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Abstract—The optimal damping control for nonlinear time-delay 

systems with persistent disturbances is considered. Based on 

successive approximation approach (SAA), the optimal damping 

control (ODC) law is achieved by solving a decoupled sequence of 

inhomogeneous linear two-point boundary value (TPBV) 

problems without time-delay and time-advance terms. The ODC 

law of the original problem consists of accurate state feedback 

term, disturbance rejection term and a nonlinear time-delay 

compensation term, which is the limit of the adjoint vector 

sequence. By using the finite-time iteration of the compensation 

sequence, we can obtain an approximate optimal disturbance 

rejection control law. The proposed algorithms not only solve 

optimal control problems in the nonlinear time-delay system but 

also reduce the computation time and improve the precision. 

Numerical examples are included to illustrate the procedures. 

Keywords- nonlinear time-delay systems; optimal damping 

control; persistent disturbances; successive approximation 

approach

I. INTRODUCTION

Time-delays, nonlinearities and disturbances are frequently 

encountered in many fields of science and engineering, 

including rotating mechanical systems, active noise control [1], 

manufacturing systems, and ship autopilot control [2], etc. The 

analysis and synthesis of nonlinear and/or time-delay systems 

with disturbances has received considerable attention and some 

research results have been obtained. For instances, 

Kolmanovsky and Maizenberg [3] investigated a finite-horizon 

optimal control problem for randomly varying time-delay 

systems. Based on a reduction method, Yue and Han [4] 

investigated a delayed feedback control design for uncertain 

systems with time-varying input delay. Michael [5] researched 

linear systems with time-delay in control input, and developed 

an optimal control law with respect to the maximum principle. 

Han [6] researched the stability for a class of uncertain linear 

neutral systems, etc. 

External disturbance including stochastic disturbances and 

deterministic disturbances widely exist in practical processes, 

so the problem of rejecting disturbances appears in a variety of 

applications One application area of interest is on systems 

affected by persistent disturbances is the flight attribute 

control through wind shear stresses, where the disturbance 

forces arise from a model for wind shear stresses based on 

harmonic oscillations. Another application area is the active 

control for offshore structures, where the main disturbances 

affecting offshore structure performance are mainly from the 

wind or ocean wave forces. Other applications include the 

vibration damping for industry machine, the noise reduction in 

vehicles and transformers, the periodic disturbance reduction 

in disk drive, and the control of the linear course of ships, etc. 

In various external disturbances, sinusoidal disturbances are 

quite common in practice systems. Therefore it is more 

significant and valuable to research analysis and synthesis of 

nonlinear and/or time-delay systems with disturbances. The 

optimal control problem for nonlinear time-delay systems 

affecting by sinusoidal disturbances with respect to the 

quadratic performance index generally leads to a TPBV 

problem with both delay and advance terms, which is very 

difficult to solve precisely. So obtaining an approximate 

optimal control law is one of the important aims of researchers. 

In recent years, many better results concerning the 

approximate approach of optimal control for nonlinear and/or 

time-delay systems have been obtained [7-14]. 

In this paper, we will deal with the ODC problems for a 

class of nonlinear time-delay systems which is affected by 

sinusoidal disturbances. And a practical simple approach 

designing the ODC law is presented. Our result’s contribution 

is to apply the SAA in [8] to the time-delay systems with 

disturbances, and give a design algorithm with low 

computational complexity, which only requires solving the 

Riccati equation and matrix equation groups one time, and 

mainly solves a recursion formula of adjoint vectors. 

This paper is organized as follows. In Section 2, the 

external disturbances model and the nonlinear optimal control 

problem are presented. Two methods and their proofs are given 

in Section 3. The ODC law is designed and the approach is 

given in Section 4. In section 5, the effectiveness of the 
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proposed approach is demonstrated by simulation studies. 

Finally, some conclusions are drawn in the last section. 

II. BACKGROUND

Let us now briefly summarize linear optimal control 
problem with disturbances. Consider linear systems with 
external disturbances described by 

0
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where
nx R , , and  are the system state 

vector , the control inputs, respectively, and the external 

disturbance vector, respectively. 

ru R pv R

,A B , and  are real 

constant matrices of appropriate dimensions. u  is 

unconstrained 

D

A. Disturbances are an exosystem 

Assume that the disturbance  is generated from 

an exosystem in the form 
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where  are known constant 

matrices of appropriate dimensions. In many practical cases 

the initial condition  of the 

exosytem (2) can be measured. If selecting the 

unfinite-time quadratic cost functional, we are sure to 

assume that all eigenvalues satisfy
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Besides, eigenvalues with the zero real part are simple roots 

of minimum polynomial in order to guarantee that 

exosystem (2) is stable or asymptotically stable. Denoting 
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Hence, exosystem (2) can be rewritten as
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The finite-time quadratic cost functional associated 

with (1) is given by 
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where  and  are 

positive-semidefinite matrices. 

nn

f RQ nnRQ

rrRR  is a positive 

definite matrix. 

This problem is minimizing the cost functional 

subject to the dynamics (1) by designing an optimal control 

law . The optimal control is given by

J

*u

)]()()()([)( 1* twtPtxtPBRtu T
       (9) 

where the real, symmetric and positive-definite matrix 

 is the solution of the  matrix differential 

equation 

)(tP Riccati
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( )

T
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The matrix )(tP  is the solution of the matrix differential 

equation 

0)(

)()()()]([)(

f

T

tP

DHtPGtPtPtSPAtP
 (11) 

The state vector  is then given by the solution of the 

closed-loop system
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where .
TBBRS 1

B. Disturbances are persistent 
Assume that the dynamic characteristics of external 

disturbance vector  can be expressed as follow ( )v t

1 1 1
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( ) sin( )
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The finite-time quadratic performance index associated 

with (1) is given by 

0

1
( ) ( ) [ ( ) ( ) ( ) ( )]

2

ft
T T T

f f f
t

J x t Q x t x t Qx t u t Ru t dt

    (14) 

where
n n

fQ R  and  are positive semi-definite 

matrices. 

n nQ R

r rR R  is a positive definite matrix. The 

objective is to minimize  by designing an optimal control 

law . The optimal control is given by 

J
*( )u t

* 1

1 2( ) [ ( ) ( ) ( ) ( ) ( ) ( )]Tu t R B P t x t P t v t P t v t  (15) 

where the real, symmetric and positive semi-definite matrix 

 is the solution of the  matrix differential 

equation 

( )P t Riccati
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The matrix  is the solution of the matrix differential 

equation 

1( )P t

2

1 1 2 1

1
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T

f

P t A P t P t P t SP t P t D
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2 ( )P t  is the solution of the matrix differential equation 

2 1 2 2

2
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T

f

P t P t P t SP t A P t
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       (18) 

The state vector ( )x t  is then given by the solution of the 

closed-loop system 

1 2

0 0
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where
1

1 2( , , , )

( ) ( )

T

p
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Diag
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              (20) 

In linear systems with disturbances, we obtain the control 

law is optimal, because the TPBV problem is linear, which is 

leaded according to the maximum principle. But for nonlinear 

time-delay systems is difficult to solve the TPBV problem. 

III. THE NONLINEAR TIME-DELAY OPTIMAL CONTROL 

PROBLEM WITH DISTURBANCES

Consider nonlinear time-delay systems with sinusoidal 

disturbances described by 

1( ) ( ) ( ) ( ) ( ) ( ), 0

( ) ( ), 0

x t Ax t A x t Bu t f x Dv t t

x t t t

(21)

where , , and  are the system 

state vector , the control inputs, respectively, and the 

external disturbance vector, respectively.  is the 

nonlinear function vector. , and  are real 

constant matrices of appropriate dimensions. 

nRx
ru R pRv

)(xf

1, ,A A B D

( )t  is the 

initial state vector. 0  is the time delay.  

Assumption 1.  satisfies  and the 

 condition on 

)(xf (0) 0f

Lipschitz
nR .
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where  is some positive constant. 

The application of the maximum principle leads to the 

following nonlinear TPBV problem 

1

1
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where ( ) / T

xf f x x  is Jacobian matrix of ( )f x

with respect to vector x . And the control law is given in 

the form 

)()( 1 tBRtu T
             (24) 

Note that equations in (23) are nonlinear and the 

second equation is with both time-delay and time-advance 

terms. So obtaining the exact analytic solution is, in general, 

extremely difficult. So the main purpose of this paper is to 

apply the SAA to the TPBV problem (23), and find an 

approximate approach to it. Sequentially, the ODC law for 

the system described by (21) and (13) with the quadratic 

performance index (14) is obtained. 
A. The translation of the nonlinear TPBV problem 

In order to separate the linear part from the nonlinear 

part in the nonlinear TPBV problem (23), let 

1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t P t x t P t v t P t v t g t     (25)

where  is an adjoint vector introduced to compensate 

for the effect of nonlinear and time-delay part upon system 

(23). Substitute the derivative of (25) into the second 

equation of (23) and compare the coefficient of 

( )g t

( )x t ,

 and  with the help of the first equation of (23), 

we can obtain the Riccati matrix differential equation 
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and the matrix differential equations 
2
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1
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2

( ) [ ( ) ] ( ) ( )

( ) 0

T

f

P t A P t S P t P t

P t
           (28) 

and a new form of TPBV problem described by the 

following adjoint vector differential equation 
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     (29a) 

and a close-loop system of (21) 
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Sg t A x t f x
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It can be proved that 
1P  is the unique positive definite 

solution of (17) and  is the unique solution of (18). We 

will give the proof in the next subsection. The optimal 

control law (15) can be rewritten as 

2P

* 1

1 2( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( )]Tu t R B P t x t P t v t P t v t g t

(30)

Therefore, the TPBV problem (23) is transformed into the 

TPBV problem described by (29). Although the form is 

changed, it is easy to see that TPBV problem (29) has not 

only the time-delay term and time-advance term. And as 

well equation (29a) and (29b) are coupled in ( )x t  and 

, it is known that we can not obtain the analytical 

solution of TPBV problem (29). Here, it should be clear 

that the above transformation is developed for the 

convenience of the introduction of our method. We will 

give the detailed design process in next subsection. 

( )g t

B. Proof of the global convergence 

Since the problem has no analytical solution, a great 

deal of effort will be devoted to the construction of a new 

numerical method based on the successive approximation. 

The purpose of this subsection is to give a design strategy 

of approximate approach for solving the optimal control 

problem. We first prefer to give the following available 

lemmas in order to obtain the main results in the sequel. 

Lemma 1 Consider the nonlinear time-delay system 

described by 

1 0

0

( ) ( ) ( ) ( ) ( ( ), ) ( ),

( ) ( ),

z t G t z t A z t f z t t Fw t t t

z t t t t

(31)

where
nx R  is the state vector,  is the input 

vector, 

pw R

( )t  is a known initial state vector; 

,
n nG R

0

1: ( )n

t

nf C R R R  which satisfies the 

Lipschitz conditions on ,
0

n

tR R
0 0( , )tR t .

According to (31), construct the following sequence 
( ) ( ) ( 1) ( 1)

1 0

( )

1 0

( ) ( ) ( ) ( ) ( ( ), ) ( ),

( ) ( ),

k k k k

k

z t G t z t Az t h z t t Fwt t t

z t t t t

(32)

The solution 
( ) ( )kz t  of the vector function sequence is 

as follows 

0

( 0 )

0 0( ) ( , ) ( ) ( , ) ( )
t

t
z t t t t t r F w r d

0

( )

0 0

( 1) ( 1)

1

0

( ) ( , ) ( )

( , ) ( ) ( ( ), ) + ( )

,

k

t
k k

t

z t t t t

t r A z r f z r r Fw r dr

t t

r

( )

0( ) ( ), ; 1, 2,kz t t t t k (33)

where ),( 0tt  is state-transition matrix corresponding to 

. Then the sequence )(tG
( ) ( )kz t  uniformly converges 

to the solution of system (31). 

Proof. Consider 
( ) ( )kz t  as a sequence of 
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Because f  satisfies the Lipschitz conditions, there exist 

some positive constants 1  and 1  such that 
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From(33), we can obtain 
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where 1M  is a positive constant, denotes any 

appropriate vector or matrix norm. Assume that 1 1A N ,
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where  is some sufficiently large constant. From (34) 
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Moreover, from (33) we have 
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By the mathematical induction, we have 
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According to the trigonometry inequality, for any positive 
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Thus 
( ) ( )kz t  is a Cauchy sequence. This sequence 

is uniformly convergent and the limit of the sequence is the 

solution of system (31).

Obviously, the constant T  may be as large as 

possible. In practical control systems, we may consider 

 when T  is large enough. The proof is complete. T
C. Design of the finite time ODC law 

In this subsection, we will discuss the design of the 

ODC law for system (21) with quadratic performance index 

(14), and the ODC law will be presented in the following 

theorem. 

Theorem 1. Consider the optimal control problem 

described by (21), (22) and (13) with quadratic 

performance index (14). Assume that assumptions (1) and 

(2) all hold. Then the ODC law  is existent and 

unique, and its form is as follows: 
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where  is the unique positive semidefinite solution of 

the Riccati matrix differential equation(26),  and 
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xwhere t  is the solution to the following state 
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Proof. Because equations (29a) and (29b) is coupling. 

In order to decouple equations to obtain the solution of this 

TPBV problem, we introduce a successive approximation 

process by constructing a sequence of adjoint vector 

differential equations (43) and state equations (44). 

Correspondingly, the control sequence is given in the form 
( ) 1 ( ) ( )

1 2( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( )]

1,2,

k T ku t R B Pt x t P t v t P t v t g t

k
  (46) 

Here,  in equations (43), (44), (45) and (46) has the 

same meaning as that of equation (33) in Lemma 1. 

k

It has been pointed out that 
(0) ( ) 0g t ,

(0) ( ) 0x t ,

(0)( )f x 0 ,
(0) ( )x t 0 , and 

(0) ( )t 0  for 

any [0, )t . So we can solve  from the 

following equation 
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It is a linear differential equation without time-delay and 

time-advance terms,  can be easily obtained by 

reverse integration. In the following equation,  is 

known 

(1) ( )g t
(1) ( )g t
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following equation 
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It is readily evident that solving the sequences of the 

equations (43) and (44) is an iterative process. Hence, we 

can easily get the values of  and 
( ) ( )kg t ( ) ( )kx t  in 

equations (43) and (44) when by using the 

approximation approaches of matrix ordinary differential 

equations, such as Euler’s methods and Runge-Kutta 

methods, together with known initial and terminal 

conditions. This is because ,

1k

( 1) ( )kg t ( 1) ( )kx t ,

( 1) ( )kx t ,
( 1) (kx t ) , and 

( 1) (kg t )  in (43) 

and (44) have been obtained from the previous iteration. So 

equations (43) and (44) have been transformed into linear 

inhomogeneous vector differential equations. So, the 

control law (46) can be got by solving (43) and (44) step by 

step. A conclusion can be made that the coupled TPBV 

problem (29) with both time-delay and time-advance terms 

has been transformed into a sequence of TPBV problem, 

which is decoupling and without time-delay and 

time-advance terms. We emphasize that vector differential 

equations (43) and (44) can be guaranteed to be unilaterally 

decoupling by applying this SAA. 

Now let us discuss the convergence of this numerical 

iteration strategy. Let  and  denote 

solution sequences of equations (43) and (44), respectively. 

Then, according to Lemma 1, solutions to the sequence of 

adjoint vector differential equations in (43) uniformly 

converge to the solution of equation (29a). Similarly, 

solutions to the sequence of the state equations in (33) 

uniformly converge to the solution of equation (29b), i.e., 

)}({ )( tx k ( ){ ( )ku t

( ) ( )lim ( ) ( ), lim ( ) ( ).k k

k k
g t g t x t x t   (51) 

Since the control sequence )()( tu k
 is only related to 

)()( tx k
 and )()( tg k

, the control sequence 

)()( tu k
 uniformly converges to the ODC law ,

i.e.

)(* tu

The proof is complete.

Remark 1. In practical designs of the ODC law, the 

limit  of the solution sequence 
( ) ( )g t ( ) ( )kg t  to (21) 

cannot, in general, be obtained precisely. We can 

approximate the precise solution by using the kth iteration 

of the adjoint equations and obtain the kth approximate 

ODC law 
1 (

1 2( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( )]T k

ku t R B P t x t P t v t P t v t g t)

(52)

Remark 2. Because ( )x t  in the first term of (44) is 

the precise solution to the state vector, the approximate 

ODC law  is better than the kth approximate ODC 

law defined in (42). 

)(tuk

Remark 3. It is shown that the term  and 

 in (52) is used to cancel the disturbances, and 

the term  in (52) is introduced to compensate the 

bad effect caused by the time-delay and the nonlinear part. 

When

1( ) ( )P t v t

2 ( ) ( )P t v t

)()( tg

1 0A  and  hold in systems (21), the 

adjoint vector  will always be zero as 

( ) 0f x

( ) ( )kg t 1, 2,k

and the optimal control law will become the equation (15). 

When the disturbances is the exosystem, and the optimal 

control law will become the equation (9).

In practice, we can select k according to the control 

precision of the quadratic performance index. We give a 

practical algorithm calculating the kth approximate ODC 

law. 

Algorithm 1.

Step 1: Obtain , , and from (15), 

(16) and (17), respectively; Let , Give a constant 

)(tP )(1 tP )(2 tP

1k

0  and a large enough positive number .0J

Step 2: Solve  from (29a); Obtain 

from (52). 

( ) ( )kg t ( )ku t

Step 3: Substituting  into system (21), the 

closed loop system is found. And calculate  from the 

following formula 

( )ku t

kJ}
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0

1
( ) ( ) [ ( ) ( ) ( ) ( )]

2

ft
T T T

f f f k kJ x t Q x t x t Qx t u t Ru t dt         

(53)

Step 4: If 1( )k k kJ J J , then N k , output 

 and stop calculating. ( )Nu t

Step 5: Otherwise, solve 
( ) ( )kx t  from (29b); Let 

 and go to step 2. 1k k

IV. SIMULATION AND DISCUSSION

Consider a nonlinear time-delay system with 

sinusoidal disturbances; system parameters are as follows 

1

1 2

2 2

1 2

0 1 0 1 0 1 0
, , ,

0.2 3 0.1 1 1 0 1

( ) , ( ) 0, 0

A A B D

xx
f x x t t

x x

,

 (54)

The sinusoidal disturbances is express as  

0.1sin 2
( )

0.4sin 3

t
v t

t

30

              (55) 

The parameters of quadratic performance index are as 

follows

1 0 1 0
, , 1,

0 1 0 1
f fQ Q R t (56)

We choose the control precision 0.05 . When 

1( )k k kJ J J , the control law  is 

approximately considered as the ODC law. 

( )ku t

Case 1. When time delay 1 , the simulation 

curves of the state 1( )x t , 2 ( )x t , and the control law 

 are presented in figure 1, figure 2, and figure 3. The 

values of performance index at different iterative times are 

listed in table 1.

( )u t
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Fig. 1 Simulation curves of the state 1( )x t  when 1.
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Fig. 2 Simulation curves of the state 2 ( )x t  when 1.
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Fig. 3 Simulation curves of the control law  when ( )u t 1

TABLE 1. QUADRATIC PERFORMANCE INDEX VALUES AND CONTROL 

PRECISIONS WHEN 1

k

kJ

1( )k k kJ J J

Table 1 shows that . This means 

the quadratic performance index values decrease as 
iterative times increase, and tend to a stable optimal 

criterion . Table 1 also shows that the relative errors of 

the quadratic criterion decrease with the increase of 

iterative times. When , it satisfies the control 

precision and  can be considered as the approximate 

ODC law.

1 2 3 4J J J J

*J

4k

4 ( )u t

Case 2. When time delay 4 , the simulation 

curves of the state 1( )x t , 2 ( )x t , and the control law 

 are presented in figure 4, figure 5, and figure 6. The 

values of performance index at different iterative times are 
listed in table 2.

( )u t
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From the above numerical example, we can conclude 

that the proposed algorithm is effective at different time 

delays. And for long time-delay systems the algorithm still 

has small computational complexity. 
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V. CONCLUSIONS 

A systematic ODC algorithm is presented in this paper 

for nonlinear time-delay systems with sinusoidal 

disturbances. The SAA has been developed to avoid solving 

the TPBV problem with both delay and advance terms 

directly. It is important to notice that in the proposed 

algorithm only a few iteration-steps are required in order to 

get the approximate ODC law. Simulation results show that 

the ODC law is high in efficiency, and robust with respect 

to external disturbances. 

Fig. 4 Simulation curves of the state 1( )x t  when 4 .
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Abstract—The secure remote Internet voting protocol play 
an important role in Internet voting system. The direction of 
development of remote Internet voting protocol is that 
implementation of receipt-freeness and coercion-resistance 
is from with strong physical assumptions to with weak 
physical assumptions. The final purpose is that receipt-
freeness and coercion-resistance is implemented without 
physical assumptions. In this paper firstly, a receipt-free 
coercion-resistant remote Internet voting protocol based on 
MW deniable encryption scheme and BCP commitment 
scheme is developed. To our best knowledge the proposed 
remote Internet voting protocol, which has receipt-freeness 
and coercion-resistance, is the first remote Internet voting 
protocol implemented without physical assumptions. 
Secondly, we analyze receipt-freeness and coercion-
resistance of the proposed remote Internet voting protocol. 
Finally, we compare security properties of several typical 
protocols with our present protocol.  
 
Index Terms—physical assumptions, remote Internet voting, 
deniable encryption, trapdoor commitment scheme, 
protocol security 
 

I.  INTRODUCTION 

With the progress of society and development of 
democracy of nation, people can use the election to 
express their opinions. Owning to the popularity of 
Internet and information technology, many traditional 
transactions are processed through Internet. People may 
want to use the personal computer at their home to vote in 
election, which is called remote Internet voting. Thus the 
secure remote Internet voting system plays an important 
role in remote Internet voting. The secure Internet voting 
protocol is the base of the remote Internet voting system. 

The secure and practical remote Internet voting 

protocol should have the following properties: 
 Basic properties: privacy, completeness, 

soundness, unreusability, fairness, eligibility, and 
invariableness. 

 Expanded properties: universal verifiability, 
receipt-freeness[1,2], coercion-resistance [3] 

 Receipt-freeness: The voter can not produce a receipt 
to prove that he votes a special ballot. Its purpose is to 
protect against vote buying.  Notion of receipt-freeness 
was introduced by Benaloh and Tuinstra [1]. They 
propose a receipt-free scheme with strong physical 
assumptions: voting-booth. Hirt and Sako in [4] point out 
that their scheme is not receipt-free. 

Coercion-resistance: A coercion-resistant voting 
protocol should offer not only receipt-freeness, but also it 
can prevent randomization attack, forced-abstention 
attack and simulation attack. 

The direction of development of remote Internet voting 
protocol is implementation of receipt-freeness and 
coercion-resistance without physical assumptions and 
constraints. The final purpose is that receipt-freeness and 
coercion-resistance is implemented without physical 
assumptions. People have developed a lot of Internet 
voting protocols with receipt-freeness and coercion-
resistance. But according to our analysis we found that 
the weakest physical assumption among implementations 
of receipt-freeness and coercion-resistance is one way 
anonymous channel. To our best knowledge up to now 
the remote Internet voting protocol with receipt-freeness 
and coercion-resistance implemented without physical 
assumptions does not exist. Motivated by this in this 
paper we apply deniable encryption and trapdoor 
commitment scheme to implement the receipt-freeness 
and coercion-resistance in the remote Internet voting 
protocol without physical assumptions. 

The main contributions of this paper are summarized 
as follows. 

 A receipt-free coercion-resistant remote Internet 
voting protocol is introduced. 
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