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Abstract1—Automated assertion-based test data generation 
has been shown to be a promising tool for generating test 
cases that reveal program faults. Because the number of 
assertions may be very large for complex programs, one of 
the main concerns to the applicability of assertion-based 
testing is the amount of search time required to explore a 
potentially large number of assertions. Since assertion-based 
test data generation is meant to be used after programs have 
been tested using regular testing methods, e.g. black-box 
and white box, it is expected that most faults have been 
removed previously, therefore, a large number of assertions 
will not be violated. If the number of unpromising assertions 
can be reduced, then the efficiency of assertion-based test 
data generation can be significantly improved. This paper 
presents an algorithm which uses data-dependency analysis 
among assertions in order to accumulate historical data 
about previously explored assertions which can then be 
utilized during future explorations. The results of a small 
experimental evaluation of this algorithm show that the 
algorithm may reduce the number of assertions to be 
explored, hence making assertion-based test data generation 
more efficient. This improvement my vary depending on the 
number and relationship among assertions found in each 
program. For example, in a program named MinMax2 with 
5 assertions, there was no improvement while in another 
program named GCD with 24 assertions, there was more 
than 50% reduction in number of assertions to be explored.  
 
Index Terms—automated software testing, test data 
generation, software testing, assertion-based testing, 
program assertions 

I.  INTRODUCTION 

Software testing is a costly and labor-intensive activity. 
For this reason, great efforts have been devoted to 
produce automated testing tools to assist in generating 
test cases. Given the program under test and a set, I, of its 
input variables, automatic test data generation is the 
process of finding input values for I in order to reach a 
given criterion. Some criteria include statement coverage, 
branch coverage, and path coverage.   

There are two main approaches to software testing: 
Black-box and White-box. Test generators that support 
black-box testing create test cases by using a set of rules 
and procedures; the most popular methods include 
equivalence class partitioning, boundary value analysis, 
cause-effect graphing. White-box testing is supported by 
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coverage analyzers that assess the coverage of test cases 
with respect to executed statements, branches, paths, etc. 
There are different types of automated test data 
generators for white-box testing. Random test data 
generators select random inputs for the test data from 
some distribution, e.g., [10].  Path-oriented test data 
generators select a program path(s) to the selected 
statement and then generate input data to traverse that 
path, e.g., [1, 3, 16, 19, 20]. Goal-oriented test data 
generators select inputs to execute the selected goal (i.e. 
statement) irrespective of the path taken, e.g., [4, 6, 21]). 
Intelligent test data generators employ genetic and 
evolutionary algorithms in the process of generating test 
data, e.g., [2, 9, 15, 18, 22].  

Assertions have been recognized as a powerful tool for 
automatic run-time detection of software errors during 
debugging, testing, and maintenance [8, 14, 17, 23]. An 
assertion specifies a constraint that applies to some state 
of a computation. When an assertion evaluates to false 
during program execution, there exists an incorrect state 
in the program. Moreover, assertions have proved to be 
very effective in testing and debugging cycle [11]. For 
example, during black-box and white-box testing 
assertions are evaluated for each program execution [6]. 
Information about assertion violations is used to localize 
and fix bugs [11, 24], and can increase program’s 
testability [13, 14]. 

Utilizing assertions for the purpose of test data 
generation was proposed in [6]. In that research, an 
automated test data generation method based on the 
violation of assertions was presented. The main objective 
of this method is to find an input on which an assertion is 
violated. If such an input is found then there is a fault in 
the program. This type of assertion-based testing is a 
promising approach as most programming languages 
nowadays support automatic assertions generation. 
Examples of automatically generated assertions are 
boundary checks, division by zero, null pointers, variable 
overflow/underflow, etc.  

As the number of assertions might be very large for 
complex programs, especially those assertions which are 
generated automatically, one of the main concerns in the 
applicability of assertion-based testing presented in [6] is 
the amount of search time required to explore a 
potentially large number of assertions in the program 
under test.  Since assertion-based test data generation is 
meant to be used after programs have been tested using 
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regular testing methods, e.g. black-box and white box, it 
is expected that most faults have been removed 
previously by these methods.  Therefore a large number 
of assertions will not be violated. If the number of these 
unpromising assertions can be reduced then the efficiency 
of assertion-based test data generation can be 
significantly improved. 

This paper presents an algorithm which uses data-
dependency analysis among assertions with the intent to 
accumulate history information about previously explored 
assertions to be utilized during future explorations. Our 
main objective is to reduce the time spent during 
assertions-based testing, hence making this approach 
more efficient and applicable for complex programs with 
a large number of assertions. We have implemented this 
algorithm and used the assertion-based testing method 
reported in [6] to generate program input to violate a 
given assertion.  

Our experimental evaluation, discussed in Sec. IV, 
shows that our proposed algorithm, while preserving 
violation capability, reduced the number of assertions to 
be explored which lead to less time spent during 
assertion-based testing. This improvement is not 
guaranteed for all programs and my vary depending on 
the number and the relationship among assertions found 
in each program. The main intent of this experiment is to 
show that information pertaining to relationships among 
assertions present in a program can be utilized for the 
purpose of eliminating some of these assertions during 
assertions-based testing.  

The rest of this paper is organized as follows. Section 
II provides an overview of assertion-based test data 
generation. Section III presents our proposed algorithm 
for efficient assertion-based testing. In Section IV we 
present our experimental evaluation, and in Section V we 
discuss our conclusions and future research.  

II.  ASSERTION-BASED TEST DATA GENERATION 

The goal of assertion-based test data generation [6] is 
to identify program input on which an assertion(s) is 
violated. This method is a goal-oriented [4, 5, 21] and is 
based on the actual program execution. This method 
reduces the problem of test data generation to the problem 
of finding input data to execute a target program’s 
statement s. In this method, each assertion is eventually 
represented by a set of program’s statements (nodes). The 
execution of any of these nodes causes the violation of 
this assertion.  In order to generate input data to execute a 
target statement s (node), this method uses the chaining 
approach [21]. Given a target program statement s, the 
chaining approach starts by executing the program for an 
arbitrary input. When the target statement s is not 
executed on this input, a fitness function [4, 5, 21] is 
associated with this statement and function minimization 
search algorithms are used to find automatically input to 
execute s. If the search process can’t find program input 
to execute s, this method identifies program’s statements 
that have to be executed prior to reaching the target 
statement s. In this way this approach builds a chain of 
goals that have to be satisfied before the execution to the 

target statement s. More details of the chaining approach 
can be found in [21]. 

As presented in [6], two types of assertions are dealt 
with: Boolean-formula and Executable-code assertions. 
As demonstrated using Pascal programs, each assertions 
is written inside Pascal comment regions using the 
extended comment indicators: (*@  assertion @*) in 
order to be replaced by an actual code and inserted into 
the program during a preprocessing stage of the program 
under test.  

A. Assertions as Boolean Formulas 
An assertion may be described as a Boolean formula 

built from the logical expressions and from (and, or, not) 
operators. In our implementation we use Pascal language 
notation to describe logical expressions. There are two 
types of logical expressions: Boolean expression and 
relational expression. A Boolean expression involves 
Boolean variables and has the following form: A1 op A2, 
where A1 and A2 are Boolean variables or true/false 
constant, and op is one of {=, ≠}. On the other hand, 
relational expression has the following form: A1 op A2, 
where A1 and A2 are arithmetic expressions, and op is 
one of {<, ≤, >, ≥, =, ≠}. For example, (x < y) is a 
relational expression, and (f = false) is a Boolean 
expression. The following is a sample assertion: 

A:  (*@ (x < y) and (f = false) @*). 
The preprocessor in our implementation translates 

assertion A into the following code: 
 
    if not ((x < y) and (f = false)) then  
    Report_Violation; 

 
Where, Report_Violation, is a special procedure which 

is called to report assertion’s violation. 

B.  Assertions as Executable Code 
Although most assertions may be described as Boolean 

formula, a large number of assertions cannot be described 
in this way. Therefore, our system supports assertions as 
executable code. The major advantage of “Assertions as 
executable code” is the flexibility it provides 
programmers to design as complex assertions as they 
wish. Assertions in this format are declared in a similar 
way as Pascal functions that return Boolean value. Local 
variables may also be declared within an assertion 
(exactly the same way as in a Pascal function 
declaration). A special variable assert is introduced in 
each assertion. During assertion evaluation true/false 
value has to be assigned to variable assert. A sample 
assertion A2 as executable code is presented in Figure 1. 
In this assertion variable j is a local variable of A2 and all 
the remaining variables used in A2 are program’s 
variables. The preprocessor translates an assertion into 
the corresponding function declaration together with the 
function call in an if-statement. In this paper we are 
concerned with Boolean-formulas assertions.  Therefore, 
executable code assertions will not be discussed any 
further. 
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program sample; 
var 
n: integer; 
a: array[1..10] of integer; 
i,max,min: integer; 
begin 
1 input(n,a); 
2 max:=a[1]; 
3 min:=a[1]; 
4 i:=2; 
5 while i ≤ n do begin 
6,7  if min > a[i] then min:=a[i]; 
8  i:=i+1; 
 {Assertion A1 as a Boolean formula} 
  (*@  (i ≥ 1) and (i ≤ 10) @*)  
9,10  if max < a[i] then max:=a[i]; 
 end; 
 {Assertion A2 as executable code} 
 (*@ assertion:     
 var 
 j: integer; 
 begin 
  assert:=true;  
  j:=1; 
  while j ≤ n do begin 
   if max < a[j] then assert:=false; 
   j:=j+1; 
  end; 
 end; 
 @*) 
 
11 writeln(min,max); 
end. 
 

Figure 1.   A sample program with two assertions 
(assertions are shown in italic). 

III.  ALGORITHM FOR EFFICIENT ASSERTION-BASED 
TESTING 

In our implantation, each program assertion A may be 
replaced by a block of conditional statements as in Figure 
2. 
 
IF  c11 THEN 
 IF c12 THEN 
  …   
  IF c1r THEN n1; 
IF c21 THEN 
 IF c22 THEN 
  …   
  IF c2r THEN n2; 
… 
IF cz1 THEN 
 IF cz2 THEN 
  …   
  IF czr THEN nq; 
 

Figure 2.  Representative code of an assertion A 
  

Formally, let A = {A1, A2, …, An} be a set of 
assertions found in a program P.  For each assertion A ∈ 

A, a set of nodes N(A) = {n1, n2, …, nq} where q ≥ 1, is 
identified during a preprocessing stage of the program 
under test, where the execution of any node nk ∈ N(A), 
1≤k≤q, corresponds to the violation of assertion A.  In 
other words, an assertion A is violated if and only if there 
exists a program input data x for which at least one node 
nk ∈ N(A) is executed.  Furthermore, with each node nk ∈ 
N(A) we associate a sequence of nested-if conditions 
C(nk) =< c1, c2, …, cr> where r ≥ 1, which leads to node 
nk.  For node nk to be executed, every condition cl ∈ 
C(nk), 1≤l ≤r, has to be satisfied.   

For example, Figure 3 shows code statements 
generated to represent the following assertion A: 
 
(*@ ((x≥y) or (x=z)) and ((z≠99) or (Full=False)) and 
(z≠0) @*). 
 
Where, 
N(A) = { n1, n2, n3 }, 
C(n1) = < (x < y), (x ≠ z) >,  
C(n2) = < (z = 99), (Full = True) >, and  
C(n3) = < (z = 0) >.   
 

In order for assertion A to be violated we have to find a 
program input x that will cause at least one of n1, n2, or n3 
to be executed. 
 
   IF (x < y) THEN 
        IF (x ≠ z) THEN 
n1 Report_Violation; 
    IF (z = 99) THEN  
       IF (Full = True) THEN 
n2 Report_Violation; 
     IF (z = 0) THEN 
n3 Report Violation; 
 

Figure 3.  Code generated for an example assertion A 
 

Figure 4 shows the corresponding pseudo-code for the 
algorithm used in [6]. This algorithm processes all 
assertions independently. Let us refer to this algorithm as 
ExploreAll. 
 
Input:  (A, L)  
 A: a set of assertions in a program P under test 
L: Search time limit 
Let StartTime = CurrentTime 
WHILE (CurrentTimie –StartTime)<L) DO: 
  FOR every assertion A ∈ A do: 
     FOR every node nk ∈ N(A) do: 
       Search for a program input x to execute nk 
       IF  x is found THEN 
 Report the violation of assertion A; 
 Exit For loop 
     EndFOR 
  EndFOR. 
END WHILE 

 
Figure 4.  A pseudo-code for ExploreAll algorithm 
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When an assertion is selected for processing by 

ExploreAll, all nodes for this assertion are processed 
regardless of the outcome of previously processed nodes. 
For example, consider assertion A defined previously. 
ExploreAll will attempt to find input data to execute all 
nodes n1, n2 and n3 regardless of the outcome of 
previously processed assertions or nodes.  

As opposed to the ExploreAll algorithm, our proposed 
algorithm, ExploreSelect, collects data-dependency 
information after each exploration of an assertion. This 
information is then analyzed and used to weed out some 
unpromising assertion's nodes and may even prevent the 
exploration of a certain assertion altogether. As shown in 
Figure 5, ExploreSelect algorithm loops over the set R of 
assertions to be explored until (i) all assertions in R are 
explored or (ii) the time allowed for assertions processing 
expires.   
   
Input: (A, L)  
  A: a set of assertions in a program P under test 
  L  : Search time limit 
Temporary variables: 
  A : current assertion under consideration 
  nk : current node under consideration 
  R =  ∅, a set of assertions to be explored 
  StartTime : temp. var.  holding the time search started 
Let R = A 
Let StartTime = CurrentTime 
WHILE (R ≠ ∅ )and ((CurrentTime-StartTime )<L)   
DO: 
      Select2 next assertion A from R  
      WHILE (N(A) ≠ ∅) DO: 
          Select3 next node nk from N(A) 
          Search for a program input x to execute nk 
          IF x is found THEN invoke AnalyzeIfSuccess                           
 ELSE  invoke  AnalyzeIfFailure     
      EndWHILE 
EndWHILE. 
 

Figure 5.  A pseudo-code for ExploreSelect algorithm 
 

ExploreSelect algorithm analyzes results of previously 
processed assertions or nodes and then tries to employ 
this result by reducing the size of the set R, i.e., the 
number of yet to be explored assertions. If the size of R 
may be reduced then the time spent for assertion-based 
testing may be reduced.  Depending on the result of the 
current exploration this algorithm invokes a specialized 
procedure: AnalyzeIfSuccess (AIS) procedure is invoked 
when the system succeed in violating the current assertion 
while the AnalyzeIfFailure (AIF) procedure is invoked 
when the system fails to find test data to violate the 
currently explored assertion. These special procedures are 
discussed next. Note that to generate input data to execute 

                                                 
2 Select statements used in this algorithm are active select, i.e., an item is 
selected and removed at the same time.  
3 Node selection is based on a priority system which is described in Sec 
III.A.  

a given node nk, other execution-based test data 
generation methods, e.g., [2, 3, 9, 16, 22] may be used to 
fulfill this step. 

A.    AnalyzeIfSuccess (AIS) Procedure 
As shown in Figure 6, the AIS procedure has two main 

goals. The first goal is to explore the possibility of 
violating more than one assertion based on the same input 
data x.  The second goal is to perform data-dependency 
analysis [21] among assertions to identify assertion nodes 
that have the potential to be executed and give them a 
higher priority during test data generation. To reach the 
first goal, AIS heuristic continues program’s execution to 
the end every time the system succeeds in finding input 
data x to violate an assertion.  This action is done in the 
hope that assertion nodes identical or related to the one 
which caused the violation of the currently explored 
assertion will also be executed based in the same input 
data. By doing so, the AIS may be able to reduce the 
number of assertions to be explored which will 
consequently results in reducing the cost associated with 
assertion-based test data generation. Two nodes nk and np 
are related if the conditional sequence of np is contained 
in the conditional sequence of nk or vice versa.  

In order to satisfy the second goal, i.e., to identify 
nodes with high potential to be executed, the AIS 
performs data dependency analysis after every program 
execution in order to identify which assertion nodes 
should be given priority to be explored first in the next 
execution. Since the AIS is invoked every time the 
system is able to generate input data x for which an 
assertion node nk was executed, the objective of this 
analysis is to:  (i) given a previously executed node nk, for 
every assertion H in the set R of yet to be explored 
assertions, identify every node np ∈ N(H) for which the 
conditional sequence C(np) is identical or a subsequence 
of the conditional sequence C(nk) of node nk; (ii) collect 
data-dependency analysis to check whether or not any of 
the variables used at C(np) has been modified between 
node nk and node np; and (iii) if the result of this analysis 
shows that all variables used at C(np) were not modified 
between node nk and node np, then node np is considered 
as a candidate to be executed first in the next iteration 
and is assigned a priority number to distinguish it from 
other nodes. Our priority system is very simple where a 
candidate node is simply moved to the head of the list of 
nodes to be explored. 

Our experimental evaluation, presented in Section IV, 
shows the proposed algorithm, ExploreSelect, succeeds in 
most cases in finding input data to execute a candidate 
node np, hence violating the assertion that np is a part of.  
In other words, a candidate node np has a greater chance 
to be executed more than other nodes because of its 
relation to a previously executed node nk. To illustrate 
this, consider the sample program of Figure 7 and its 
augmented version shown in Figure 8. Notice that the 
program in Figure 8 is a transformed form of Figure 7’s 
program. Each assertion in Figure 7 has been replaced, in 
Figure 8, by its corresponding lines of code as explained 
in Sec. II. 
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Input:  (A, nk  , R), where 
A :  an assertion which was violated 
nk  :  a node nk  ∈ N(A) for which an input data x was 
found 
R :  a set of yet to be explored assertions 
 
Report the violation of assertion A 
Set N(A) = ∅ 
Continue program execution on the input x and do the 
following: 
   FOR every executed assertion B  DO: 
      IF B is violated THEN DO: 
 Report the violation of assertion B 
 Remove B from R 
      EndIF 
   EndFOR 
 
After program execution is completed DO: 
  FOR every assertion H ∈ R  DO: 
   FOR every node np ∈ N(H) DO: 
     IF the following conditions are satisfied: 
      1) The conditional sequence of , C(np), of np 
      is identical or a subsequence of the conditional  
      sequence, C(nk ), of nk ; and  
       2) For each variable v ∈ U(C(np))4, v is not      
       modified for all  paths from nk  to np. 
     THEN assign node np the highest priority to be 
                 explored next 
      EndFOR 
  EndFOR 
EndDO. 

Figure 6.   A pseudo-code for AnalyzeIfSuccess 

With respect to Figure 8, suppose that the system is 
able to generate the following program input data:  i = 15, 
MAX = 15, and x = 50, for which node 14 ∈ N(A2) was 
executed.  This means that assertion A2 is violated.  As a 
reaction to this result, the AIS performs three actions: (1) 
report the violation of assertion A2 and remove it from the 
set R; (2) continue program execution on this input 
hoping that other assertions may also be violated.  In this 
case assertion A3 (as represented by the nodes 17, 18, 19 
and 20 in Figure 8) will also be violated on this input and 
will be removed from the set R of yet to be explored 
assertions (notice that assertion A3 is identical to assertion 
A2) and (3) after program execution on this input is 
completed, all non-violated assertions, i.e. A4, A5, A6, are 
examined to identify assertion nodes that most likely will 
be executed when these assertions are explored. Notice 
that the conditional sequence of node 26 ∈ N(A4), C(26)= 
< (i>MAX) >, is identical to the conditional sequence 
C(14) of  node 14 ∈ N(A2), which has been executed in 
the current round of execution. This information is 
recorded and will be used when assertion A4 is considered 

                                                 
4 The set of  used variables for the conditional sequence of a node np is 
defined as follows:  

U(C(np)) = ∪
) n( p

)(
Cc

cU
∈

,where U(c) is the set of used variables at a 

single condition c. 

for exploration. Specifically, the algorithm uses this 
information to decide which nodes of A4 are promising 
and need to be given a priority over other nodes. To 
illustrate this, suppose that the system is in a new round 
of execution and is currently exploring assertion A4: (*@   
(i≥1) and (i≤MAX)   @*) defined in Figure 7 and for 
which the following code was generated in the augmented 
version as shown in Figure 8: 
 

23 IF  i <1 THEN 
24     write(‘Assertion Violation!’); 
25  IF  i > MAX THEN  
26     write(‘Assertion Violation!’); 
 
Where N(A4) = {24, 26},  
C(24) = < (i<1) >,  
C(26) = < (i>MAX) >. 
 

Using the information collected in the previous round 
of execution about A4, and because there exists a program 
path for which variables i and MAX used at C(26) are not 
modified between node 14 and node 26, node 26 has a 
great chance to be executed, i.e., it is most likely that the 
system will succeed in finding input data for which node 
26 will be executed. Therefore, node 26 is assigned a 
higher priority so that it will be explored before node 24 
when assertion A4 is considered for processing.  In 
connection with node 26, the input data: i = 15, MAX = 
15, and x = -1, was what is required to cause the 
execution of this node, hence the violation of assertion 
A4.  By examining this input we notice that it only differs 
in the value of the variable x from that input for which 
assertions A2 and A3 were violated.  This implies that, in 
most situations, it is very likely that the system will 
succeed in finding a program input data for which a 
prioritized node is executed. 

B.   AnalyzeIfFailure (AIF) Procedure   
The AIF procedure, presented in Figure 9, is invoked 

when the system fails to find program input data to 
execute node nk ∈ N(A) of a currently processed assertion 
A.  The objective of this algorithm is to identify those 
unpromising conditions (predicates) in the currently 
processed assertion and to avoid spending valuable search 
time repeatedly trying to find program input data to 
satisfy these same conditions in case they are part of a yet 
to be explored assertion’ nodes.  A condition or a 
predicate is considered unpromising if the system will 
most likely fails to find a program input data to satisfy 
this condition, i.e., to make this condition evaluate to 
true.  

Specifically, given a node nk ∈ N(A) of a currently 
explored assertion, for which the system was not able to 
find input data to execute this node, the AIF heuristic 
identifies condition c ∈ C(nk) (i.e., c belongs to the 
conditional sequence C(nk) of node nk) which was not 
satisfied, i.e., did not evaluate to true.   
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program example; 
Var data: array[1..40] of integer;  
  x, i, MAX: integer;  
   positive:boolean; 
begin 
1  Input(i, MAX, x); 
2  positive:= true; 
    (*@   (i ≥1) and (i ≤ MAX)   @*)              A1 
3  data[i]:= x; 
4  while i <= MAX do begin 
5     Input(x); 
6     i:=i+1; 
    (*@   (i ≥1) and (i ≤ MAX)   @*)               A2  
7     data[i]:= x; 
8      if (x ≥ 0) then  begin 
    (*@   (i ≥1) and (i ≤ MAX)   @*)               A3 
9          value:= data[i]; 
10        write(‘Value entered: ‘, value); 
        end 
        else  
     begin 
  (*@  (i ≥1) and (i ≤ MAX)  @*)                   A4 
11     value := data[i]; 
12     write(‘Value entered: ‘, value); 
13     i:= i-1; 
14    positive:= false; 
           end; 
15     if ((x<0) OR (i=MAX)) AND ((i=MAX)  
                  OR (positive=false)) then 
     begin 
 (*@ (((x<0) or (i=MAX)) and ((i=MAX) or  
                   (positive=false)))  @*)                 A5 
16  write(i, MAX, positive); 
17       if (i=MAX) OR (positive=false) then 
       begin 
 (*@ ((i=MAX) or (positive=false)) @*)          A6 
18, 19       if (i=MAX) then writeln(‘Full  
                                 capacity reached!’) 
20       else writeln(‘Negative value 
entered!’);   
            end; 
      end; 
21    positive:= true; 
 end;   
end. 
 

Figure 7.  Sample program with repeated assertions 
 

With the condition c on hand, the AIF scans every 
node np ∈ N(A) ∪ N(H), p ≥1, for all assertions H ∈ R ( 
the set of yet to be explored assertions) looking for any 
node, np, for which c ∈ C(np), i.e., nodes that include 
condition c as a part of their conditional sequences.  For 
every such node np, AIF performs data-dependency 
analysis to check if any of the variables used in condition 
c ∈ C(np) was modified between node nk and node np.  If 
this analysis reveals that none of the variables used at c ∈ 
C(np) was modified between node nk and node np then this 
indicates that it is very likely that the system will also fail 
to find input data for which node np will be executed, i.e.,  

program example; 
Var data: array[1..40] of integer; x, i, MAX: integer; 
positive:boolean; 
begin 
1 Input(i, MAX, x); 
2 positive:= true; 
3, 4 if i<1 then     write(‘Assertion Violation!’); 
5, 6 if i>MAX then   write(‘Assertion Violation!’); 
7 data[i]:= x; 
8 while i <= MAX do 
 begin 
9    Input(x); 
10    i:=i+1; 
11, 12     if i<1 then     write(‘Assertion Violation!’); 
13, 14    if i>MAX then   write(‘Assertion Violation!’); 
15    data[i]:= x; 
16    if (x ≥ 0) then  
    begin 
17, 18     if i<1 then     write(‘Assertion Violation!’); 
19, 20     if i>MAX then   write(‘Assertion Violation!’); 
21       value:= data[i]; 
22       write(‘Value entered: ‘, value); 
    end 
    else begin 
23, 24      if i<1 then     write(‘Assertion Violation!’); 
25, 26     if i>MAX then   write(‘Assertion Violation!’); 
27           value := data[i]; 
28    write(‘Value entered: ‘, value); 
29     i:= i-1; 
30     positive:= false; 
         end; 
31     if ((x<0) OR (i=MAX)) AND ((i=MAX) 
                   OR (positive=false)) then  
       begin 
32, 33, 34   if x ≥ 0 then if i ≠ MAX  then  
                            write(‘Assertion Violation!’); 
35, 36, 37   if i ≠ MAX then if positive ≠ false then  
   write(‘Assertion Violation!’); 
38     write(i, MAX, positive); 
39     if (i=MAX) OR (positive=false) then 
               begin 
40, 41, 42   if i ≠ MAX then if positive ≠ false then  
  write(‘Assertion Violation!’); 
43, 44      if (i=MAX) then writeln(‘Full capacity  
    reached!’) 
45      else writeln(‘Negative value entered!’);  
  end; 
        end; 
46     positive:= true; 
     end;   
end. 

Figure 8.  Augmented version of program in Figure 7 

 
node np has a very small chance to be executed.  
Therefore, every node np is considered as unpromising 
and is removed from the set of nodes to be explored.   

Although a removed node might have had a very slight 
chance to be executed, had it been explored, there is a 
greater chance that it will not be executed as supported by  
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Input: (A, nk, c, R) 
  A: currently explored assertion 
  nk:  a node nk ∈ N(A) for which an input data was not 
found  
  c:  the condition of C(nk) which was not satisfied during 
exploration of node nk 
  R: a set of yet to be explored assertions 
  
FOR every assertion H ∈ R ∪ {A}DO: 
  FOR every node np ∈ N(H) DO: 
    IF the following conditions are satisfied: 
      1) c is part of the conditional sequence of np, C(np); 
      AND   
      2) For every variable v ∈ U(c), v is not modified  
          for all paths from nk to np    
    THEN remove np from N(H) 
  EndFOR 
EndFOR. 

Figure 9.  A pseudo-code for AnalyzeIfFailure 

 
our experimental evaluation.  Since the time to explore a 
single node is expensive and since the objective of the 
AIF heuristic is to reduce the time consumed in assertion 
processing, the little risk taken in removing nodes is well 
justified, especially that this risk is so little if not zero in 
many cases. 

To illustrate how AIF procedure decides not to explore 
unpromising nodes and remove them from the list of 
nodes to be explored during assertion processing, 
consider the sample program in Figure 7 and its 
augmented version in Figure 8.  

Consider assertion A5: (*@ (((x<0) or (i=MAX)) and 
((i=MAX) or (positive=false))) @*) defined in Figure 7.  
A5 was replaced by the following code in the augmented 
version of that program appeared in Figure 8: 
 
32  IF x ≥ 0 THEN  
33    IF i ≠ MAX THEN 
34      write(‘Assertion Violation!’); 
35    IF i ≠ MAX THEN 
36      IF positive ≠ false THEN 
37          write(‘Assertion Violation!’); 
 
Where, 
N(A5) = {34, 37},  
C(34) = < (x ≥ 0), (i ≠ MAX) >,  
C(37) = < (i ≠ MAX), (positive ≠ false) >.   
 

Suppose that node 34 was selected first during the 
processing of A5 and that the system was not able to find 
input data x for which the condition (i ≠ MAX) is 
satisfied.  Consequently node 34 is not executed. Based 
on the outcome of this event, the AIF procedure inspects 
the remaining nodes of A5 and explores the possibility of 
eliminating the processing of some of these nodes. 
Specifically AIF will do the following: 
1) Identify the condition(s) cf among the 

conditional sequence of node 34, C(34), through 
which the execution of node 34 was not possible; 

and  
2) For every node np ∈ N(A) ∪ N(B), for all 

assertions B ∈ R, for which cf ∈ C(np) remove np 
from the set of nodes to be explored. Notice that 
other conditions in the same sequence for the 
same node are dropped as well because they 
were anded together with the failed condition.  

In this example, cf = ( i ≠ MAX), is the condition 
through which the execution of node 34 was not possible.  
By inspecting node 37 we notice that cf also belongs to 
the conditional sequence of node 37, i.e., cf ∈ C(37).  
Based on this finding and because both variables i and 
MAX used in the condition (i ≠ MAX) at node 37 were 
not modified since their last use at node 34, the AIF 
considers node 37 to be an unpromising node and, 
consequently, will not invest search time trying to execute 
this node.  Node 37 is considered unpromising because it 
is very likely that the system will fail to find input data to 
execute this node as was the case with node 34. This is 
because it is necessary to satisfy the condition (i ≠ MAX) 
in order for node 37 to be executed.  As supported by our 
experimental evaluation it is most likely that the system 
will not be able to find input data to execute these nodes. 

As another example to illustrate how AIF eliminates 
the processing of an assertion based on the result of a 
previously processed assertion which was not violated, 
consider the following situation. Given the information 
about assertion A5 presented in the previous example, 
consider assertion A6: (*@ ((i=MAX) or (positive=false)) 
@*) of Figure 7 which was replaced by the following 
code in Figure 8:  

 
40  IF i ≠ MAX THEN 
41  IF positive ≠ false THEN 
42     write (‘AssertionViolation'); 
 
For this assertion we have:  
N(A6) = {42},  
C(42) = < (i ≠ MAX), (positive ≠ false) >.  
 

Recall that assertion A5, considered in the previous 
example, was not violated because the system was not 
able to generate input data for which the condition cf = (i 
≠ MAX) will be satisfied. Where cf ∈ C(34), the 
conditional sequence of node 34. Now, inspecting the 
conditional sequence, C(42), of node 42 ∈ N(A6) we 
notice that cf is also a member of C(42).  Based on (i) the 
fact that the system had previously failed to find input 
data to satisfy cf, (ii) since cf also belongs to C(42), and 
(iii) variables ( i and MAX) used in cf were not modified 
since their last use at node 34, the AIF considers node 42 
as unpromising node and node 42 will not be considered 
for exploration.  Because node 42 is the only node in 
N(A6) assertion A6 is removed from the set R of yet to be 
explored assertions and the time to generate input data to 
violate this assertion is saved.  
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IV.   EXPERIMENTAL EVALUATION 

The intent of this experiment is only to show that 
information pertaining to relationships among assertions 
present at a program can be utilized for the purpose of 
eliminating some of these assertions during assertions-
based testing. Results may depend on the number and the 
relationship among assertions found in each program.  

To derive our experiment, a suite of fifteen Pascal 
programs with assertions was used.  In order to evaluate 
the performance both ExploreSelect (ES) and ExploreAll  
(EA) algorithms  with respect to programs with potential 
assertion violations and those which might not have any 
assertion violations, we have used a mix suite of correct 
and faulty programs.  Programs, to be described later, 
used in this experiment include: Bank, GCD, Bubble, 
Stack, Prime, MinMax1-MinMax8, Total, and Average.  
From these programs, GCD, Bubble, Stack and Prime are 
assumed to be fault-free, to the best of our knowledge, 
while Bank, MinMax, Total, and Average, have been 
seeded with at least one fault.   

This experiment is performed as follows: each program 
used in this experiment is tested using assertion-based 
testing reported in [6] in two rounds: one is using EA 
algorithm and the other uses ES algorithm. Remember 
that assertion-based testing as described in [6] is only 
performed after each program has been tested using both 
black-box testing and white-box testing (branch 
coverage). During this experiment, for each program we 
recorded (1) the total time (in minutes and seconds) 
consumed by each algorithm to perform the test (i.e., to 
try to violate assertions found in each program), (2) 
number of assertions explored by each approach and (3) 
number of assertions violated by each approach.  The 
complete result of this experiment is presented in TABLE 
I which entries should be interpreted as follows:  Column 
#1 and Column #2 give the program name and the 
number of assertions (NA) in this program, respectively.  
Column #3 shows the total time (in minutes and seconds) 
required by EA and ES algorithms to explore all 
assertions in a certain program.  Column #4 shows the 
total number of assertions explored using EA and ES.  
Finally, Column #5 gives the total number of assertion 
violations achieved by EA and ES algorithms.  For 
example, the second entry of TABLE I shows (i) that the 
EA spent approximately three hours and nineteen minutes 
to explore 24 assertions found in program GCD while the 
ES spent about an hour to explore the same number of 
assertions, (ii) that EA explored all the 24 assertions 
found in this program while ES explored only eleven 
assertions, and (iii) none of the assertions found in this 
program were violated by either EA or ES algorithms. 

A.  The Programs 

 
A brief description of the programs, developed for the 

purpose of this experiment, will now be given. Program 
Bank performs simple banking operations such as 

opening an account and depositing and withdrawing 
money.   Program GCD computes the greatest common 
divisor of an array of integers.  Program Bubble sorts an 
array of integer using the bubble sort algorithm.  Program 
Stack implements typical stack operations such as push, 
pop, empty and full.  Program Prime finds the set of 
prime numbers out of a given input integers list.  Program 
MinMax finds the minimum and the maximum of an 
array of integers (versions 1 to 6 of this program differ in 
the type and location of the fault seeded, while versions 7 
and 8 differ from other versions in the algorithm used to 
compute the minimum and the maximum).  Programs 
Total and Average compute the total and the average of 
an array of integers, respectively. Number of 
uncommented lines of  code for the programs is as 
follows: Bank (336), GCD (177), Bubble (54), Stack 
(114), Prime (94), MinMax (68), Total (52), and Average 
(54). 

B.  Discussion of the Experiment 
 

As shown in TABLE I, by using ES algorithm we were 
able to reduce the amount of time spent for assertion 
processing by 56%.  This means that by using the ES 
algorithm, more than half of the time that is consumed by 
EA algorithm has been spared.  This is a significant 
saving considering the value of time during software 
testing.  The good performance by the ES is mostly 
attributed to its ability to better invest the search time by 
eliminating unpromising assertions and/or nodes during 
assertions processing. In this respect, ES algorithm was 
able to reduce the number of assertions explored by 17% 
as shown in the bottom of TABLE II. Although 
eliminating assertions is not possible for some programs, 
ES algorithm attempts to eliminate unpromising nodes 
within assertions which results in reducing the overall 
time required for assertions processing.  This explains 
why ES algorithm spends less time than EA algorithm to 
explore the same number of assertions (six assertions) in 
program Stack (shown in the “Time” column in the fourth 
entry of TABLE I).   The reason for this is that through 
nodes elimination, ES algorithm was able to eliminate the 
processing of four out of twelve assertion’s nodes found 
in program Stack. This has reduced the number of nodes 
to explore in this program to eight while EA algorithm 
had to explore all twelve nodes (shown in the fourth entry 
of TABLE II).  For all programs in this experiment, ES 
algorithm reduced the number of assertion’s nodes to 
explore by 37% as reflected in TABLE II.  In addition to 
these improvements by ES over EA algorithm, ES 
algorithm was able to violate the same number of 
assertions as EA algorithm, which means that there was 
no risk incurred by using the ES with respect to the 
programs used in this experiment. Node elimination 
raises an important issue.  It was discussed previously in 
Sec III.B, that during assertion processing some 
unpromising nodes are eliminated by the AIF heuristic.  

JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010 651

© 2010 ACADEMY PUBLISHER



TABLE I. 
EXPERIMENTAL RESULTS 

 
Keys: 
NA: Total number of assertions in the program 
NE: Number of explored assertions 
NV: Number of violated assertions 
ES: ExploreSelect algorithm 
EA: ExploreAll algorithm 

 

Program NA Time (minutes) NE NV 

  EA ES EA ES EA ES 

Bank 19 72.66 49.21 19 17 1 1 
GCD 24 191.42 58.49 24 11 0 0 

Bubble 4 1.18 0.79 4 3 0 0 
Stack 6 3.50 2.34 6 6 0 0 
Prime 6 12.15 10.11 6 6 0 0 

MinMax1 5 0.32 0.33 5 5 2 2 
MinMax2 5 0.32 0.32 5 5 2 2 
MinMax3 5 0.25 0.22 5 5 4 4 

MinMax4 5 0.32 0.30 5 5 3 3 
MinMax5 5 0.28 0.30 5 5 3 3 
MinMax6 5 0.23 0.22 5 5 4 4 
MinMax7 5 0.58 0.39 5 4 1 1 
MinMax8 5 0.58 0.39 5 4 1 1 

Total 2 0.54 0.5 2 2 1 1 
Average 2 0.29 0.3 2 2 1 1 

        

Total 103 284.62 124.21 103 85 23 23 

Average 6.87 18.97 8.28 6.87 5.67 1.53 1.53 

Reduction by ES   56%                17%   

Elimination’s Risk 0% 

 
 

 

TABLE II. 
NUMBER OF EXPLORED ASSERTION’S NODES 

 
  Program  Total No. of 

Nodes 
EA ES 

Bank 35 35 13 
GCD 53 53 15 

Bubble 12 12 8 
Stack 12 12 8 
Prime 11 11 11 

MinMax1 7 7 7 
MinMax2 7 7 7 
MinMax3 7 7 7 
MinMax4 7 7 7 
MinMax5 7 7 7 
MinMax6 7 7 7 
MinMax7 7 7 5 
MinMax8 7 7 5 

Total 3 3 3 
Average 3 3 3 

    
Total 179 179 113 
Reduction By ES                                37% 

 
Because of the nature of the test data generation 

problem, where it is impossible to test a program for all 
possible inputs [12], some eliminated nodes may have 
some chance in being executed (i.e., results in an 

assertion violation) had they given the opportunity to be 
explored.  

Although the risk imposed by node elimination is 
considered a limitation of ES algorithm, the results of our 
experimental study shows that this risk is minimal where, 
for all programs used in this study, both  EA and ES 
algorithms were able to violate the same number of 
assertions (i.e., no risk was incurred by using ES 
algorithm). Although there is a little risk associated with 
node elimination by ES algorithm, this risk is a 
reasonable compromise to take for the speed achieved 
using this heuristic because (i) this risk is minimal as 
supported by our experimental evaluation and (ii) 
eliminating an unpromising node np only takes place 
when the search was not successful in finding input data 
to violate a related node nk and, in most cases, executing 
node np would unlikely lead to the violation of the 
currently explored assertion.   

V.  CONCLUSIONS 

This paper presents ExploreSelect, an algorithm for 
efficient assertion-based automated test data generation. 
ExploreSelect uses data-dependency analysis among 
assertions found in the program in order to reduce the 
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time required for assertion-based test data generation.   
Currently, this algorithm is implemented for assertions 

represented as Boolean formulas. Considering the 
number assertions of this type may be very large as they 
are generated automatically, (as they are supported by 
some programming language), the time required to 
process such larger number of assertions may hamper the 
applicability of assertions-based testing for large 
programs. Examples of such are assertions that guard for 
array-boundary violations, division by zero, integer/float 
underflow/overflow, stack overflow, etc. ExploreSelect 
utilizes data-dependency analysis in eliminating 
unpromising assertions during a pre-scan process, thereby 
avoiding wasting valuable search time trying to violate 
such assertions.  

Our experimental evaluation shows that, using 
ExploreSelect has significantly reduced the time required 
to perform assertion-based test data generation as 
compared to ExploreAll algorithm which process all 
assertions independently. Although ExploreSelect may 
eliminate some assertion’s nodes or decide not to explore 
a given assertion(s) altogether, our experimental 
evaluation shows that this process did not diminish its 
ability in assertion violation nor does it change the 
program’s testability.  This is because removed nodes 
and/or assertions have a very little chance to be violated.; 
Therefore, ExploreSelect preserves the performance of 
the ExploreAll in terms of assertion violations. The 
purpose of this experiment is to show that information 
among assertions may be utilized during assertion-based 
testing but does not guarantee the same result for all 
programs. Improvements may vary depending on the 
number and the relationship among assertions found in 
each program. In the future, we plan to perform 
additional experiments using larger sized programs in 
order to evaluate the applicability of this algorithm for 
commercial software.  
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