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Abstract—By use of the properties of ant colony algorithm 
and genetic algorithm, a novel ant colony genetic hybrid 
algorithm, whose framework of hybrid algorithm is genetic 
algorithm, is proposed to solve the traveling salesman 
problems. The selection operator is an artificial version of 
natural selection, and chromosomes with better length of 
tour have higher probabilities of being selected in the next 
generation. Based on the properties of pheromone in ant 
colony algorithm the ant colony crossover operation is given. 
Four mutation strategies are put forward using the 
characteristic of traveling salesman problems. The hybrid 
algorithm with 2-opt local search can effectively find better 
minimum beyond premature convergence. Ants choose 
several tours based on trail, and these tours will replace the 
worse solution. Compare with the simulated annealing 
algorithm, the standard genetic algorithm and the standard 
ant colony algorithm, all the 4 hybrid algorithms are proved 
effective. Especially the hybrid algorithm with strategy D is 
a simple and effective better algorithm than others. 
 
Index Terms—ant colony algorithm, genetic algorithm, 
traveling salesman problem 
 

I.  INTRODUCTION 

Inspired by the behavior of real ants, Marco Dorigo 
first introduced the colony optimization approach in his 
Ph.D. thesis in 1992 and expanded it in his further work. 
The characteristics of artificial ant colony include a 
method to construct solutions that balances pheromone 
trails and a problem-specific heuristic, a method to both 
reinforce and evaporate pheromone, and local search to 
improve the constructed solutions. The ACO[1] methods 
have been successfully applied to diverse combinatorial 
optimization problems including traveling salesman, 
quadratic assignment, vehicle routing[2], 
telecommunication networks[3], graph coloring, 
constraint satisfaction, Hamitonian graphs and scheduling. 
Genetic algorithms (GAs) or more generally, 
evolutionary algorithms [4] have been touted as a class of 
general-purpose search strategies for optimization 

problems. GAs use a population of solutions, from which, 
using crossover, mutation and selection strategies, better 
and better solutions can be produced. GAs can handle any 
kind of objective functions and any kind of constraints 
without much mathematical requirements about the 
optimization problems, and have been widely used as 
search algorithms in various applications. Various GAs 
have been proposed in the literature [5,6] and shown 
superior performances over other methods. As a 
consequence, GAs seemed to be nice approaches for 
solving TSP. However, GAs may cause certain 
degeneracy in search performance if their operators are 
not carefully designed [6]. A genetic algorithm (GA) is a 
metaheuristic inspired by the efficiency of natural 
selection in biological evolution. Genetic algorithms have 
been applied successfully to a wide variety of 
combinatorial optimization problems and are the subject 
of numerous recent books [7-8] and conference 
proceedings. Unlike traditional heuristics (and some 
metaheuristics like tabu search) that generate a single 
solution and work hard to improve it, GAs maintain a 
large number of solutions and perform comparatively 
little work on each one. Several researchers (see [9] and 
the references contained within) have implemented GAs 
for the standard TSP, with mixed results. The GA in [9] 
found new best solutions for some well studied 
benchmark problems. Recently, there are many search 
activities over artificial ants, which are agents with the 
capability of mimicking the behavior of real ants [10,11]. 
The agents are sufficiently intelligent to exploit 
pheromone information that has been left on the traversed 
ground. Agents can then choose a route according to the 
amount of pheromone. The larger amount of pheromone 
is on a route, the larger is the probability of selecting the 
route by agents. With such concept, a population-based 
algorithm, Ant colony optimization (ACO), has been 
widely used as a new cooperative search algorithm [10]. 
In this paper, a novel algorithm of ant colony genetic 
algorithm for traveling salesman problem is proposed. 

II.  THE BASIC ACO ALGORITHM 

In this section we introduce the basic ACO 
algorithm. We decided to use the well-known traveling 
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salesman problem as benchmark, in order to make the 
comparison with other heuristic approaches easier. Given 
a set of n  towns, the TSP can be stated as the problem of 
finding a minimal length closed tour that visits each town 
once. We call ijd  the length of the path between towns i  

and j . In the case of Euclidean TSP, ijd is the Euclidean 

distance between i  and j  (i.e., 
22 )()( jijiij yyxxd −+−= . An instance of the 

TSP is given by a graph ( N , E ), where N  is the set of 
towns and E  is the set of edges between towns (a fully 
connected graph in the Euclidean TSP). 

Let )(tbi ( ni ,,2,1= ) be the number of ants in 

town i  at time t  and let ∑
=

=
n

i
i tbm

1
)(  be the total 

number of ants. Each ant is a simple agent with the 
following characteristics: 

(1) It chooses the town to go to with a probability that 
is a function of the town distance and of the amount of 
trail present on the connecting edge. 

(2) To force the ant to make legal tours, transitions to 
already visited towns are disallowed until a tour is 
completed (this is controlled by a tabu list). 

(3) When it completes a tour, it lays a substance called 
trail on each edge ),( ji  visited. 

Let )(tijτ  be the intensity of trail on edge ),( ji  at 
time t . Each ant at time t  chooses the next town, where 
it will be at time 1+t . Therefore, if we call an iteration 
of the ACO algorithm the m  moves carried out by the 
m  ants in the interval )1,( +tt , then every n  iterations 
of the algorithm (which we call a cycle) each ant has 
completed a tour. At this point the trail intensity is 
updated according to the following formula 

ijijij tnt τρττ Δ+=+ )()(                       (1) 
where ρ  is a coefficient such that (1- ρ ) represents 

the evaporation of trail between time t  and nt + , 

∑
=

Δ=Δ
m

k

k
ijij

1
ττ                                            (2) 

where k
ijτΔ  is the quantity per unit of length of trail 

substance (pheromone in real ants) laid on edge ),( ji  by 
the k-th ant between time t  and nt + . It is given by 

⎪
⎩

⎪
⎨

⎧
=

otherwise0
 tour itsin  

j) (i, edge usesant  th -k if

k
k
ij L

Q
τΔ        (3) 

where Q is a constant and kL  is the tour length of the 
k-th ant. The coefficient ρ  must be set to a value ρ  <1 
to avoid unlimited accumulation of trail. In our 
experiments, we set the intensity of trail at time 0, 

)0(ijτ , to a small positive constant c. 

In order to satisfy the constraint that an ant visits all the 
n different towns, we associate with each ant a data 
structure called the tabu list, that saves the towns already 
visited up to time t and forbids the ant to visit them again 
before n iterations (a tour) have been completed. When a 
tour is completed, the tabu list is used to compute the 
ant’s current solution (i.e., the distance of the path 
followed by the ant). The tabu list is then emptied and the 
ant is free again to choose. We define ktabu  the 
dynamically growing vector, which contains the tabu list 
of the kth ant, ktabu  the set obtained from the elements 

of ktabu , and )(stabuk  the s-th element of the list (i.e., 
the s-th town visited by the k-th ant in the current tour). 

We call visibility ijη  the quantity 1
dij

. This 

quantity is not modified during the run of the ACO 
algorithm, as opposed to the trail, which instead changes 
according to the previous formula (1). 

We define the transition probability from town i  to 
town j  for the k-th ant as 

⎪
⎪
⎩
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     (4) 

where kallowed  = { N - ktabu } and where α  and 

β  are parameters that control the relative importance of 
trail versus visibility. Therefore the transition probability 
is a trade-off between visibility (which says that close 
towns should be chosen with high probability, thus 
implementing a greedy constructive heuristic) and trail 
intensity at time t  (that says that if on edge ),( ji  there 
has been a lot of traffic then it is highly desirable, thus 
implementing the autocatalytic process). 

Given the definitions of the preceding section, the so-
called ant-cycle algorithm is simply stated as follows. 
Formally the ant-cycle algorithm is: 
1. Initialize: 

Set t:=0 {t is the time counter} 
Set NC:=0 {NC is the cycles counter} 
For every edge (i,j) set an initial value cij =τ  for 

trail intensity and 0=Δ ijτ  
Place the m ants on the n nodes 

2. Set s:=1 {s is the tabu list index} 
For k:=1 to m do 

Place the starting town of the k-th ant in )(stabuk  
3. Repeat until tabu list is full {this step will be repeated 
(n-1) times} 

Set s:=s+1 
For k:=1 to m do 

Choose the town j to move to, with probability 
)(tp k

ij  given by equation (4) {at time t the k-th ant is on 

town )1( −= stabui k } 
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Move the k-th ant to the town j 
Insert town j in )(stabuk  

4. For k:=1 to m do 
Move the k-th ant from )(ntabuk  to )1(ktabu  

Compute the length kL  of the tour described by the 
k-th ant 

Update the shortest tour found 
For every edge (i,j) 

For k:=1 to m do 

⎪⎩

⎪
⎨

⎧
=Δ

otherwise0

 tour itsin  j) (i, edge usesant  th -k if
k

k
ij L

Q
τ  

∑
=

Δ=Δ
m

k

k
ijij

1
ττ  

5. For every edge (i,j) compute )( ntij +τ  according to 

equation ijijij tnt τρττ Δ+=+ )()(  
Set t:=t+n 
Set NC:=NC+1 
For every edge (i,j) set 0:=Δ ijτ  

6. If (NC < NCMAX) and (not stagnation behavior) 
then 

Empty all tabu lists 
Goto step 2 

else 
Print shortest tour 
Stop 

The complexity of the ant-cycle algorithm is 
)( 2 mnNCO ⋅⋅  if we stop the algorithm after NC 

cycles. In fact step 1 is )( 2 mnO + , step 2 is )(mO , 

step 3 is )( 2 mnO ⋅ , step 4 is )( 2 mnO ⋅ , step 5 is 

)( 2nO , step 6 is )( mnO ⋅ . Since we have 
experimentally found a linear relation between the 
number of towns and the best number of ants, the 
complexity of the algorithm is )( 3nNCO ⋅ . 

We also experimented with two other algorithms of 
the AS, which we called ant-density and ant-quantity 
algorithms. They differ in the way the trail is updated. In 
these two models each ant lays its trail at each step, 
without waiting for the end of the tour. In the ant-density 
model a quantity Q of trail is left on edge (i,j) every time 
an ant goes from i to j; in the ant quantity model an ant 

going from i to j leaves a quantity 
ijd

Q  of trail on edge 

(i,j) every time it goes from i to j. Therefore, in the ant-
density model we have 

⎩
⎨
⎧

=Δ
otherwise0

 tour itsin  j) (i, edge usesant  th -k ifQk
ijτ  

and in the ant-quantity model we have 

⎪⎩

⎪
⎨
⎧

=Δ
otherwise0

 tour itsin  j) (i, edge usesant  th -k if
ij

k
ij

d
Q

τ

From these definitions it is clear that the increase in trail 
on edge (i,j) when an ant goes from i to j is independent 
of dij in the ant-density model, while it is inversely 
proportional to dij in the ant-quantity model (i.e., shorter 
edges are made more desirable by ants in the ant-quantity 
model). 

III.  THE BASIC GENETIC ALGORITHM 

The evolutionary theory attributes the process of the 
natural evolution of populations to the Darwin`s principle 
of natural selection "survival of the fittest". Genetic 
Algorithms (GA) were developed by Holland (1975), and 
are based on the principles of natural selection and 
genetic modification. GA are optimization methods, 
which operate on a population of points, designated as 
individuals. Each individual of the population represents 
a possible solution of the optimization problem. 
Individuals are evaluated depending upon their fitness. 
The fitness indicates how well an individual of the 
population solves the optimization problem. 

GA begin with random initialization of the population. 
The transition of a population to the next takes place via 
the application of the genetic operators: Selection, 
crossover, and mutation. Through the selection process, 
the fittest individuals will be chosen to go to the next 
population. Crossover exchanges the genetic material of 
two individuals creating two new individuals. Mutation 
arbitrarily changes the genetic material of an individual. 
The application of the genetic operators upon the 
individuals of the population continues until a sufficiently 
good solution of the optimization problem is found. The 
solution is usually achieved when a pre-defined stop 
condition, i.e., a certain number of generations is reached. 
GA has the following general features: 

(1) GA operates with a population of possible 
solutions (individuals) instead of a single individual. 
Thus, the search is carried out in a parallel form. 

(2) GA is able to find optimal or sub-optimal 
solutions in complex and large search spaces. Moreover, 
GA are applicable to nonlinear optimization problems 
with constraints, that can be defined in discrete or 
continuous search spaces.  

(3) GA examines many possible solutions at the same 
time. So there is a higher probability that the search 
converges to an optimal solution. 

In the classical GA developed by Holland (1975), the 
individuals are represented by binary numbers, i.e., bit 
strings. In the meantime, new representations for 
individuals and appropriate genetic operators have been 
developed. For optimization problems with variables 
within the continuous domain the real representation has 
shown to be more suitable. With this type of the 
representation, individuals are represented directly as real 
numbers. For this case, it is no necessary to transform 
real numbers into binary. In the following, some terms 
and definitions are described. 
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After several generations, GA can converge to the 
best solution. Let P(t) and C(t) are parents and offspring 
in generation t. A usual form of general GA is shown in 
the following:  
Procedure: General GA  

Begin  
t ← 0;  
Initialize P(t); {Generate random population of n 

chromosomes (suitable solutions for the problem)} 
Evaluate P(t); {Evaluate the fitness f(x) of each 

chromosome x in the population} 
While (not match the termination conditions) do  

Recombine P(t) to yield C(t);  
[Selection] Select two parent chromosomes 
from a population according to their fitness 
(the better fitness, the bigger chance to be 
selected)  
[Crossover] With a crossover probability 
cross over the parents to form a new 
offspring (children). If no crossover was 
performed, offspring is an exact copy of 
parents.  
[Mutation] With a mutation probability 
mutate new offspring at each locus (position 
in chromosome).  
[Accepting] Place new offspring in a new 
population  
[Replace] Use new generated population for 
a further run of algorithm  

Evaluate C(t);  
Select P(t+1) form P(t) and C(t);  
t ← t+1;  

End;  
End;  
Recently, genetic algorithms with local search have 

also been considered as good alternatives for solving 
optimization problems. The local search for TSP, 2-opt 
approach, can be implemented after crossover and 
mutation operators. 

IV.  ANT COLONY GENTIC ALGORITHM 

A.   Ant Colony Trail Update 
After all ants have constructed a solution, we can 

update pheromone trail according to populations. The 
pheromone-updating rule is performed as 

),(),(),( srsrsr τΔρττ +=         （5） 
Where ),( srτ  is pheromone trail between city r  and s , 

⎩
⎨
⎧ ∈

=
otherwise0

tourbest),(if/
),(

srLQ
sr gbτΔ , and 

gbL  is the optimal tour length for the TSP problem. 
To avoid search stagnation, the allowed range of the 

pheromone trail strengths is limited to the interval 
[ minτ , maxτ ], that is, maxmin, ττττ ≤≤∀ ijij . 

B.   Selection Operators 
This operator is designed by a common method of 

natural selection in GA called the Roulette Wheel method. 
The Roulette Wheel method simply chooses the strings in 
a statistical fashion based solely upon their relative (i.e., 
percentage) cost or fitness values. So, the natural 
selection operator in this GA randomly chooses strings 
from the current population with probability inversely 
proportional to their cost. 

The i th chromosome is selected based on the 
probability 

∑
=

= n

i
i

i
i

f

f
P

1

                                                   (6) 

where if  is fitness of i th chromosome. if  is the 
reciprocal of length of tour. The shorter the route the 
higher the fitness value is. 

C.  Ant Colony Crossover Operators 
There are many different types of crossover operators, 

but we discuss ant colony crossover operator as following. 
Let’s suppose we have two parent tours given by  

P1=1 2 3 4 5 6 7 8 
P2=1 2 8 3 4 5 7.6 
They are shown in figure 1. The coarse linear represent 

that the pheromone trail of these two city is higher. We 
can sort the 8 sides pheromone trail of two parent tours. 
We note the coarse linear from the maximum to k th 
( 5=k ) maximum according the pheromone trail. For 
example, the pheromone trail of 12e 、 23e 、 34e 、

45e , 67e  in 1P  are higher, and 12e 、 34e 、 45e 、

16e , 67e  in 2P  are higher. Then we use these sides make 
up a new offspring solution. We can choose the side 
which pheromone trail is the higher, as the solution is 
illegal. And we choose the other side by nearest rule. The 
process is shown in figure2. 

 
Figure 1. Two parent solutions 
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Figure2. The part solution and offspring solution 

D.  Mutation Operators 
There are following methods to generate a new tour 

1C  from the tour 0C . 

Mutation operator A Choose two cities 1j  and 

2j from the tour 0C  by randomly, and then swap 1j  

with 2j  in the tour 0C , so the new tour is 1C . For 

example, suppose 0C =2 3 4 1 5 7 9 8 6, 31 =j  and 

92 =j , so 1C =2 9 4 1 5 7 3 8 6. 

Mutation operator B Choose a city 1j  from the tour 

0C  by randomly, and then swap 1j  with the next visited 

city. For example, suppose 0C =2 3 4 1 5 7 9 8 6, 

31 =j , so 1C =2 4 3 1 5 7 9 8 6. 

Mutation operator C A modified solution 1C  is 

generated from 0C  by randomly choose two cities 1j  

and 2j  and reversing the sequence in which the cities in 

between cities 1j  and 2j  are traversed, i.e. the 2-change 

generation mechanism. For example, suppose 0C =2 3 4 

1 5 7 9 8 6, 31 =j  and 92 =j , so 1C =2 9 7 5 1 4 3 8 
6. 

Mutation operator D Choose two cities 1j  and 

2j from the tour 0C  by randomly, and then insert city 

1j  into the latter of 2j city. For example, suppose 0C =2 

3 4 1 5 7 9 8 6, 31 =j  and 92 =j , so 1C =2 4 1 5 7 9 
3 8 6. 

E.  2-Option  Llocal Search 
Each individual has a 2-option local search 

minimization applied to their tour. The 2-option local 
search is not the most effective local search method. A 3-
option local search or the “champion” LK search has 
been proven much more effective and efficient. While 
this may be true, they also require much more 
computation time and perhaps parallel processing to 
obtain an adequate number of generations in a reasonable 

timeframe. For the city sets examine here a 2-option local 
search is sufficient, and for larger city sets employing a 
LK search will continue the success of the algorithm. The 
framework for a 2-option local search is shown in Figure 
3. 

 
Figure3. 2-option local search 

The local search takes an initial solution and makes 
incremental modifications in order to find a better tour. 
The operation makes 2 breaks in the tour, recombines in 
the only possible other option for a complete tour, and 
then compares the new tour distance to the previous tour 
distance. This process results in a local optimum due to 
small rearrangements which work out short nonoptimized 
sections in the tour. 

F.  Ant Colony Gentic Hybrid Algorithm 
The ant colony genetic hybrid algorithm solving TSP 

can be expressed as follows: 
1. Initialize: 

Set t:=0 {t is the time counter} 
Set NC:=0 {NC is the cycles counter} 
Generate N  tours, and choose the better m  tours 

from these N  tours, and pheromone laid on edge of 
these m  better tours. 

Set 0=Δ ijτ  
Place the m ants on the n nodes 

2. Set s:=1 {s is the tabu list index} 
For k:=1 to m do 

Place the starting town of the k-th ant in )(stabuk  
3. Repeat until tabu list is full {this step will be repeated 
(n-1) times} 

Set s:=s+1 
For k:=1 to m do 

Choose the town j to move to, with probability 
)(tp k

ij  given by equation (4) {at time t the k-th ant is on 

town )1( −= stabui k } 
Move the k-th ant to the town j 
Insert town j in )(stabuk  

4. For k:=1 to m do 
Move the k-th ant from )(ntabuk  to )1(ktabu  

Compute the length kL  of the tour described by the 
k-th ant 

Update the shortest tour found 
For every edge (i,j) 
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For k:=1 to m do 

⎪⎩

⎪
⎨

⎧
=Δ

otherwise0

 tour itsin  j) (i, edge usesant  th -k if
k

k
ij L

Q
τ  

∑
=

Δ=Δ
m

k

k
ijij

1

ττ  

5. Selection operators 
6. Ant colony crossover operators 
7. Mutation operator 
8. 2-option local search 
9. Ants choose several tours based on trail, and these 
tours will replace the worse solution 
10. Save the current best tour 
11. For every edge (i,j) compute )( ntij +τ  according to 

equation ijijij tnt τρττ Δ+=+ )()(  
Set t:=t+n 
Set NC:=NC+1 
For every edge (i,j) set 0:=Δ ijτ  

12. If (NC < NCMAX) and (not stagnation behavior) 
then 

Empty all tabu lists 
Goto step 2 

else 
Print shortest tour 
Stop 

V..EXPERIMENTAL RESULTS 

A.  Traveling Salesman Problem 
Almost all ACO algorithms have initially been tested 

on the traveling salesman problem. The traveling 
salesman problem (TSP) can be represented by a 
complete graph ),( ANG =  with N  being the set of 
nodes, also called cities, and A being the set of arcs fully 
connecting the nodes.  Each arc Aji ∈),(  is assigned a 

value ijd  which represents the distance between cities i  

and j . The TSP then is the problem of finding a shortest 

closed tour visiting each of the Nn =  nodes of G  
exactly once. For symmetric TSPs, the distances between 
the cities are independent of the direction of traversing 
the arcs, that is, jiij dd =  for every pair of nodes. In the 

asymmetric TSP(ATSP) at least for one pair of nodes i  
and j  we have jiij dd ≠ .All the TSP instances used in 
the empirical studies presented in this article are taken 
from the TSPLIB benchmark library accessible at 
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. 
These instances have been used in many other studies and 
partly stem from practical applications of the TSP. 

The exact algorithms are designed to find the optimal 
solution to the TSP, that is, the tour of minimal length. 
They are computationally expensive because they must 
(implicitly) consider all solutions in order to identify the 

optimum. These exact algorithms are typically derived 
from the integer linear programming (ILP) formulation of 
the TSP 

1,0

),,2,1(1

),,2,1(1..

min

1

1

1 1

=

==

==

∑

∑

∑∑

=

=

= =

ij

N

i
ij

N

j
ij

N

i

N

j
ijij

x

njx

nixts

xd

           (7) 

where n  is the number of vertices, the ijx 's are the 

decision variables: ijx  is set to 1 when arc (i,j) is 
included in the tour, and 0 otherwise. Branch and bound 
algorithms are commonly used to find an optimal solution 
to the TSP, and the above AP-relaxation is useful to 
generate good lower bounds on the optimal value. 

B.  Simulated Annealing Algorithms 
Simulated annealing (SA) is a Monte Carlo approach 

to minimizing multivariate functions, and meanwhile a 
numerical optimization model based on the principles of 
thermo dynamics, which is motivated by an analogy to 
annealing in solids. The concept of SA derives from a 
paper published by Metropolis et al. in 1953. The 
algorithm in this paper simulated the cooling of materials 
in a heated bath, which is also known as an annealing 
process. If you heat a solid past melting point and then 
cool it, the structural properties of the solid will primarily 
depend on the rate of cooling. If the liquid is cooled 
slowly enough, the large crystals will be formed. 
However, if the liquid is cooled quickly (quenched), the 
crystals will take shape with some imperfections. 
Metropolis’s algorithm simulated the material as a system 
of particles. The algorithm simulates the cooling process 
by gradually lowering the temperature of the system until 
it converges to a steady, frozen state. Simulated annealing 
(SA) takes advantage of search strategies in which cost-
deteriorating neighborhood solution may be accepted to 
search the optimal solutions. In SA, in addition to better-
fitness neighbors are always accepted, worse-fitness 
neighbors may also be accepted according to a 
probability that is gradually decreased in the cooling 
process. With the stochastic nature, SA enables 
asymptotic convergence to optimal solution and has been 
widely used for solving optimization problems. In SA, if 
a modified solution is found to have better fitness than its 
ancestor then the modified solution is retained and the 
previous solution is discarded. If the modified solution is 
found to have less fitness than its ancestor, the modified 
solution may be still retained with a probability related to 
the current temperature. As the process continues and the 
temperature decreases, unsatisfactory solutions are less 
likely accepted. By using this approach, it is possible for 
the SA algorithm to move out of local minima, and more 
likely that good solutions will not be discarded. 
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The Simulated annealing algorithm can be described as 
follows: 
1. Set the initial temperature 100000=T , the final 
temperature 10 =T , and annealing velocity 9.0=α . 

Generate a random the tour 0C , and calculate the overall 

sum of the squared errors 0f . 

2. If T > 0T , go to Step 3. Otherwise print output 0C  
and stop. 
3. Generate a new tour 1C  from the tour 0C . 

4. Calculate the overall sum of the squared errors 1f , and 

set  01 ffE −=Δ .If 0≤ΔE , accept the new 

solution ， 10 CC ← , TT α← , go to Step 2. 

Otherwise if )1,0()/exp( randTE >Δ− ，accept the 

new solution also, 10 CC ← ， TT α← ，go to Step 2. 
Else go to Step 3. 

C.  Computational Results 
This section compares the results of simulated 

annealing algorithm, genetic algorithm, ACO algorithm 
and hybrid algorithms on traveling salesman problem of 
Oliver30 problem and att48 problem. The parameters of 
simulated annealing algorithm are set as follows: the 
initial temperature 100000=T , the final temperature 

10 =T , and annealing velocity 99.0=α . The 
parameters of the genetic algorithm optimization toolbox 
(GAOT) used to solving TSP are set as follows: the 
population 30=N , the cross probability 2.0=cP , and 

the mutation probability 5.0=mP . The parameters of 
the hybrid algorithms are set as follows: 

5.1=α , 30=m , 2=β , and 9.0=ρ . 100 rounds 
of computer simulation are conducted for each algorithm, 
and the results are shown in Table 1. The optimal tour of 
Oliver30 by hybrid algorithm is shown in Fig. 4. The 
optimal tour of att48 by hybrid algorithm is shown in Fig. 
5. All the 4 hybrid algorithms are proved effective. 
Especially the hybrid algorithm with mutation strategy D 
is a simple and effective better algorithm than others.  

 

TABLE I.   
TESTING RESULT OF ALGORITHMS 

Oliver30 att48 Algorithms 
Average 
solutions 

Best 
solutions 

Worst 
solutions 

Average 
solutions 

Best 
solutions 

Worst 
solutions 

Simulated annealing algorithm 438.5223 424.6918 479.8312 34958 35176 40536 
Genetic algorithm 483.4572 467.6844 502.5742 38541 38732 42458 

Basic ACO algorithm 450.0346 441.9581 499.9331 35876 36532 42234 

Crossover operator + Mutation 
operator A+2-Opt+ACO 

438.9323 424.6257 457.9002 34893 35134 38573 

Crossover operator + Mutation 
operator B+2-Opt+ACO 

439.4758 426.1782 465.9797 3553 35300 39357 

Crossover operator + Mutation 
operator C+2-Opt+ACO 

435.4134 424.9003 447.3198 34689 35185 37698 

Crossover operator + Mutation 
operator D+2-Opt+ACO 

431.4876 423.7406 447.6734 33764 33522 36789 

 

 
Figure 4 The optimal tour of Oliver30 by hybrid algorithm 

 

 
 

 
Figure 5 The optimal tour of att48 by hybrid algorithm 
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V..CONCLUSIONS 

In this paper, we presented a novel ant colony genetic 
hybrid algorithm for traveling salesman problem. It keeps 
the advantages of ant colony optimization and GAs. From 
our simulation for those test problems, the proposed 
algorithm indeed can find the best solutions or optimal 
solutions. In other words, the proposed algorithm seems 
to have admirable performance. Experiments for 
benchmark problems show the hybrid algorithm better 
than other algorithms. 

The following problems need to be considered. 1. The 
parameters and their affect on the performance of the 
optimization should be studied in more detail. 2. How to 
explore hybrid algorithm application to continuous space 
problem should be investigated. 3. The hybrid 
algorithm’s convergent speed, or the efficiency, should be 
worth further investigating. 4. How to evaluate the 
quality of hybrid algorithm and other algorithms is still a 
problem. 
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