
Analysis and Verification of Component
Behavior Equivalence for ScudWare Middleware

in Ubiquitous Computing Environments
Qing Wu, Chunbo Zhao

College of Computer Science, Hangzhou Dianzi University
Email: wuqing@hdu.edu.cn

Ying Li
Zhejiang University

College of Computer Science
Email: cnliying@zju.edu.cn

Abstract— In ubiquitous computing environments, the soft-
ware component model with semantic information and
behavior adaptation to satisfy various resources constraints
and component interdependence is needed. It is an im-
portant issue to analyze the behavioral equivalence of
components when studying the dynamic replacement and
recombination of them. However it is difficult to check the
equivalence of behaviors rapidly and precisely. In order
to improve the precision of judging, and guarantee the
normality and stability of system after replacing and re-
combining components for adaptation in system, the paper
uses and extends the theories of equivalence analysis in π
calculus, then puts forward some formalizations. After that
we make some examples in detail to model the behaviors
of components based on higher-order typed π calculus
and analyze the equivalence of them. At last, the mobility
workbench is used to make verification of this equivalence.

Index Terms— adaptive middleware; semantic component;
component behavior equivalence.

I. INTRODUCTION

Driven by the expansion of the network and the desire
for mobility, today’s computations are becoming more
ubiquitous and embedded [1]. It provides more facilities
and comfort for our life. Ubiquitous computing aims at
fusing physical world and information space naturally
and seamlessly, which demands plenty of computation
resources for performance requirements. It must require
considering interdependences of functional aspects. How-
ever, the computation resources in ubiquitous and embed-
ded environments are limited such as CPU computation
capabilities, network bandwidth, and memory size. As
a result, it sometime cannot provide enough resources
to execute some applications successfully. In addition,
changes of the heterogeneous contexts including people,
computing devices and environments are ubiquitous, de-
manding that distributed software be able to adapt to

This paper is based on “A Semantic Component Model for Adaptive
Middleware in Ubiquitous Computing Environments,” by Wu Qing,
and Li Ying, which appeared in the Proceedings of the Second In-
ternational Workshop on Computer Science and Engineering, 28-30
Oct.2009,Qingdao, China. c© 2009 IEEE.

This work was supported by National Natural Science Foundation of
China under Grant No. 60703088.

these changes. Therefore, it results in many problems
in software design and development. We think software
adaptation is the key issue of the systems to meet the
different computing environments.

Software adaptation may require recomposition of
functional aspects, which realize the imperative behavior
of an application, and nonfunctional aspects, such as
QoS, fault tolerance and security [2]. Specially, it attracts
much attention on making research on component-based
software architecture, in which replacing and recombinant
of component has become one of the most attractive
topics to realize software adaptation. In order to ensure
the stability and reliability of the whole system, we have
to analyze the behavioral equivalence of new component
and replaced component.

Component behavior equivalence requires not merely
interface matching, but consistency of function behavior.
Some researchers neglect the function behavior and this
leads to the one-sidedness of research results. Some
others have used interface automata to model component
behavior flow [3], [4], those behaviors having same action
sequence is considered as equal. However, when one
flow has more then one action sequence, the respec-
tively equivalence of each sequence doesn’t mean the
equivalence of the whole flow. Thus the accuracy isn’t
high enough. Besides, process algebra bisimulation theory
[5], [6] has also been applied to analyze the behavior
equivalence. Nevertheless, no standard has been made for
analyzing the component interactive behavior equivalence
[7]–[9], meanwhile the one-sidedness and inaccuracy still
exist. Aiming at these problems, this paper extends the
bisimulation theory of π calculus, uses higher-order typed
π calculus to formalized model and analyze equivalence,
then apply a tool of mobility workbench to verify the
results.

The remainder of the paper is organized as follows.
First, we present a ScudWare middleare platform in sec-
tion 2. Section 3 describes how to use higher-order typed
π calculus to formalized express semantic component
model and its dynamic behaviors. In section 4, we firstly
propose some theories on behavioral equivalence and the

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 883

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.8.883-890

operation method of MWB [10], then give a case study
to verity our model and method. Next, some related work
is stated in section 5. Finally, we draw a conclusion and
give further research work in section 6.

II. SCUDWARE MIDDLEWARE PLATFORM

We have developed a semantic and adaptive middleware
platform called ScudWare [11], which is based on se-
mantic information and conformed to a lightweight CCM
(CORBA component model) specification [12].

In this section, we give the ScudWare architecture
firstly. And then we introduce a smart CAA space in
ubiquitous computing environments.

A. ScudWare Middleware Architecture

ScudWare architecture consists of five parts defined as
SCUDW = (ACE, ETAO, SCUDCCM, SVA). ACE denotes
the adaptive communication environment [13], providing
high-performance and real-time communications. ACE
uses inter-process communication, event demultiplexing,
explicit dynamic linking, and concurrency. In addition,
ACE automates system configuration and reconfigura-
tion by dynamically linking services into applications at
run-time and executing these services in one or more
processes or threads. ETAO extends ACE ORB [14]
and is designed using the best software practices and
patterns on ACE in order to automate the delivery of
high-performance and real-time QoS to distributed ap-
plications. ETAO includes a set of services such as the
persistence service and transaction service. In addition, we
have developed an adaptive resource management service,
a context service and a notification service. Specially, the
context service is based on semantic information. SCUD-
CCM is conformed to CCM specification and consists of
adaptive component package, assembly, deployment, and
allocation at design-time. Besides, it comprises compo-
nent migration, replacement, updating, and variation at
run-time. In addition, the top layer is SVA that denotes
semantic virtual agent [15]. SVA aims at dealing with
application tasks. Each sva presents one service composi-
tion comprising a number of meta objects. During the co-
operations of SVA, the SIP(Semantic Interface Protocol)
set is used including sva discovery, join, lease, and self-
updating protocols.

B. Smart Vehicle Space

Vehicles currently have played a very important role for
improving our living. People hope to have a comfortable,
convenient, and safe environment in the vehicle. This
has been a greatly significant requirement in the ITS
(intelligent transportation system) community [16]–[18].
An appealing way, also a very challenging task, is to build
a ubiquitous computing environment in the vehicles.

Physical world and information spaces fuse naturally
and spontaneously in smart spaces. All entities in smart
spaces self-adjust adaptively in terms of the changes of

the users, environments and devices for communication
and cooperation.

In recent years, many researchers and engineers have
weaved embedded, AI and biological authentication tech-
nologies into vehicles for developing and deploying ITS
subsystems and services. The drive capability, dependabil-
ity, comfort and convenience of the vehicle are greatly
improved. After persons get into the smart vehicle space,
they will find many smart and intelligent devices around
them. They will communicate with these tools naturally
and friendly to get more useful information and services.
It will form a smart and harmonious vehicle space. To
achieve adaptation and transparentness of co-operations
and integrations among persons, devices and environ-
ments in ITS, the intersection between smart space and
ITS(smart vehicle space) plays an important role.

From the technical view, the smart vehicle space has
four parts and is defined as

SVS = (CA, CR, AC, CP)
CA: the context acquisition system. It aims at sensing

status changes of people, devices and environments in
the vehicle, including cameras, sound receivers, and other
sensors.

CR: the context repository reasoning system.
CR=(context, ontology, domain, inference) uses the
correlative contexts and application domain ontologies to
make manipulating strategy for purpose of adaptation.

AC: the auto controlling system. It consists of the
steering, communication, entertainment, navigation and
security subsystem.

CP is the centralized processing system. It is the kernel
of the smart vehicle space, which makes CA, CR, AC
collaborate effectively.

III. SEMANTIC COMPONENT MODEL FOR SCUDWARE
MIDDLWARE

In ScudWare architecture, the semantic components are
essential software entities. These components implement
some application logic and can execute special functions
when they are instantiated. The structure properties, func-
tion behaviors, and inner adaptive behaviors are three
important parts of the semantic components. Specially,
the component inner adaptive behaviors can change com-
ponent resources consumption states to get satisfying
execution effect required from other components in the
ScudWare middleware system. The system components
can provide runtime environments infrastructure such as
context-aware information and adaptive behaviors man-
agements for semantic components. As a result, the se-
mantic and system components are executors of functional
and non-functional behaviors of ScudWare middleware.

In the following, we present a semantic component
formalization and the semantic component dynamic be-
haviors modeling.

A. Semantic Component Formalization
We use ScudADL [19] to define the semantic com-

ponent, describing its structure character and dynamic
behavior.

884 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

An semantic component AC ::= Name|Ontology| <

C̃ap > | < P̃ort > | < R̃I > | < ˜ExeModel >

| < ˜FuncBeha > | < ˜AdapBeha >, ˜AdapBeha ::=<
˜IAdapBeha > | < ˜OAdapBeha >

1) Ontology is a repository of components. Component
ontology provides common and sharing conceptual under-
standing of specific domain for functions and behavior of
components.

2) < C̃ap > denotes a semantic description of
component’s capabilities, including a set of computation
functions.

3) < P̃ort > denotes a set of input interfaces provided
by other components, and a set of interfaces exporting for
other components use.

4) < R̃I > is component resource interface, denoting
a set of required resources consumptions value (e.g.
computation platform type, CPU computation, network
communication bandwidth, and memory size).

a) CPU Computation Consumption: RCcc : ∀c ∈ Ac ·
∃v ∈ Q+ · (RCcc → v) defines the CPU computation
resource consumption by component c. Q+ is a set of
non-negative real numbers.

b) Communication Consumption: RCcm : ∀c ∈ Ac ·
∃v ∈ Q+ · (

∑
RCcm → v) defines communication

resource consumption by component c.
c) Memory Consumption: RCmm : ∀c ∈ Ac · ∃v ∈

Q+ ·(RCmm → v) defines memory resource consumption
by component c.

5) < ˜ExeModel >::== (< R̃es, ˜ExeQua >
). On the condition of different component resource
consumption, it will provide different execution ef-
fect in the whole middleware system. For example,
((RCi

cc, RCj
cm, RCk

mm), EQω
ac) denotes that if one com-

ponent consume RCi
cc cpu computation resource, RCj

cm

communication resource, and RCk
mm memory resource,

it will provide EQω
ac execution quality.

6) < ˜FuncBeha >::==< ĨO >< ˜FuncBeha >
| < ˜Condition >< ˜FuncBeha > | < ˜Choose ><

˜FuncBeha > |unobservable|inaction. The component
function behaviors include a) input and output operations
via channel and resource channel, b) condition operation
(if ... then ...), corresponding to [X = Y]P in higher-order
typed π calculus, c) choose operation, corresponding to
P |Q, d) unobservable operation, corresponding to τ , e)
inaction operation, corresponding to 0.

a) IO ::=< ˜SMessage > | < ˜RMessage > | <
˜SExeModel > | < ˜RExeModel >. Input operation

consists of send or receive message via channel, and send
or receive execution model via resource channel.

b) SMessage ::= via Channel (< P̃ort >) Send
message

c) RMessage ::= via Channel(< P̃ort >) Receive
message

d) SExeModel ::= via ResChannel(< R̃I >) Send
ExeModel

e) RExeModel ::= via ResChannel(< R̃I >) Receive
ExeModel

7) IAdapBeha ::=< ˜ChangeExeModel >
.IAdapBeha. Inner adaptive behavior is to change
the component execution model in terms of vari-
able computing environment or application require-
ments. It can change the component resources con-
sumption and get a new execution quality. The execu-
tion model is from ((RCi

cc, RCj
cm, RCk

mm), EQω
ac) to

((RCp
cc, RCq

cm, RCr
mm), EQµ

ac).
8) OAdapBeha ::= AddAc.OAdapBeha |

RemoveAc.OAdapBeha | UpdateAc.OAdapBeha
| ReplaceAc.OAdapBeha | inaction. In outer adaptive
behaviors, a) AddAc behavior denotes add a new
component into the system dynamically for a new
functionality, b) RemoveAc behavior denotes remove
a old component from the system, which is not
necessary, c) UpdateAc behavior denotes updating
component functionality to a new version, d) ReplaceAc
behavior denotes replacing one component with another
component, continuing to conduct the next operations
between other components.

a) AddAc behavior. When a new component is added
into the system, the component instance, its port, resource
interface, and channel will be built according to applica-
tion requirements. The connector and resource connector
in the system will build a new link to this new component
and adjust the routing behavior.

b) RemoveAc behavior. When an old component is not
needed, it will be removed by the system. The component
instance, its port, resource interface, and channel will be
destroyed in terms of removal rules. The connector and
resource connector in the system will delete the links of
this component.

c) UpdateAc behavior. Ai
c can update to Aj

c after
executing UpdateAc behavior. If the functional behavior
of Ai

c corresponds to process P , and the functional
behavior of Aj

c corresponds to process Q, then P and
Q are strongly bisimilar, which is a strong equivalents
relation (P ∼ Q).

d) ReplaceAc behavior. Ai
c can be replaced with Aj

c

in the system after executing ReplaceAc behavior. If the
functional behavior of Ai

c corresponds to process P , and
the functional behavior of Aj

c corresponds to process Q,
then P and Q are weakly bisimilar, which is a week
equivalence relation (P ≈ Q).

B. Semantic Component Dynamic Behaviors Modeling

The semantic component behaviors have dynamic and
concurrent characters. In addition, the component inter-
acts with others through its service request ports and ser-
vice supply ports, whose interaction is mainly embodied
in messages transfer. Similarly, the processes of π calculus
transfer messages with others through its channels. Thus
we can map the component ports to the π calculus
process channels. And the transceivers of messages by
components correspond to the transceivers of messages
by π calculus process.

According to the different transfer forms of message,
the component atomic behaviors can be divided into three

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 885

© 2010 ACADEMY PUBLISHER

ChineseToEnglish
Search

EnglishContext
EnglishToChinese

TranslatorCE
English

SearchEngine
TanslatorEC

External Environment

Control Layer

Implementation Layer

Chinese Search Component P

in ine ine oute oute out

in

out

ine oute

Figure 1. Behavior View of Chinese Search Component P

kinds. The first is send only(S). The second is receive
only(R). And the third are send before receive(SR) and
receive before send(RS).

The set of all communication ports is defined as GT .
gti is one communication port. GT = {gt1, gt2, ..., gtn}

The set of all input messages is defined as Min. iu is
one input message. Min = {i1, i2, ..., iu}

The set of all output messages is defined as Mout. ov

is one output message. Mout = {o1, o2, ..., ov}
gtn?(iu) denotes one component receiving message iu

through port gtn, while gtn!(ov) denotes the component
sending message ov through port gtn. The component
atomic behaviors of send, receive, send, receive and
receive, send through ports are defined as follows.

Psend = gtm!(oj , oj+1, ..., ok−1, ok) · 0
Preceive = gtm?(ij , ij+1, ..., ik−1, ik) · 0
Psend,receive = gtm!(oj , ..., ok) · gtm?(ij , ..., ik) · 0
Preceive,send = gtm?(ij , ..., ik) · gtm!(oj , ..., ok) · 0
For instance, a network-based search engine in ubiqui-

tous computing environments have one component called
Chinese search component P , which has three subcompo-
nents those are TranslaotrCE, EnglishSearchEngine
and TranslatorEC. The input and output channels of
P are named as ptIN and ptOUT , while the chan-
nels of TranslatorCE, EnglishSearchEngine and
TranslatorEC are called ptEC, ptSEC and ptCE.
The Chinese search component dynamic behaviors are
illustrated in figure 2.

If PCSE represents the dynamic behaviors of P, then it
can be described as follows.

PCSE = ptIN?(in).P1
P1 = (vfINE(ptCE !(in).ptCE?ine.fINE !(ine).0
||fINE?(ine).P2)
P2 = (vfOUTE(ptSEC !(ine).ptSEC?(oute).fOUTE

!(oute).0)||fOUTE?(oute).P3
P3 = ptEC !(oute).ptEC?(out).ptOUT !(out).0
The component evolution is shown as below.

PCSE
ptIN?(in)−→ P1

ptCE !(in)−→ (vfInE)(ptCE?(ine).fINE !(ine).0
||fINE?(ine).P2)
ptCE !(ine)−→ (vfINE(fINE !(ine).0||fINE?(ine).P2))
τ(fINE)−→ P2

ptSEC !(ine)−→ (vfOUTE)(ptSEC?(oute).fOUTE !(oute).0
||fOUTE?(oute).P3)
ptSEC !(oute)−→ (vfOUTE(fOUTE !(oute).0
||fOUTE?(oute).P3))
τ(fOUT E)−→ P3
ptEC !(oute)−→ ptEC?(out).ptOUT !(out).0
ptEC?(out)−→ ptOUT !(out).0
ptOUT !(out)−→ 0

IV. ANALYSIS AND VERIFICATION OF SEMANTIC
COMPONENT BEHAVIORS EQUIVALENCE

In terms of the semantic component model and its
dynamic behavior formalization, we will propose the
analysis and verification of semantic component behaviors
equivalence. In this section, we give the component
behavior equivalence based on higher-order π calculus
firstly. Then the mobility workbench is introduced. Fi-
nally, we give a case study and its verification.

A. Component behavior equivalence

Here we will apply and extend the bisimulation the-
ory of higher-order π calculus, then put forward some
standards for component behaviors equivalence analysis,
which are applicable in different conditions. In the follow-
ing, we give some definitions of component equivalence.

1) Component Context (CC). Here, we divide com-
ponent context into external environment and internal
environment. The former is reciprocal behaviors of inside
subcomponent interactive behaviors, while the latter is re-
ciprocal behaviors of interactions with other components.
If a component P has a set of outer behaviors named as
X , a set of inner behaviors named as Y , and a context
CP , well then CP can be described as follows.

CP = α−1
i + CP ′

P (τ−→)∗ αi−→ (τ−→)∗P
′
, αi ∈ X

α−1
i is an oppositional behavior of αi. If αi = αi!(x),

then α−1
i = αi?(x). And if αi = αi?(x), then α−1

i =
αi!(x).

For example, component P has two subcomponents
names Pa and Pb, and the interactive behaviors between
P and Q is concretely described in figure 3. Well then
some related interactive behaviors can be described as
below.

(1) Interactive behavior between P and Q:
ptPIN?(in).ptPOUT !(out).0
(2) Interactive behavior between Pa and Pb:
ptPaIN?(in).ptPaOuT !(outa).0||
ptPbIN?(outa).ptPbOUT !(out).0
(3) Internal Environment of P :
(ptPaIN !(in).τ.ptPaOUT ?(outa))∗||
(ptPbIN !(outa).τ.ptPbOUT ?(out))∗

(4) External Environment of P :
ptPIN !(in).ptPOUT ?(out).0
2) Higher-order Strong Bisimulation(HSB). HSB (∼=)

is the largest symmetric relation between processes such
that P ∼= Q implys:

886 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

Pa Pb

Component Q

Internal

Environment

in out

outa

Component P

External

Environment

Figure 2. Interactive Behaviors of P and Q

(1) α ∈ Q, α ∈ τ, a?(x), a!(x), in which x is a name
or process;

(2) If Q
α−→ Q

′
, then P

α−→ P
′

and P
′ ∼= Q

′
.

HSB requires one-to-one correspondence of action in
different components behaviors, so the equivalent condi-
tions are rigorous.

3) Higher-order Weak Bisimulation(HWB). HWB (:)
is a comparatively weak relation between processes such
that : implys:

(1) α ∈ Q, α ∈ τ, a?(x), a!(x), in which x is a name
or process;

(2) If Q
α−→ Q

′
, then P (τ−→)∗ α−→ (τ−→)∗P

′
and

P
′
: Q

′
.

Much attention should be paid to the bisimulation
strength difference between HSB and HWB. As HSB’s
over high bisimulation and HWB’s regardless of internal
actions, HWB is much more widely used than HSB.
However, HSB is always needed in high stability and
reliability system.

4) Context Compatibility Bisimulation(CCB). CCB
(♦) is a relation between processes such that P

′♦Q
′

implys:
(1) CP is a context of P;
(2) If P ||CP (τ−→)∗.0 then Q||CP (τ−→)∗.0.
Aiming at the compatibility of new component with

replaced component context, CCB always is a weaker
bisimulation than HWB.

B. Mobility Workbench

Mobility workbench (MWB) is the first automatic ver-
ification tool of π calculus, which can be used to model
and verify the mobile concurrent system described by
process calculus. This paper adopts this tool to formal-
ized model, analyze and verify the equivalence among
components. The operation semantics and commands of
MWB are given as follows.

Some basic input grammar and operation semantics are
shown in figure 4 and figure 5.

Some general commands are listed as below.

Figure 3. Basic Input Grammar

Figure 4. Basic Operation Semantics

(1) Agent can be used to create a closed process with
a list of parameters.

(2) Env can show all agents defined, also it can display
appointed agent when followed by the agent name.

(3) Clear will delete all agents defined.
(4) Input followed by a filename with double quote

(input ”filename”) will put the file content into MWB.
(5) Eq followed by two agent names (eq agent1 agent2)

will check strong bisimulation of agents.
(6) Weq followed by two agent names (weq agent1

agent2) will check weak bisimulation of agents.
Except for the commands mentioned above, more in-

troduction can be found in paper ’A Brief Introduction to
Mobility Workbench’.

C. Case Study and Verification

According to the Chinese search component P in
ubiquitous computing environments mentioned above, we
can create some other Chinese search components, then
analyze and verify the behavioral equivalence of them.

Firstly, a Chinese search component named Q is cre-
ated, which can return Chinese search result according
to the input search terms. After obtaining search words,
Q will choose one of the following processing methods:
1) using the Chinese search engine directly, or 2) firstly
converting the Chinese search terms into English, then
using the English search engine, at last converting search
result back to Chinese. The behavior view of component
Q is concretely described in figure 6.

Assume that Q has the input and output channels
successively named as ptQIN and ptQOUT , while the
channels of Chinese search engine, English search engine,
TranslatorEC and TranslatorCE are successively de-
scribed as ptQSCC , ptQSEC , ptQEC and ptQCE . If the
process QCSE represents interactive behavior of Q, then
it can be described as follows.

1) QCSE = ptQIN?(in).Q1
2) Q1 = (vrandom)(ptRANDOM !(random).0||

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 887

© 2010 ACADEMY PUBLISHER

ChineseToEnglish EnglishToChinese

TranslatorCE TanslatorEC

External Environment

Chinese Search Component Q

in

ine ine oute oute out

in

out

ine oute

Search

ChineseContext

Search

EnglishContext

random selection
out

Chinese

SearchEngine

in out

English

SearchEngine

Implementation Layer

Control Layer

Figure 5. Behavior View of Chinese Search Component Q

Figure 6. Component Behavior Description 1

ptRANDOM?(random).(Q2 + Q3)
3) Q2 = ptQSCC !(in).ptQSCC?(out).ptQOUT !(out).0
4) Q3 = (vfINE(ptQCE !(in).ptQCE?(ine).fINE !(ine).0||
fINE?(ine).Q31
5) Q31 = (vfOUTE)(ptQSEC !(ine).ptQSEC?(oute).
fOUTE !(oute).0||fOUTE?(oute).Q32)
6) Q32 = ptQEC !(oute).ptQEC?(out).ptQOUT !(out).0
The component evolution is shown as below.

1) QCSE
ptQIN?(in)−→ Q1

τ(ptRANDOm)−→ Q2 + Q3
2) Q2

ptQSCC !(in)−→ ptQSCC?(out).ptQOUT !(out).0
ptQSCC?(out)−→ ptQOUT !(out).0

ptQOUT !(out)−→ 0
The evolution of process Q3 is similar to the process

P1 in PCSE and it’s no longer repeated here.
After comparing the evolution of PCSE and QCSE , it

can be easily found that component behaviors of P and
Q are higher-order weak bisimulation (P : Q). However,
QCSE needs random selection(τ(ptRANDOM)) between
behaviors of ptQIN?(in) and ptQSCC !(in), while PCSE

needn’t it. Therefore, P and Q aren’t higher-order strong
bisimulation.

After that, we use the mobility workbench to model and
verify the equivalence of PCSE and QCSE . We create
three agents: 1)Subcomponent that represents Transla-
torCE, Chinese SearchEngine, English SearchEngine and
TranslatorEC, 2)PCSE that represents behavior of P ,
3)QCSE that represents behavior of Q. They are described
in figure 7.

Then we can import these agents into MWB by
using command ’input’ followed by a filename. After
that commands ’weq’ and ’eq’ are used to check the

Figure 7. Equivalence Verification Result 1

External Environment

in

ine

ine

ec

in

English

SearchEngine1

Translator

CE

Translator

EC

English

SearchEngine2

ine el

ec,el

out

out

ChineseTo

English

SearchEnglish

ByContext

SearchEnglish

ByLink

EnglishTo

Chinese

ine

ec

el

Implementation Layer

Control Layer

Chinese Search Component R

Figure 8. Behavior View of Chinese Search Component R

equivalence of PCSE and QCSE . As is shown in figure
8, PCSE and QCSE are higher-order weak bisimulation
and the bisimulation relation size is 7.

After comparing the component behavior of P and
Q, then we create another Chinese search component R,
which also can return Chinese search result after receiv-
ing Chinese search terms. R has four subcomponents:
1)TranslatorCE for translating Chinese into English,
2) EnglishSearchEngine1 for searching English by
context, 3)EnglishSearchEngine2 for searching En-
glish by link, 4)TranslatorEC for translating English
into Chinese. The channels of them are successively
described as ptRCE , ptRSEBC , ptRSEBL and ptREC .
The interactive behavior view of R is described in figure
9.

Assume that process RCSE represents interactive be-
haviors of R, and then it can be formalized described as
follows.

1)RCSE = ptRIN?(in).R1
2)R1 = (vfINEC , fINEL)(ptRCE !(in).ptRCE?(ine).
(fINEC !(ine)||fINEL!(ine)).0||fINEC?(ine).R2
||fINEL?(ine).R3
3)R2 = (vfOUTEC , fOUTEL)(ptRSEBC !(ine).
ptRSEBC?(ec).fOUTEC !(ec).0||fOUTEC?(ec).
fOUTEL?(el).R4)
4)R3 = (vfOUTEC , fOUTEL)(ptRSEBL!(ine).
ptRSEBL?(el).fOUTEL!(el).0||fOUTEL?(el).
fOUTEC?(ec).R4)
5)R4 = ptREC !(ec).ptREC !el.ptREC?(out).
ptROUT !(out).0
The evolution of RCSE is listed as below:
1)RCSE

ptRIN?(in)−→ R1
ptRCE !(in)−→ (vfINEC , fINEL)

(ptRCE?(ine).(fINEC !(ine)||fINEL!(ine)).0||

888 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

fINEC?(ine).R2||fINEL?(ine).R3)
ptRCE?(ine)−→ (vfINEC , fINEL)((fINEC !(ine)||
fINEL!(ine)).0||fINEC?(ine).R2||fINEL?(ine).R3)
τ(fINEC ,fINEL)−→ R2||R3

2)R2
ptRSEBC !(ine)−→ (vfOUTEC , fOUTEL)(ptRSEBC?(ec).

fOUTEC !(ec).0||fOUTEC?(ec).fOUTEL?(el).R4)
ptRSEBC?(ec)−→ (vfOUTEC)(fOUTEC !(ec).0||
fOUTEC?(ec).fOUTEL?(el).R4)

3)R3
ptRSEBL!(ine)−→ (vfOUTEC , fOUTEL)(ptRSEBL?(el).

fOUTEL!(el).0||fOUTEL?(el).fOUTEC?(ec).R4)
ptRSEBL?(el)−→ (vfOUTEL)(fOUTEL!(el).0||
fOUTEL?(el).fOUTEC?(ec).R4)

4)R2||R3
τ(fOUT EL,fOUT EC)−→ R4

τ,ptREC !(ec)−→
ptREC !(el).ptREC?(out).ptROUT !(out).0
ptREC !(el)−→ ptREC?(out).ptROUT !(out).0
ptREC?(out)−→ ptROUT !(out).0
ptROUT !(out)−→ 0
According to the whole evolution of RCSE ,

the concurrent processes R2||R3 can evolute to
fOUTEC?(ec).fOUTEL?(el).R4 after a series of actions,
while the equivalent state can’t be reached PCSE . In
addition, the action of ptREC !(el) will be made after
ptREC !(ec) in RCSE , but it’s impossible in PCSE even
if performing some internal actions. Thus, PCSE and
RCSE aren’t higher-order weak bisimulation.

On the basis of definition Component Context, the
component context of PCSE can be described as follows.

1)CPCSE
= CPInput||CPChineseToEnglish||

CPSearchEnghish||CPEnglishToChinese||CPOutput

2)CPInput = ptIN !(in).0
3)CPChineseToEnglish = (ptCE?(in).τ.ptCE !(ine))∗

4)CPSearchEnghish = (ptSE?(ine).τ.ptSE !(oute))∗

5)CPEnglishToChinese = (ptEC?(oute).τ.ptEC !
(oute))∗

6)CPOutput = ptOUT ?(out)
Judging from the interactive behaviors of R, RCSE

can successfully complete its behaviors in the compo-
nent context of CPCSE

, that is RCSE ||CPCSE
(τ−→)∗.0.

Consequently, PCSE and RCSE are context compatibility
bisimulation (PCSE♦SSE).

After that, we use the MWB tool to model and
verify the equivalence of PCSE and RCSE . According
to the concrete behaviors of composite component R
and P , we create four agents: 1) Subcomponent that
represents TranslatorCE and EnglishSearchEngine,
2)EnglishToChinese that represents TranslatorEC in
R, 3)PCSE that represents the behavior of Chinese search
component P , and 4)RCSE that represents the behavior
of Chinese search component R. They are described in
figure 10 in detail.

After checking the equivalence of PCSE and RCSE ,
we find they are neither higher-order string bisimulation,
nor higher-order weak bisimulation, and the result is
obviously shown in figure 11.

Figure 9. Component Behavior Description 2

Figure 10. Equivalence Verification Result 2

V. RELATED WORK

It’s an important issue to analyze the behavioral equiva-
lence of components when studying the dynamic replace-
ment and recombination of them for software adaptation.

The project ArchWare [20] developed by Europe Unite
aims to construct a evolvable system centered with archi-
tecture mode. ArchWare has proposed a dynamic architec-
ture Description Language π-ADL [21] that is a formal
language that based on higher-order π calculus, which
is supporting modeling dynamic architectures, analyzing
architectures and checking constraints. In addition, D-
ADL [22] explicitly defines two dynamic behavior op-
erations symbols ’new’ and ’delete’, which is easier to
describe and comprehend dynamic behaviors. Therefore,
D-ADL implements the description of architecture dy-
namic behavior, and provides an indirect supporting for
architecture evolution.

In addition, we have acquired some achievements on
how to formalized model component behavior, how to an-
alyze the equivalence of component interactive behaviors.
T.Basten [3], Zhang [4] has used interface automata to
express component behavior, and it’s intuitive to describe
behaviors in graphics mode, but the computational com-
plexity will increase rapidly when interactive behaviors
become involuted. Xu [5] has put forward some bisimu-
lation equivalence theories of higher-order π calculus, but
no practical case based on these theories has been given.
Gao [23] has used π calculus to model behavior, but they
haven’t verified the equivalence of different behaviors. In
order to ensure the stability and high performance of the
whole system after replacing or recombining components,
we must analyze and ensure the equivalence of new
component and replaced component. Focusing on this
problem, this paper emphatically model and analyze the
equivalence of behaviors among components and then use
mobility workbench to verify it.

JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010 889

© 2010 ACADEMY PUBLISHER

VI. CONCLUSION AND FUTURE WORK

This paper firstly describes how to use higher-order π
calculus to formalized model component behavior, and
then we put forward some theories for equivalence anal-
ysis. At last, we make an illustrative example of Chinese
search component in ubiquitous computing environments
to analyze behavioral equivalence, and verification is
made by using mobility workbench. Through the precise
analysis and verification of equivalence of component
behavior, we can ensure the behavioral consistency of new
component and replaced component, also effectively guar-
antee the stability and normality of the whole system’s
dynamic adaptation after replacing and recombining of
component.

Our next step work includes that 1) we will make fur-
ther research on behavioral equivalence of components. 2)
except for the functional behavior, the evolution behavior
should be considered as well.

ACKNOWLEDGMENT

We thank Li Changyun for numerous discussions con-
cerning this work, and the reviewers for their detailed
comments.

REFERENCES

[1] Weiser M. The Computer for the 21st Century, Scientific
American, pp. 94-100, 1991.

[2] E.P.Kasten and P.K.McKinley. Perimorph: Run-Time Com-
postion and State Management for Adaptive Systems.
In Proceedings of the 24th International Conference on
Distributed Computing Systems Workshops. 2004.

[3] W.M.P.van der Aalst and T.Basten. Inheritance of Work-
flows:An Approach to Tackling Problems Related to
Change[J]. Theoretical Computer Science, 270(1-2):125-
203, 2002.

[4] Yan Zhang, Jun Hu, XiaoFeng Yu. Scene Drivn Com-
ponent Behavior Extraction[J]. Journal of software, 2007,
18(1):50-61.

[5] Xan Xu. On the Bisimulation Theory and Axiomatization
of Higher-order Process Calculi[D]. Doctor degree disser-
tation of ShangHai Jiao Tong University,2008.

[6] Stephanie Delaune, Steve Kremer, Mrak Ryan. Symbolic
Bisimulation for the Applied Pi Calculus[J]. Foundations
of Software Technology and Theoretical Computer Sci-
ence, 2007.

[7] Kuang, Li. A formal analysis of behavioral equivalence for
web services. IEEE Congress on Services,2008,265-268.

[8] W.M.P. Van Der Aalst, A.K. De Alves Medeiros, A.J.M.M.
Weijters. Process Equivalence:Comparing Two Process
Models Based on Observed Behavior[J]. Business Process
Management(BPM),129-144.2006.

[9] Huimin Lin. Inference systems for observation equiva-
lences in the -calculus[J]. Technological Sciences,1999.

[10] Mikkel Bundgaard. A Brief Introduction to Mobility Work-
bench(MWB). Department of Theoretical Computer Sci-
ence, IT University of Copenhagen,2005.

[11] Zhaohui Wu, Qing Wu, Hong Cheng, Gang Pan, and
Minde Zhao, SCUDWare: A Semantic and Adaptive
Middleware Platform for Smart Vehicle Space, IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTA-
TION SYSTEMS, VOL. 8, No. 1, pp. 121-132, 2007.

[12] http://www.omg.org/technology/documents/formal/compon
ents.htm, 2005.

[13] http://www.cs.wustl.edu/ schmidt/ACE.html, 2005.

[14] http://www.cs.wustl.edu/ schmidt/TAO.html, 2005.
[15] Qing Wu and Zhaohui Wu, Semantic and Virtual Agents

in Adaptive Middleware Architecture for Smart Vehicle
Space, In proceeding of the 4th International Central and
Eastern European Conference on Multi-Agent Systems,
Springer LNAI 3690, pp. 543-546, 2005.

[16] F.Y. Wang et al., Toward Intelligent Transportation Sys-
tems for the 2008 Olympics, IEEE Intelligent Systems,
vol. 18, no. 6, pp. 8C11, 2003.

[17] Young-uk Chung and Dong-Ho Cho, Enhanced Soft-
Handoff Scheme for Real-Time Streaming Services in
Intelligent Transportation Systems Based on CDMA, IEEE
TRANSACTIONS ON INTELLIGENT TRANSPORTA-
TION SYSTEMS, VOL. 7, NO. 2, pp.147-155, JUNE
2006.

[18] Joel C. McCall and Mohan M. Trivedi, Video-Based Lane
Estimation and Tracking for Driver Assistance: Survey,
System, and Evaluation, IEEE TRANSACTIONS ON IN-
TELLIGENT TRANSPORTATION SYSTEMS, VOL. 7,
NO. 1, pp.20-37 MARCH 2006.

[19] Qing Wu and Ying Li. ScudADL: An Architecture De-
scription Language for Adaptive Middleware in Ubiquitous
Computing Environments. In proceedings of the 2th ISECS
International Colloquium on Computing, Communication,
Control, and Management, 2009.

[20] F.Oquendo, B. Warboys, R.Morrison, et al. ARCHWARE:
Architecting Evolvalble Software, EWSA 2004, LNCS
3047, pp. 257-271, 2004.

[21] F.Oquendo, π-ADL: an architecure description language
based on the higher-order typed π-calculus for specifying
dynamic and mobile software architecture, ACM SIG-
SOFT Software Engineering Notes, VOL. 29, NO. 3, pp.1-
14, 2004.

[22] Li Changyun, Li Gansheng, he Pinjie, Formal Dynamic
Architecture Description Language D-ADL, Journal of
Sotware, VOL.17, NO.6, pp. 1349-1359, 2006.

[23] Jing Gao,Yuqing Lan,Shuhang Guo,Maozhong Jin,Tong
Zhao.A new modeling method of component interaction
behavior.Proceedings of the World Congress on Intelligent
Control and Automation(WCICA), pp.4773-4778, 2008.

Wu Qing received the BS and MS degrees both in Computer
Science from Hangzhou Dianzi University in July 2000 and
March 2003, respectively. In June 2006, he received the Ph.D.
degree in computer science from Zhejiang University. Since
July 2007, he serves as an associate professor of computer
science at Hangzhou Dianzi University. His major interests
include Pervasive Embedded Computing, Software Middleware,
Context-aware Computing, CORBA Component Model, CAA,
and Multi-Agent Theory.

Chunbo Zhao is a graduate student of computer science at
Hangzhou Dianzi University. His major interests include Dis-
tributed Computing, Software Middleware, and CORBA Com-
ponent Model, and CAA Theory.

Yi Ying is an associate professor of computer science at
Zhejiang University. His major interests include Pervasive Em-
bedded Computing, Software Architecture, and Semantic Com-
ponent Theory.

890 JOURNAL OF SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

© 2010 ACADEMY PUBLISHER

