

typically encoded solutions to a problem. The 
chromosomes then undergo a process of evolution 

according to rules of breeding. Each individual receives a 

measure of its fitness in the population. Breeding selects 

individuals with high fitness values in the population, and 

through crossing a new population is derived. The basic 

algorithm of GA is given below. 
Simple Genetic Algorithm () 

{ initialize population; 

evaluate population; 

while termination criterion not reached 

{       select solutions for next population; 

perform crossover and mutation; 

evaluate population;  

} 

} 

The previous algorithm will iterate until the population 

has evolved to form a solution to the problem, or until a 

maximum number of iterations have occurred. 

III. THE CONTROL-DEPENDECNIES PROBLEMS IN GUIDING 

SBT 

In this section, we introduce some key problems of 

using the control dependencies in the control-flow graph 

to guide the SBT. We utilize many proper examples from 

the literatures to show the problems of control 

dependencies in guiding SBT. 

 
1. The first problem is determining the control-

dependence path for the statements following 
unstructured transfers of control, such as goto, 
continue, and break [2, 4] and repeat-until structure 
(do-while structure) [12].  

For example, consider the control-flow graph 
(CFG) in Figure 3(a). This control-flow graph was 

taken from the work of Ball and Horwitz [12]. The 

dominator tree of the control-flow graph CFG is 

given in Figure 3(b). Figure 4(a) gives the 

postdominator tree of the control-flow graph CFG. 

The control-dependence graph of the control-flow 

graph CFG is given in Figure 4(b).  

In this example, suppose that the testing criterion 

is the all-statements criterion (all-nodes criterion) and 

the target structure is node 5 the shaded node in 

Figures 3(a), 3(b), 4(a), and 4(b). In addition, suppose 
that TD1 and TD2 are two individuals in a population 

(i.e., two groups of test data). The tests TD1 and TD2 

execute the path EP1 = (entry, T), (1, F), 7, exit and 

the path EP2 = (entry, T), (1, T), (2, T), (3, F), (6, T), 

7, exit in the control-flow graph CFG, respectively. 

In this case, there are two control-dependence paths 

from the entry node to the target node (node 5). These 

two control-dependence paths are CDP1 and CDP2. The 

path CDP1 is (entry, T), (1, T), (2, F) and the path CDP2 

is (entry, T), (1, T), (2, T), (3, T). 

Let us compute the fitness values for TD1 and TD2 by 
using the fitness functions of Pargas, Tracey, and 

Wegener. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 According to the fitness functions of Pargas et al. [2], 
the fitness value of TD1 is 1 (the number of predicates 
on the executed path EP1 that is common with the 
predicates on CDP1 and CDP2 the two control-
dependence paths of 5).  

The fitness value of TD2 is 2 (the number of 

predicates on the executed path EP2 that is common 

with the predicates on CDP1) or 3 (the number of 

predicates on the executed path EP2 that is common 

with the predicates on CDP2).  

Consequently, TD1 has two identical fitness values 

1 but TD2 has two different fitness values 2 and 3. 

 According to the fitness functions of Tracey [5], the 

fitness value of TD1 is dist
3

1
 or dist

4

1 (by 

substituting in equation (1)). Where, executed = 1 the 
number of successfully executed control dependent 
nodes on path EP1 and dependent = 3 or 4 the number 
of the control dependence nodes for the target node 
(node 5) on the two control-dependence paths CDP1 
and CDP2, respectively.  

The fitness value of TD2 is dist
3

2
 or 

dist
4

3 (by substituting in equation (1)). Where, 

executed = 2 or 3 the number of successfully executed 

control dependent nodes on path EP2 and dependent = 

3 or 4 the number of the control dependence nodes for 

node 5 on the two control-dependence paths CDP1 

and CDP2, respectively.  

Figure 3. A control-flow graph CFG (a), and its dominator tree (b). 
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Figure 4. Postdominator tree of CFG (a), and Control-dependence graph of CFG (b). 
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Consequently, both TD1 and TD2 have two 

different fitness values ( dist
3

1
and dist

4

1 for 

TD1 and dist
3

2
 and dist

4

3 for TD2). 

 According to the wok of Wegener et al. [6] the fitness 
value of TD1 is equal to m_dist + 1 or m_dist + 2 (by 
substituting in equation (2)). Where, executed = 1 the 
number of successfully executed control dependent 
nodes on path EP1 and dependent = 3 or 4 the number 
of the control dependence nodes for node 5 on the two 
control-dependence paths CDP1 and CDP2, 
respectively.  

The fitness value of TD2 is equal to m_dist (by 

substituting in equation (2)). Where, executed = 2 or 3 

the number of successfully executed control 

dependent nodes on path EP2 and dependent = 3 or 4 

the number of the control-dependence nodes for node 

5 on the two control-dependence paths CDP1 and 
CDP2, respectively. 

Consequently, TD1 has two different fitness values 

(m_dist + 1 or m_dist + 2) but TD2 has two identical 

fitness values (m_dist). 

From the previous discussion of the example, we 

can conclude that the fitness functions which were 

used by the search-based test-data generation 

techniques of Pargas et al. [2], Tracey [5], and 

Wegener et al. [6] cannot evaluate the individuals 

(TD1 and TD2) (i.e., these functions cannot find the 

fitness values of TD1 and TD2) because all of these 
fitness functions use the dependent (the number of the 

control-dependence nodes for the target structure) as a 

vital term of their definitions. Therefore, all of these 

fitness functions will fail in determining a unique set 

of dependent nodes for the target (node 5) 

subsequently cannot find the fitness value. 
 

2. The second problem is the poor search performance in 
the case of selection structure nested within repetition 
structure (e.g., if structure within for structure) [4]. 

Figure 5 which was presented by McMinn [4] 

demonstrates the problem of structures nested within 

loops. Figure 5 gives an example program 

(loop_example) for if structure nested in for structure 

to the left and its control-flow graph to the right. 

Figure 6 shows the control-dependencies graph of 

the loop_example to the left and its dominator tree to 
the right. 

Node 3 (the shaded node in Figure 5(b)) is the 

structure to be covered (i.e., the target of the search).  

 

In fact, paths taking the false branch from node 2 can 

still execute node 3 in subsequent iterations of loop. 

Therefore, node 3 is not control dependent on node 2. 

Consequently, the search does not receive guidance 

regarding the fact that the true branch from node 2 must 

be covered to reach the target statement. This problem 

results in poor search performance. 
For example, suppose that TD1 and TD2 are two 

test data which execute the two paths P1 and P2, 

respectively. Where, P1 = entry, 1, 2, 1, exit, and P2 = 

entry, 1, exit.  

Similar to the example in the first problem in this 

section, we can compute the fitness values of TD1 and 

TD2 using the fitness functions of Pargas et al. [2], Tracey 

[5], and Wegener et al. [6]. 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

According to the fitness functions of Pargas, both 
TD1 and TD2 have the same fitness value (the value is 

1 because there is one predicate on the executed paths 

P1 and P2 common with the control-dependencies 

path of node 3). Similarly, both the fitness functions 

of Tracey and Wegener will assign for each of TD1 

and TD2 the same approximation level. 

From the previous discussion of the example, we 

can conclude that the control-dependencies based 

fitness functions do not give any guidance for the 

search and cause a poor in the search performance. 
 

3. The third problem is assignment of the approximation 
level for some classes of program with unstructured 
control flow [13]. 

Figure 7 which is taken from the work of Baresel 

et al. [13] demonstrates the problem of the assignment 

of approximation level for program with unstructured 
control flow such as switch-case structure. Figure 7(a) 

shows the code of the switch-case structure and 

Figure 7(b) gives its control-flow graph. Figure 7(c) 

gives the control-dependencies graph of this structure 

and Figure 8 gives its dominator tree. 

Suppose that the target of the search is the 

execution of node 6 (the shaded node in figures 7(b) 

and 7(c)). However, there are three different control-

dependent paths from the entry node through node 6; 

the first path is entry, 1, 5, 6, the second path is entry, 

1, 2, 6, and the third path is entry, 1, 2, 3, 5, 6 (see 
Figure 7(c)) and two possibilities for node 2; the first 

path is 2, 3, 4, 5, 6 and the second path is 2, 3, 6.  

Similar to the computation of the fitness values in 

the first and the second problems, one can compute 

the fitness values and the approximation levels for the 

third problem by using the functions of Pargas et al. 

entry     void loop_example (int i) 

             { 

 int n; 
1. for (n = 0 ; n <= 10; n++) 

 { 

2.    if ( n == 10 && i == 0 ) 

   { 

3.        // target statement 

    } 

 } 

exit       } 

                                            (a)                                      (b) 
 

Figure 5. Loop example (a), with its control flow graph (b) 
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[2], Tracey [5], and Wegener et al. [6].  Consequently, 

there are two fitness values and/or two approximation 

level values possibilities (since two of the paths are of 

the same length). This problem results in misleading 

of the search. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

IV. OVERCOMING THE PROBLEMS OF CONTROL 

DEPENDENCIES 

In this section, we introduce two schemes for 

overcoming the problems of using the control-

dependencies in the control-flow graph for guiding the 

search-based testing techniques to generate the test data. 

Our two schemes depend on using the dominances in the 

control-flow graph instead of the control-dependencies to 

define the fitness function. We use the same examples in 

section III to show the efficiency of dominances in 
guiding SBT against control dependencies. 

The key ingredients for using the dominances in the 

control-flow graph to define the fitness function are:  
1. According to the definition of the dominance in the 

control-flow graph, there is a unique path between 
any two dominated nodes. Therefore, using 
dominance will overcome the problem of determining 
the control-dependencies path for some structures. 
Where some structures have multi-control-
dependencies paths for the target structure such as the 
cases of unstructured transfers and do-while structure. 

2. From the definition of postdominance, there is a 
unique path between any two postdominated nodes. 
Thus, using postdominance can overcome the 
problems of assignment the approximation level for 
some structures. 

From the above two key ingredients, our proposal to 

overcome the problems which are related to the control-

dependencies has two schemes. The first scheme is 

redefining the previous fitness functions using the 

dominances instead of the control dependencies. The 

second scheme is constructing a general form for the 

fitness function using the dominances and 

postdominances in the control-flow graph. 

A. The first scheme: redefining the previous fitness 

functions 

The main idea of the first scheme of our proposal is 

replacement the control-dependencies based terms in 

the definitions of the previous related fitness functions 

(i.e., Pargas, Tracey, and Wegener fitness functions) 

with dominances-based terms. 

According to our first scheme, the redefined fitness 

functions of Pargas, Tracey, and Wegener will be as 

follows. 

 The redefined fitness function of Pargas (RFFP) is the 
number of nodes on the executed path that is common 
with the nodes on the dominance path of the target 
structure.  

 The redefined fitness function of Tracey (RFFT) is the 
following formula: 

)4(
min









 dist

ateddo

executed
RFFT

 

where dominated is the number of the dominance 

nodes for the target structure, executed is the number 

of successfully executed dominance nodes, and dist is 

the branch distance calculation preformed at the 

branching node. 

 The redefined fitness function of Wegener (RFFW) is 
zero if the target structure is executed, otherwise, the 
fitness value is: 

RFFW = m_dist + approximation level ----------(5) 

where approximation level = (dominated-executed). 

To explain the efficiency of the new versions 

(RFFP, RFFT, and RFFW) of the fitness functions in 

overcoming the problems of the control-dependencies 

based functions, consider the control-flow graph 
(CFG) and its dominator tree in Figures 3(a) and 3(b), 

respectively.  

Suppose also that the target structure is node 5 the 

shaded node in Figures 3(a) and 3(b). In addition, 

suppose that TD1 and TD2 are two test cases. TD1 and 

TD2 execute the path EP1 = entry, 1, 7, exit and the 

path EP2 = entry, 1, 2, 3, 6, 7, exit in the control-flow 

graph CFG, respectively, see Figure 3(a). We have 

illustrated that the old versions of these fitness 

functions cannot evaluate the tests TD1 and TD2 

because they assign more than one fitness value for 
each of them. 

The computation of the fitness values for TD1 and 

TD2 using the new functions (i.e., RFFP, RFFT, and 

RFFW) is depicted in the following paragraphs. 

 According to RFFP the new version of Pargas, the 
fitness value of TD1 is computed as follows:  
Where the path EP1 = entry, 1, 7, exit is executed 

by TD1 and the dominance path dom(5) of node 5 

is dom(5) = entry, 1, 2, 5. Therefore, the fitness 

value of TD1 is RFFP(TD1)=2 because entry and 1 

switch (x) 

{ 

1.   case 1: 

2.            if (condition_1) 

                   return; 

3.       if (condition_2) 

    break; 

4.  case 2: 

5.    if (condition_3) 

    break; 

return; 

          } 

6.       // target statement 

 
(a) 

Figure 7. Unstructured control flow example (a), its control-flow graph 

(b), and its control-dependence graph (c). 

(b) 

1 

entry 

exit 

2 

4 

5 

6 

3 

T 

F 

T 

F 

T 

F 

F 

T 

(c) 

5 

6 

entry 

1 

2 

4 

3 

F 

T 

F 

F 

T 

F 

F F 

Figure 8.  Dominator of the unstructured control flow example. 

1 

entry 

2 

4 

5 

6 

3 

1274 JOURNAL OF SOFTWARE, VOL. 5, NO. 11, NOVEMBER 2010

© 2010 ACADEMY PUBLISHER



are the only common nodes between EP1 and 

dom(5). In fact, RFFP(TD1) is unique value. 

Similarly, RFFP(TD2)=3 and it is also a single 

value. 

 According to RFFT the new version of Tracey, the 

fitness value of TD1 is dist
4

2
and the fitness 

value of TD2 is dist
4

3
. It is clear that, the 

fitness values of TD1 and TD2 are unique values. 

 According to RFFW the new version of Wegener 
the fitness value of TD1 is m_dist +2 and the 
fitness value of TD2 is m_dist +1. It is clear that, 
the fitness values of TD1 and TD2 are also unique 
values. 

From the above example, we can conclude that the 

new versions of the fitness functions of Pargas, 

Tracey, and Wegener succeeded to overcome the first 

problem of the control-dependencies based fitness 
functions by generating unique value for each test 

case. 

Concerning the second problem, consider the 

example with the second problem in Figure 5. In this 

example the target node is node 3 and the test cases 

are TD1 and TD2 which execute the two paths P1 = 

entry, 1, 2, 1, exit, and P2 = entry, 1, exit, 

respectively. From Figure 6(b), the dominance path of 

node 3 is dom(3)=entry, 1, 2, 3. 

 According to RFFP the new version of Pargas the 
fitness value of TD1 is 3 and the fitness value of 
TD2 is 2. 

 According to RFFT the new version of Tracey the 

fitness value of TD1 is dist
4

3
 and the fitness 

value of TD2 is dist
4

2
. 

 According to RFFW the new version of Wegener 
the fitness value of TD1 is m_dist +1 and the 
fitness value of TD2 is m_dist +2. 

From the above example, we can conclude that the 
new versions of the fitness functions of Pargas, 

Tracey, and Wegener succeeded to overcome the 

second problem of the control-dependencies based 

fitness functions by improving the search in the 

convergence direction. 

Concerning the third problem, consider the 

example with the third problem in Figure 7. In this 

example the target node is node 6. In addition, there 

are three control-dependencies paths from entry to 

node 6 but the path dom(6)=entry, 1, 2, 3, 6 is the 

only dominance path from the entry to node 6. 
Therefore, each function of the new versions of the 

fitness functions of Pargas, Tracey, and Wegener will 

find a single fitness value for the test cases; 

consequently all of them will overcome the third 

problem.  

The computation of the fitness values for TD1 and 

TD2 using the new version of the fitness functions is 

as follows. 

 According to RFFP the fitness value of TD1 is 2 
and the fitness value of TD2 is 5. 

 According to RFFT the fitness value of TD1 is 

dist
5

2
 and the fitness value of TD2 

is dist
5

5
. 

 According to RFFW the fitness value of TD1 is 
m_dist +3 and the fitness value of TD2 is zero. 
It is clear that TD2 covers the target node (node 6). 

The above discussion shows the efficiency of 

dominances in guiding SBT against control dependencies. 

We can replace all the pervious fitness functions by a 

unique fitness function. In the next section we introduce 

the definition of this fitness function. 

B. The second scheme: constructing a general form for 

the fitness function. 

The second scheme focuses on constructing a general 

form for the fitness function based on the dominances and 

postdominances relationships in the control-flow graph of 

the program under test. 

From the definitions of the dominance and 
postdominance (implication) relations which is given by 

Bertolino and Marré [11], we can define the essential 

path for any node n in a control-flow graph of a program 

as follows.  

 
Definition 1: Essential Path  

For any node n in a control-flow graph G = (V, E) of a 

program with two distinguished nodes n0 (the unique 

entry) and nk (the unique exit), there is a path  

kqqqmmm nnnnnnnnnP
ji
,,...,,,,,...,,,

21210   

where nnnnn
immm ,,...,,,

210 are nodes of the dominator 

tree of the control-flow graph G and 

kqqq nnnnn
j
,,...,,,

21
 are nodes of the postdominator 

tree of the control-flow graph G, such that any path 

covers n has to cover all the other nodes of P. Then, P is 

called the essential path of n. The path P is the 

concatenation of the dominance path of node n and the 

postdominance path of n. 
For example the dominance path of node 5 in Figure 

3(b) is entry, 1, 2, 5 and the postdominance path of 5 in 

Figure 4(a) is 5, 6, 7, exit. Therefore, the essential path of 

node 5 is entry, 1, 2, 5, 6, 7, exit. 

The key idea of our suggested fitness function is how 

far is the executed path from covering the essential path 

of the target? In other words, on the essential path of the 

target how many nodes in the front of the target without 

covering and how many nodes in behind it without 

covering? Consequently, our fitness function measures 

the coverage ratio of the essential path of the target. 
Therefore, the general form of the fitness function is: 

FF= fit_value + approximation_value; 

where the fit_value is a function in dominance nodes, and 

the approximation_value is a function in postdominance 
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nodes. The fit_value is computed from the following 

formula. 

Total_dom

Common_dom
fit_value 

2

1  

where Common_dom is the number of nodes on the 

executed path that is common with the nodes on the 

dominance path of the target structure and Total_dom is 

the total number of nodes on the dominance path of the 

target structure. In addition, the approximation_value is 

computed from the following formula. 

domTotal_post

tdomCommon_pos
valueionapproximat 

2

1
_  

where Common_postdom is the number of nodes on the 

executed path that is common with the nodes on the 

postdominance path from the target structure to the root 

of the postdominator tree and Total_postdom is the total 

number of the nodes on this postdominance path.  
The target is covered when the fitness function FF 

assigns the value 1.  

To illustrate the efficiency of the new fitness function 

in overcoming the problems of the control dependencies 

based fitness functions:  

 

 Concerning the first problem, consider the example in 
Figures 3 and 4. In addition, suppose that TD1 and 
TD2 are two test cases which execute the path EP1 = 
(entry, T), (1, F), 7, exit and the path EP2 = (entry, T), 
(1, T), (2, T), (3, F), (6, T), 7, exit in the control-flow 
graph CFG, respectively and the target structure is 
node 5 the shaded node in Figures 3 and 4.  

From the dominator tree and the postdominator 
tree which are given in Figures 3(b) and 4(a), 

respectively, the essential path P of node 5 is entry, 1, 

2, 5, 6, 7, exit. In addition, the dominance path of 

node 5 is entry, 1, 2, 5 and the postdominance path of 

5 is 5, 6, 7, exit.  

For the first test case TD1, the common nodes 

between the executed path EP1 = (entry, T), (1, F), 7, 

exit and the dominance path of node 5 dom(5)=entry, 

1, 2, 5 are entry, and  1. Therefore, Common_dom = 2 

and Total_dom = 4.  In addition, the common nodes 

between the executed path EP1 and the postdominance 

path of 5 pdom(5)=5, 6, 7, exit are 7, and exit. 
Therefore, Common_postdom = 2 and Total_postdom 

= 3.   

The fitness value of TD1 according to the new 

fitness function  

FF = fit_value + approximation_value = 

domTotal_post

tdomCommon_pos

Total_dom

Common_dom


2

1

2

1  

58.0
3

2

2

1

4

2

2

1
  

For the second test case TD2, the common nodes 

between the executed path EP2 = (entry, T), (1, T), (2, 

T), (3, F), (6, T), 7, exit and the dominance path of 

node 5 are entry, 1, and 2. Therefore, Common_dom = 

3 and Total_dom = 4.  In addition, the common nodes 

between the executed path EP2 and the postdominance 

path of 5 are 6, 7, and exit. Therefore, 

Common_postdom = 3 and Total_postdom = 3.   

The fitness value of TD2 according to the new 

fitness function FF = fit_value + 

approximation_value = 

domTotal_post

tdomCommon_pos

Total_dom

Common_dom


2

1

2

1  

88.0
3

3

2

1

4

3

2

1
  

From the fitness values of the two test cases TD1 and 

TD2 we can conclude that our suggested fitness function 

is more efficiency than the old versions of the previous 

fitness functions because it succeeded to evaluate TD1 

and TD2 by finding a unique fitness value for each of 

them. In addition, it has the ability to distinguish and 

differentiate between the two test cases. It is clear that the 

fitness value of TD2 is greater than the fitness value of 

TD1 because the executed path of TD2 is closer to cover 

the target node than the executed path of TD1. 

Consequently, the new fitness function can easily order 
the generated test cases.  

 

 Concerning the second problem, consider the example 
in Figure 5 and Figure 6 which demonstrate the 
problem of structures nested within loops. Suppose 
that TD1 and TD2 are two tests which execute the two 
paths P1= entry, 1, 2, 1, exit, and P2 = entry, 1, exit, 
respectively. Node 3 in Figures 5 and 6 is the structure 
to be covered.  

From the dominator tree and the postdominator 

tree which are given in Figures 6(b) and 6(c), 

respectively, the essential path P of node 3 is entry, 1, 

2, 3, 1, exit. In addition, the dominance path of node 3 

is entry, 1, 2, 3 and the postdominance path of 3 is 3, 
1, exit. 

For the first test case TD1, the common nodes 

between the executed path P1 and the dominance path 

of node 3 are entry, 1, and 2. Therefore, 

Common_dom = 3 and Total_dom = 4.  In addition, 

the common nodes between the executed path P1 and 

the postdominance path of 3 are 1 and exit. Therefore, 

Common_postdom = 2 and Total_postdom = 3.   

The fitness value of TD1 according to the new 

fitness function  FF = fit_value + 

approximation_value = 

domTotal_post

tdomCommon_pos

Total_dom

Common_dom


2

1

2

1

 

71.0
3

2

2

1

4

3

2

1
  

For the second test case TD2, the common nodes 

between the executed path P2 and the dominance path 

of node 3 are entry and 1. Therefore, Common_dom = 

2 and Total_dom = 4.  In addition, the common nodes 

between the executed path P2 and the postdominance 

path of 3 are 1 and exit. Therefore, Common_postdom 
= 2 and Total_postdom = 3.   

The fitness value of TD2 according to the new 

fitness function FF = fit_value + 

approximation_value = 
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domTotal_post

tdomCommon_pos

Total_dom

Common_dom


2

1

2

1  

58.0
3

2

2

1

4

2

2

1
  

We have showed that node 3 is dominated by node 2. 

Therefore, our dominance-based fitness function assigns 

different values for TD1 and TD2. In contrast node 3 is not 

control dependent on node 2. Therefore, the control-

dependencies based fitness functions assign for each of 

TD1 and TD2 the same value.  

 

 Concerning the third problem, consider the example 
with the third problem in Figure 7. In this example the 
target node is node 6. In addition, there are three 
control-dependencies paths from entry to node 6. In 
contrast there is only one dominance path from the 
entry to node 6 and one postdominance path from 
node 6 to exit. Therefore, our fitness function will 
assign a unique value for each of the two test cases 
TD1 and TD2. Consequently our new fitness function 
will overcome the third problem.  

One can compute the two fitness values of TD1 and 

TD2 by the same method of the first and the second 

problems. 

The above discussion has showed that using 
dominances and postdominances for defining the fitness 

function enhances significantly the efficiency of the SBT; 

consequently SBT overcomes the control-dependencies 

problems.  

Although RFFP, RFFT, RFFW and the general fitness 

function depend on dominances and postdominances, 

each function has a different definition. Therefore, there 

is no any correlation between the fitness values calculated 

using RFFP, RFFT, and RFFW and the fitness values 

calculated using the general formula of the fitness 

function for the test cases TD1 and TD2. 

V. THE RELATED WORK 

In this section, we discuss how the pervious works deal 

with the control dependencies problems. 

 

The work of Parags et al. [2] does not address any of 

the above problems of the control dependencies.  

Baresel et al. [13] treat branches in the second problem 

that miss the target in iterations of the loop as critical 

branches.  Therefore, node 3 is treated as if it were 

control dependent on node 2. In order to circumvent this 

problem, Tracey [5] examines the branch distance during 

each iteration of the loop and uses the minimum branch 
distance obtained for computing the final fitness value. 

For the third problem, McMinn [4] claims that there is 

two plausible solutions to this problem include optimistic 

and pessimistic approximation level allocation strategies. 

In an optimistic strategy, a control dependent branching 

node is allocated its approximation level on the basis of 

the shortest control dependent path from itself to the 

target node.  In this way the approximation level of node 

2 is 1 on the basis of the direct path (2, 3, 6) through node 

6. In the pessimistic strategy, a branching node is 

allocated its approximation level on the basis of the 

longest control dependent path to the target node. In this 

scheme node 2 would be assigned an approximation level 

of 3 on the basis of the path 2, 3, 4, 5, 6.  

Baresel et al. [13] used both optimistic and pessimistic 

strategies in the initial experiments. They show that the 

different strategies have different effects on the progress 

of the search. They cannot conclude which strategy works 

best in general.  

For switch-case problem, Wang et al. [7] converted the 

control-flow graph and the control-dependencies graph 

for the switch-case into a flattened control-flow graph 
and a flattened control-dependence graph. Consequently, 

a fitness calculation approach is proposed for the switch-

case structure which is based on alternative critical 

branches for the switch-case.  

VI. CONCLUSIONS AND FUTURE WORK 

Search-based optimization techniques have been 

applied to a wide variety of software engineering 

activities. Genetic algorithms have been the most widely 

employed search technique in search-based testing. 

The representation of the problem and the definition 

of the fitness function are two key ingredients for the 
application of search-based optimization to software 

engineering problems. Therefore, a well-defined fitness 

function is essential to the efficiency of SBT. 

This paper introduced many key problems of using 

the control-dependencies in the control-flow graph to 

guide the search-based testing for generating test data. In 

addition, the paper presented two schemes for 

overcoming these problems. These schemes employed the 

dominances in the control-flow graph instead of the 

control-dependencies for guiding the search-based testing 

to find the test data. The first scheme redefined the fitness 
functions of the previous related work by replacement the 

control-dependencies based terms in the definitions of 

these fitness functions with dominances-based terms. The 

second scheme provided a general form for the fitness 

function with dominances- and postdominance-based 

terms for guiding the SBT.  

The paper presented a theoretical comparison between 

the efficiency of dominances and control dependencies in 

guiding SBT by using proper examples from the 

literatures. The presented comparison showed the ability 

of the proposed schemes to overcome the problems of 

using the control-dependencies in the control-flow graph 
to guide the SBT to generate the test data. 

Our future work will focus on conducting an 

empirical study to show how much the efficiency of the 

generated test data improved, after applying the control 

dependency-based and dominance-based approach to 

some real projects, respectively. In addition, we will use 

dominance relationship in the control flow graph to solve 

other fitness value calculation problems. One of the open 

problems is how we can apply the dominance to generate 

feasible path cover for a given test coverage criterion.  
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