
An Algorithm for Efficient Assertions-Based Test
Data Generation

Ali M. Alakeel
College of Telecomm & Electronics
Computer Technology Department

Jeddah, Saudi Arabia
Email: dralyami@tvtc.gov.sa

Abstract1—Automated assertion-based test data generation
has been shown to be a promising tool for generating test
cases that reveal program faults. Because the number of
assertions may be very large for complex programs, one of
the main concerns to the applicability of assertion-based
testing is the amount of search time required to explore a
potentially large number of assertions. Since assertion-based
test data generation is meant to be used after programs have
been tested using regular testing methods, e.g. black-box
and white box, it is expected that most faults have been
removed previously, therefore, a large number of assertions
will not be violated. If the number of unpromising assertions
can be reduced, then the efficiency of assertion-based test
data generation can be significantly improved. This paper
presents an algorithm which uses data-dependency analysis
among assertions in order to accumulate historical data
about previously explored assertions which can then be
utilized during future explorations. The results of a small
experimental evaluation of this algorithm show that the
algorithm may reduce the number of assertions to be
explored, hence making assertion-based test data generation
more efficient. This improvement my vary depending on the
number and relationship among assertions found in each
program. For example, in a program named MinMax2 with
5 assertions, there was no improvement while in another
program named GCD with 24 assertions, there was more
than 50% reduction in number of assertions to be explored.

Index Terms—automated software testing, test data
generation, software testing, assertion-based testing,
program assertions

I. INTRODUCTION

Software testing is a costly and labor-intensive activity.
For this reason, great efforts have been devoted to
produce automated testing tools to assist in generating
test cases. Given the program under test and a set, I, of its
input variables, automatic test data generation is the
process of finding input values for I in order to reach a
given criterion. Some criteria include statement coverage,
branch coverage, and path coverage.

There are two main approaches to software testing:
Black-box and White-box. Test generators that support
black-box testing create test cases by using a set of rules
and procedures; the most popular methods include
equivalence class partitioning, boundary value analysis,
cause-effect graphing. White-box testing is supported by

1 Manuscript received July 7, 2009; revised October 11, 2009; accepted
October 31, 2009.

coverage analyzers that assess the coverage of test cases
with respect to executed statements, branches, paths, etc.
There are different types of automated test data
generators for white-box testing. Random test data
generators select random inputs for the test data from
some distribution, e.g., [10]. Path-oriented test data
generators select a program path(s) to the selected
statement and then generate input data to traverse that
path, e.g., [1, 3, 16, 19, 20]. Goal-oriented test data
generators select inputs to execute the selected goal (i.e.
statement) irrespective of the path taken, e.g., [4, 6, 21]).
Intelligent test data generators employ genetic and
evolutionary algorithms in the process of generating test
data, e.g., [2, 9, 15, 18, 22].

Assertions have been recognized as a powerful tool for
automatic run-time detection of software errors during
debugging, testing, and maintenance [8, 14, 17, 23]. An
assertion specifies a constraint that applies to some state
of a computation. When an assertion evaluates to false
during program execution, there exists an incorrect state
in the program. Moreover, assertions have proved to be
very effective in testing and debugging cycle [11]. For
example, during black-box and white-box testing
assertions are evaluated for each program execution [6].
Information about assertion violations is used to localize
and fix bugs [11, 24], and can increase program’s
testability [13, 14].

Utilizing assertions for the purpose of test data
generation was proposed in [6]. In that research, an
automated test data generation method based on the
violation of assertions was presented. The main objective
of this method is to find an input on which an assertion is
violated. If such an input is found then there is a fault in
the program. This type of assertion-based testing is a
promising approach as most programming languages
nowadays support automatic assertions generation.
Examples of automatically generated assertions are
boundary checks, division by zero, null pointers, variable
overflow/underflow, etc.

As the number of assertions might be very large for
complex programs, especially those assertions which are
generated automatically, one of the main concerns in the
applicability of assertion-based testing presented in [6] is
the amount of search time required to explore a
potentially large number of assertions in the program
under test. Since assertion-based test data generation is
meant to be used after programs have been tested using

644 JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.6.644-653

regular testing methods, e.g. black-box and white box, it
is expected that most faults have been removed
previously by these methods. Therefore a large number
of assertions will not be violated. If the number of these
unpromising assertions can be reduced then the efficiency
of assertion-based test data generation can be
significantly improved.

This paper presents an algorithm which uses data-
dependency analysis among assertions with the intent to
accumulate history information about previously explored
assertions to be utilized during future explorations. Our
main objective is to reduce the time spent during
assertions-based testing, hence making this approach
more efficient and applicable for complex programs with
a large number of assertions. We have implemented this
algorithm and used the assertion-based testing method
reported in [6] to generate program input to violate a
given assertion.

Our experimental evaluation, discussed in Sec. IV,
shows that our proposed algorithm, while preserving
violation capability, reduced the number of assertions to
be explored which lead to less time spent during
assertion-based testing. This improvement is not
guaranteed for all programs and my vary depending on
the number and the relationship among assertions found
in each program. The main intent of this experiment is to
show that information pertaining to relationships among
assertions present in a program can be utilized for the
purpose of eliminating some of these assertions during
assertions-based testing.

The rest of this paper is organized as follows. Section
II provides an overview of assertion-based test data
generation. Section III presents our proposed algorithm
for efficient assertion-based testing. In Section IV we
present our experimental evaluation, and in Section V we
discuss our conclusions and future research.

II. ASSERTION-BASED TEST DATA GENERATION

The goal of assertion-based test data generation [6] is
to identify program input on which an assertion(s) is
violated. This method is a goal-oriented [4, 5, 21] and is
based on the actual program execution. This method
reduces the problem of test data generation to the problem
of finding input data to execute a target program’s
statement s. In this method, each assertion is eventually
represented by a set of program’s statements (nodes). The
execution of any of these nodes causes the violation of
this assertion. In order to generate input data to execute a
target statement s (node), this method uses the chaining
approach [21]. Given a target program statement s, the
chaining approach starts by executing the program for an
arbitrary input. When the target statement s is not
executed on this input, a fitness function [4, 5, 21] is
associated with this statement and function minimization
search algorithms are used to find automatically input to
execute s. If the search process can’t find program input
to execute s, this method identifies program’s statements
that have to be executed prior to reaching the target
statement s. In this way this approach builds a chain of
goals that have to be satisfied before the execution to the

target statement s. More details of the chaining approach
can be found in [21].

As presented in [6], two types of assertions are dealt
with: Boolean-formula and Executable-code assertions.
As demonstrated using Pascal programs, each assertions
is written inside Pascal comment regions using the
extended comment indicators: (*@ assertion @*) in
order to be replaced by an actual code and inserted into
the program during a preprocessing stage of the program
under test.

A. Assertions as Boolean Formulas
An assertion may be described as a Boolean formula

built from the logical expressions and from (and, or, not)
operators. In our implementation we use Pascal language
notation to describe logical expressions. There are two
types of logical expressions: Boolean expression and
relational expression. A Boolean expression involves
Boolean variables and has the following form: A1 op A2,
where A1 and A2 are Boolean variables or true/false
constant, and op is one of {=, ≠}. On the other hand,
relational expression has the following form: A1 op A2,
where A1 and A2 are arithmetic expressions, and op is
one of {<, ≤, >, ≥, =, ≠}. For example, (x < y) is a
relational expression, and (f = false) is a Boolean
expression. The following is a sample assertion:

A: (*@ (x < y) and (f = false) @*).
The preprocessor in our implementation translates

assertion A into the following code:

 if not ((x < y) and (f = false)) then
 Report_Violation;

Where, Report_Violation, is a special procedure which

is called to report assertion’s violation.

B. Assertions as Executable Code
Although most assertions may be described as Boolean

formula, a large number of assertions cannot be described
in this way. Therefore, our system supports assertions as
executable code. The major advantage of “Assertions as
executable code” is the flexibility it provides
programmers to design as complex assertions as they
wish. Assertions in this format are declared in a similar
way as Pascal functions that return Boolean value. Local
variables may also be declared within an assertion
(exactly the same way as in a Pascal function
declaration). A special variable assert is introduced in
each assertion. During assertion evaluation true/false
value has to be assigned to variable assert. A sample
assertion A2 as executable code is presented in Figure 1.
In this assertion variable j is a local variable of A2 and all
the remaining variables used in A2 are program’s
variables. The preprocessor translates an assertion into
the corresponding function declaration together with the
function call in an if-statement. In this paper we are
concerned with Boolean-formulas assertions. Therefore,
executable code assertions will not be discussed any
further.

JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010 645

© 2010 ACADEMY PUBLISHER

program sample;
var
n: integer;
a: array[1..10] of integer;
i,max,min: integer;
begin
1 input(n,a);
2 max:=a[1];
3 min:=a[1];
4 i:=2;
5 while i ≤ n do begin
6,7 if min > a[i] then min:=a[i];
8 i:=i+1;
 {Assertion A1 as a Boolean formula}
 (*@ (i ≥ 1) and (i ≤ 10) @*)
9,10 if max < a[i] then max:=a[i];
 end;
 {Assertion A2 as executable code}
 (*@ assertion:
 var
 j: integer;
 begin
 assert:=true;
 j:=1;
 while j ≤ n do begin
 if max < a[j] then assert:=false;
 j:=j+1;
 end;
 end;
 @*)

11 writeln(min,max);
end.

Figure 1. A sample program with two assertions
(assertions are shown in italic).

III. ALGORITHM FOR EFFICIENT ASSERTION-BASED
TESTING

In our implantation, each program assertion A may be
replaced by a block of conditional statements as in Figure
2.

IF c11 THEN
 IF c12 THEN
 …
 IF c1r THEN n1;
IF c21 THEN
 IF c22 THEN
 …
 IF c2r THEN n2;
…
IF cz1 THEN
 IF cz2 THEN
 …
 IF czr THEN nq;

Figure 2. Representative code of an assertion A

Formally, let A = {A1, A2, …, An} be a set of
assertions found in a program P. For each assertion A ∈

A, a set of nodes N(A) = {n1, n2, …, nq} where q ≥ 1, is
identified during a preprocessing stage of the program
under test, where the execution of any node nk ∈ N(A),
1≤k≤q, corresponds to the violation of assertion A. In
other words, an assertion A is violated if and only if there
exists a program input data x for which at least one node
nk ∈ N(A) is executed. Furthermore, with each node nk ∈
N(A) we associate a sequence of nested-if conditions
C(nk) =< c1, c2, …, cr> where r ≥ 1, which leads to node
nk. For node nk to be executed, every condition cl ∈
C(nk), 1≤l ≤r, has to be satisfied.

For example, Figure 3 shows code statements
generated to represent the following assertion A:

(*@ ((x≥y) or (x=z)) and ((z≠99) or (Full=False)) and
(z≠0) @*).

Where,
N(A) = { n1, n2, n3 },
C(n1) = < (x < y), (x ≠ z) >,
C(n2) = < (z = 99), (Full = True) >, and
C(n3) = < (z = 0) >.

In order for assertion A to be violated we have to find a
program input x that will cause at least one of n1, n2, or n3
to be executed.

 IF (x < y) THEN
 IF (x ≠ z) THEN
n1 Report_Violation;
 IF (z = 99) THEN
 IF (Full = True) THEN
n2 Report_Violation;
 IF (z = 0) THEN
n3 Report Violation;

Figure 3. Code generated for an example assertion A

Figure 4 shows the corresponding pseudo-code for the
algorithm used in [6]. This algorithm processes all
assertions independently. Let us refer to this algorithm as
ExploreAll.

Input: (A, L)
 A: a set of assertions in a program P under test
L: Search time limit
Let StartTime = CurrentTime
WHILE (CurrentTimie –StartTime)<L) DO:
 FOR every assertion A ∈ A do:
 FOR every node nk ∈ N(A) do:
 Search for a program input x to execute nk
 IF x is found THEN
 Report the violation of assertion A;
 Exit For loop
 EndFOR
 EndFOR.
END WHILE

Figure 4. A pseudo-code for ExploreAll algorithm

646 JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010

© 2010 ACADEMY PUBLISHER

When an assertion is selected for processing by

ExploreAll, all nodes for this assertion are processed
regardless of the outcome of previously processed nodes.
For example, consider assertion A defined previously.
ExploreAll will attempt to find input data to execute all
nodes n1, n2 and n3 regardless of the outcome of
previously processed assertions or nodes.

As opposed to the ExploreAll algorithm, our proposed
algorithm, ExploreSelect, collects data-dependency
information after each exploration of an assertion. This
information is then analyzed and used to weed out some
unpromising assertion's nodes and may even prevent the
exploration of a certain assertion altogether. As shown in
Figure 5, ExploreSelect algorithm loops over the set R of
assertions to be explored until (i) all assertions in R are
explored or (ii) the time allowed for assertions processing
expires.

Input: (A, L)
 A: a set of assertions in a program P under test
 L : Search time limit
Temporary variables:
 A : current assertion under consideration
 nk : current node under consideration
 R = ∅, a set of assertions to be explored
 StartTime : temp. var. holding the time search started
Let R = A
Let StartTime = CurrentTime
WHILE (R ≠ ∅)and ((CurrentTime-StartTime)<L)
DO:
 Select2 next assertion A from R
 WHILE (N(A) ≠ ∅) DO:
 Select3 next node nk from N(A)
 Search for a program input x to execute nk
 IF x is found THEN invoke AnalyzeIfSuccess
 ELSE invoke AnalyzeIfFailure
 EndWHILE
EndWHILE.

Figure 5. A pseudo-code for ExploreSelect algorithm

ExploreSelect algorithm analyzes results of previously
processed assertions or nodes and then tries to employ
this result by reducing the size of the set R, i.e., the
number of yet to be explored assertions. If the size of R
may be reduced then the time spent for assertion-based
testing may be reduced. Depending on the result of the
current exploration this algorithm invokes a specialized
procedure: AnalyzeIfSuccess (AIS) procedure is invoked
when the system succeed in violating the current assertion
while the AnalyzeIfFailure (AIF) procedure is invoked
when the system fails to find test data to violate the
currently explored assertion. These special procedures are
discussed next. Note that to generate input data to execute

2 Select statements used in this algorithm are active select, i.e., an item is
selected and removed at the same time.
3 Node selection is based on a priority system which is described in Sec
III.A.

a given node nk, other execution-based test data
generation methods, e.g., [2, 3, 9, 16, 22] may be used to
fulfill this step.

A. AnalyzeIfSuccess (AIS) Procedure
As shown in Figure 6, the AIS procedure has two main

goals. The first goal is to explore the possibility of
violating more than one assertion based on the same input
data x. The second goal is to perform data-dependency
analysis [21] among assertions to identify assertion nodes
that have the potential to be executed and give them a
higher priority during test data generation. To reach the
first goal, AIS heuristic continues program’s execution to
the end every time the system succeeds in finding input
data x to violate an assertion. This action is done in the
hope that assertion nodes identical or related to the one
which caused the violation of the currently explored
assertion will also be executed based in the same input
data. By doing so, the AIS may be able to reduce the
number of assertions to be explored which will
consequently results in reducing the cost associated with
assertion-based test data generation. Two nodes nk and np
are related if the conditional sequence of np is contained
in the conditional sequence of nk or vice versa.

In order to satisfy the second goal, i.e., to identify
nodes with high potential to be executed, the AIS
performs data dependency analysis after every program
execution in order to identify which assertion nodes
should be given priority to be explored first in the next
execution. Since the AIS is invoked every time the
system is able to generate input data x for which an
assertion node nk was executed, the objective of this
analysis is to: (i) given a previously executed node nk, for
every assertion H in the set R of yet to be explored
assertions, identify every node np ∈ N(H) for which the
conditional sequence C(np) is identical or a subsequence
of the conditional sequence C(nk) of node nk; (ii) collect
data-dependency analysis to check whether or not any of
the variables used at C(np) has been modified between
node nk and node np; and (iii) if the result of this analysis
shows that all variables used at C(np) were not modified
between node nk and node np, then node np is considered
as a candidate to be executed first in the next iteration
and is assigned a priority number to distinguish it from
other nodes. Our priority system is very simple where a
candidate node is simply moved to the head of the list of
nodes to be explored.

Our experimental evaluation, presented in Section IV,
shows the proposed algorithm, ExploreSelect, succeeds in
most cases in finding input data to execute a candidate
node np, hence violating the assertion that np is a part of.
In other words, a candidate node np has a greater chance
to be executed more than other nodes because of its
relation to a previously executed node nk. To illustrate
this, consider the sample program of Figure 7 and its
augmented version shown in Figure 8. Notice that the
program in Figure 8 is a transformed form of Figure 7’s
program. Each assertion in Figure 7 has been replaced, in
Figure 8, by its corresponding lines of code as explained
in Sec. II.

JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010 647

© 2010 ACADEMY PUBLISHER

Input: (A, nk , R), where
A : an assertion which was violated
nk : a node nk ∈ N(A) for which an input data x was
found
R : a set of yet to be explored assertions

Report the violation of assertion A
Set N(A) = ∅
Continue program execution on the input x and do the
following:
 FOR every executed assertion B DO:
 IF B is violated THEN DO:
 Report the violation of assertion B
 Remove B from R
 EndIF
 EndFOR

After program execution is completed DO:
 FOR every assertion H ∈ R DO:
 FOR every node np ∈ N(H) DO:
 IF the following conditions are satisfied:
 1) The conditional sequence of , C(np), of np
 is identical or a subsequence of the conditional
 sequence, C(nk), of nk ; and
 2) For each variable v ∈ U(C(np))4, v is not
 modified for all paths from nk to np.
 THEN assign node np the highest priority to be
 explored next
 EndFOR
 EndFOR
EndDO.

Figure 6. A pseudo-code for AnalyzeIfSuccess

With respect to Figure 8, suppose that the system is
able to generate the following program input data: i = 15,
MAX = 15, and x = 50, for which node 14 ∈ N(A2) was
executed. This means that assertion A2 is violated. As a
reaction to this result, the AIS performs three actions: (1)
report the violation of assertion A2 and remove it from the
set R; (2) continue program execution on this input
hoping that other assertions may also be violated. In this
case assertion A3 (as represented by the nodes 17, 18, 19
and 20 in Figure 8) will also be violated on this input and
will be removed from the set R of yet to be explored
assertions (notice that assertion A3 is identical to assertion
A2) and (3) after program execution on this input is
completed, all non-violated assertions, i.e. A4, A5, A6, are
examined to identify assertion nodes that most likely will
be executed when these assertions are explored. Notice
that the conditional sequence of node 26 ∈ N(A4), C(26)=
< (i>MAX) >, is identical to the conditional sequence
C(14) of node 14 ∈ N(A2), which has been executed in
the current round of execution. This information is
recorded and will be used when assertion A4 is considered

4 The set of used variables for the conditional sequence of a node np is
defined as follows:

U(C(np)) = ∪
) n(p

)(
Cc

cU
∈

,where U(c) is the set of used variables at a

single condition c.

for exploration. Specifically, the algorithm uses this
information to decide which nodes of A4 are promising
and need to be given a priority over other nodes. To
illustrate this, suppose that the system is in a new round
of execution and is currently exploring assertion A4: (*@
(i≥1) and (i≤MAX) @*) defined in Figure 7 and for
which the following code was generated in the augmented
version as shown in Figure 8:

23 IF i <1 THEN
24 write(‘Assertion Violation!’);
25 IF i > MAX THEN
26 write(‘Assertion Violation!’);

Where N(A4) = {24, 26},
C(24) = < (i<1) >,
C(26) = < (i>MAX) >.

Using the information collected in the previous round
of execution about A4, and because there exists a program
path for which variables i and MAX used at C(26) are not
modified between node 14 and node 26, node 26 has a
great chance to be executed, i.e., it is most likely that the
system will succeed in finding input data for which node
26 will be executed. Therefore, node 26 is assigned a
higher priority so that it will be explored before node 24
when assertion A4 is considered for processing. In
connection with node 26, the input data: i = 15, MAX =
15, and x = -1, was what is required to cause the
execution of this node, hence the violation of assertion
A4. By examining this input we notice that it only differs
in the value of the variable x from that input for which
assertions A2 and A3 were violated. This implies that, in
most situations, it is very likely that the system will
succeed in finding a program input data for which a
prioritized node is executed.

B. AnalyzeIfFailure (AIF) Procedure
The AIF procedure, presented in Figure 9, is invoked

when the system fails to find program input data to
execute node nk ∈ N(A) of a currently processed assertion
A. The objective of this algorithm is to identify those
unpromising conditions (predicates) in the currently
processed assertion and to avoid spending valuable search
time repeatedly trying to find program input data to
satisfy these same conditions in case they are part of a yet
to be explored assertion’ nodes. A condition or a
predicate is considered unpromising if the system will
most likely fails to find a program input data to satisfy
this condition, i.e., to make this condition evaluate to
true.

Specifically, given a node nk ∈ N(A) of a currently
explored assertion, for which the system was not able to
find input data to execute this node, the AIF heuristic
identifies condition c ∈ C(nk) (i.e., c belongs to the
conditional sequence C(nk) of node nk) which was not
satisfied, i.e., did not evaluate to true.

648 JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010

© 2010 ACADEMY PUBLISHER

program example;
Var data: array[1..40] of integer;
 x, i, MAX: integer;
 positive:boolean;
begin
1 Input(i, MAX, x);
2 positive:= true;
 (*@ (i ≥1) and (i ≤ MAX) @*) A1
3 data[i]:= x;
4 while i <= MAX do begin
5 Input(x);
6 i:=i+1;
 (*@ (i ≥1) and (i ≤ MAX) @*) A2
7 data[i]:= x;
8 if (x ≥ 0) then begin
 (*@ (i ≥1) and (i ≤ MAX) @*) A3
9 value:= data[i];
10 write(‘Value entered: ‘, value);
 end
 else
 begin
 (*@ (i ≥1) and (i ≤ MAX) @*) A4
11 value := data[i];
12 write(‘Value entered: ‘, value);
13 i:= i-1;
14 positive:= false;
 end;
15 if ((x<0) OR (i=MAX)) AND ((i=MAX)
 OR (positive=false)) then
 begin
 (*@ (((x<0) or (i=MAX)) and ((i=MAX) or
 (positive=false))) @*) A5
16 write(i, MAX, positive);
17 if (i=MAX) OR (positive=false) then
 begin
 (*@ ((i=MAX) or (positive=false)) @*) A6
18, 19 if (i=MAX) then writeln(‘Full
 capacity reached!’)
20 else writeln(‘Negative value
entered!’);
 end;
 end;
21 positive:= true;
 end;
end.

Figure 7. Sample program with repeated assertions

With the condition c on hand, the AIF scans every
node np ∈ N(A) ∪ N(H), p ≥1, for all assertions H ∈ R (
the set of yet to be explored assertions) looking for any
node, np, for which c ∈ C(np), i.e., nodes that include
condition c as a part of their conditional sequences. For
every such node np, AIF performs data-dependency
analysis to check if any of the variables used in condition
c ∈ C(np) was modified between node nk and node np. If
this analysis reveals that none of the variables used at c ∈
C(np) was modified between node nk and node np then this
indicates that it is very likely that the system will also fail
to find input data for which node np will be executed, i.e.,

program example;
Var data: array[1..40] of integer; x, i, MAX: integer;
positive:boolean;
begin
1 Input(i, MAX, x);
2 positive:= true;
3, 4 if i<1 then write(‘Assertion Violation!’);
5, 6 if i>MAX then write(‘Assertion Violation!’);
7 data[i]:= x;
8 while i <= MAX do
 begin
9 Input(x);
10 i:=i+1;
11, 12 if i<1 then write(‘Assertion Violation!’);
13, 14 if i>MAX then write(‘Assertion Violation!’);
15 data[i]:= x;
16 if (x ≥ 0) then
 begin
17, 18 if i<1 then write(‘Assertion Violation!’);
19, 20 if i>MAX then write(‘Assertion Violation!’);
21 value:= data[i];
22 write(‘Value entered: ‘, value);
 end
 else begin
23, 24 if i<1 then write(‘Assertion Violation!’);
25, 26 if i>MAX then write(‘Assertion Violation!’);
27 value := data[i];
28 write(‘Value entered: ‘, value);
29 i:= i-1;
30 positive:= false;
 end;
31 if ((x<0) OR (i=MAX)) AND ((i=MAX)
 OR (positive=false)) then
 begin
32, 33, 34 if x ≥ 0 then if i ≠ MAX then
 write(‘Assertion Violation!’);
35, 36, 37 if i ≠ MAX then if positive ≠ false then
 write(‘Assertion Violation!’);
38 write(i, MAX, positive);
39 if (i=MAX) OR (positive=false) then
 begin
40, 41, 42 if i ≠ MAX then if positive ≠ false then
 write(‘Assertion Violation!’);
43, 44 if (i=MAX) then writeln(‘Full capacity
 reached!’)
45 else writeln(‘Negative value entered!’);
 end;
 end;
46 positive:= true;
 end;
end.

Figure 8. Augmented version of program in Figure 7

node np has a very small chance to be executed.
Therefore, every node np is considered as unpromising
and is removed from the set of nodes to be explored.

Although a removed node might have had a very slight
chance to be executed, had it been explored, there is a
greater chance that it will not be executed as supported by

JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010 649

© 2010 ACADEMY PUBLISHER

Input: (A, nk, c, R)
 A: currently explored assertion
 nk: a node nk ∈ N(A) for which an input data was not
found
 c: the condition of C(nk) which was not satisfied during
exploration of node nk
 R: a set of yet to be explored assertions

FOR every assertion H ∈ R ∪ {A}DO:
 FOR every node np ∈ N(H) DO:
 IF the following conditions are satisfied:
 1) c is part of the conditional sequence of np, C(np);
 AND
 2) For every variable v ∈ U(c), v is not modified
 for all paths from nk to np
 THEN remove np from N(H)
 EndFOR
EndFOR.

Figure 9. A pseudo-code for AnalyzeIfFailure

our experimental evaluation. Since the time to explore a
single node is expensive and since the objective of the
AIF heuristic is to reduce the time consumed in assertion
processing, the little risk taken in removing nodes is well
justified, especially that this risk is so little if not zero in
many cases.

To illustrate how AIF procedure decides not to explore
unpromising nodes and remove them from the list of
nodes to be explored during assertion processing,
consider the sample program in Figure 7 and its
augmented version in Figure 8.

Consider assertion A5: (*@ (((x<0) or (i=MAX)) and
((i=MAX) or (positive=false))) @*) defined in Figure 7.
A5 was replaced by the following code in the augmented
version of that program appeared in Figure 8:

32 IF x ≥ 0 THEN
33 IF i ≠ MAX THEN
34 write(‘Assertion Violation!’);
35 IF i ≠ MAX THEN
36 IF positive ≠ false THEN
37 write(‘Assertion Violation!’);

Where,
N(A5) = {34, 37},
C(34) = < (x ≥ 0), (i ≠ MAX) >,
C(37) = < (i ≠ MAX), (positive ≠ false) >.

Suppose that node 34 was selected first during the
processing of A5 and that the system was not able to find
input data x for which the condition (i ≠ MAX) is
satisfied. Consequently node 34 is not executed. Based
on the outcome of this event, the AIF procedure inspects
the remaining nodes of A5 and explores the possibility of
eliminating the processing of some of these nodes.
Specifically AIF will do the following:
1) Identify the condition(s) cf among the

conditional sequence of node 34, C(34), through
which the execution of node 34 was not possible;

and
2) For every node np ∈ N(A) ∪ N(B), for all

assertions B ∈ R, for which cf ∈ C(np) remove np
from the set of nodes to be explored. Notice that
other conditions in the same sequence for the
same node are dropped as well because they
were anded together with the failed condition.

In this example, cf = (i ≠ MAX), is the condition
through which the execution of node 34 was not possible.
By inspecting node 37 we notice that cf also belongs to
the conditional sequence of node 37, i.e., cf ∈ C(37).
Based on this finding and because both variables i and
MAX used in the condition (i ≠ MAX) at node 37 were
not modified since their last use at node 34, the AIF
considers node 37 to be an unpromising node and,
consequently, will not invest search time trying to execute
this node. Node 37 is considered unpromising because it
is very likely that the system will fail to find input data to
execute this node as was the case with node 34. This is
because it is necessary to satisfy the condition (i ≠ MAX)
in order for node 37 to be executed. As supported by our
experimental evaluation it is most likely that the system
will not be able to find input data to execute these nodes.

As another example to illustrate how AIF eliminates
the processing of an assertion based on the result of a
previously processed assertion which was not violated,
consider the following situation. Given the information
about assertion A5 presented in the previous example,
consider assertion A6: (*@ ((i=MAX) or (positive=false))
@*) of Figure 7 which was replaced by the following
code in Figure 8:

40 IF i ≠ MAX THEN
41 IF positive ≠ false THEN
42 write (‘AssertionViolation');

For this assertion we have:
N(A6) = {42},
C(42) = < (i ≠ MAX), (positive ≠ false) >.

Recall that assertion A5, considered in the previous
example, was not violated because the system was not
able to generate input data for which the condition cf = (i
≠ MAX) will be satisfied. Where cf ∈ C(34), the
conditional sequence of node 34. Now, inspecting the
conditional sequence, C(42), of node 42 ∈ N(A6) we
notice that cf is also a member of C(42). Based on (i) the
fact that the system had previously failed to find input
data to satisfy cf, (ii) since cf also belongs to C(42), and
(iii) variables (i and MAX) used in cf were not modified
since their last use at node 34, the AIF considers node 42
as unpromising node and node 42 will not be considered
for exploration. Because node 42 is the only node in
N(A6) assertion A6 is removed from the set R of yet to be
explored assertions and the time to generate input data to
violate this assertion is saved.

650 JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010

© 2010 ACADEMY PUBLISHER

IV. EXPERIMENTAL EVALUATION

The intent of this experiment is only to show that
information pertaining to relationships among assertions
present at a program can be utilized for the purpose of
eliminating some of these assertions during assertions-
based testing. Results may depend on the number and the
relationship among assertions found in each program.

To derive our experiment, a suite of fifteen Pascal
programs with assertions was used. In order to evaluate
the performance both ExploreSelect (ES) and ExploreAll
(EA) algorithms with respect to programs with potential
assertion violations and those which might not have any
assertion violations, we have used a mix suite of correct
and faulty programs. Programs, to be described later,
used in this experiment include: Bank, GCD, Bubble,
Stack, Prime, MinMax1-MinMax8, Total, and Average.
From these programs, GCD, Bubble, Stack and Prime are
assumed to be fault-free, to the best of our knowledge,
while Bank, MinMax, Total, and Average, have been
seeded with at least one fault.

This experiment is performed as follows: each program
used in this experiment is tested using assertion-based
testing reported in [6] in two rounds: one is using EA
algorithm and the other uses ES algorithm. Remember
that assertion-based testing as described in [6] is only
performed after each program has been tested using both
black-box testing and white-box testing (branch
coverage). During this experiment, for each program we
recorded (1) the total time (in minutes and seconds)
consumed by each algorithm to perform the test (i.e., to
try to violate assertions found in each program), (2)
number of assertions explored by each approach and (3)
number of assertions violated by each approach. The
complete result of this experiment is presented in TABLE
I which entries should be interpreted as follows: Column
#1 and Column #2 give the program name and the
number of assertions (NA) in this program, respectively.
Column #3 shows the total time (in minutes and seconds)
required by EA and ES algorithms to explore all
assertions in a certain program. Column #4 shows the
total number of assertions explored using EA and ES.
Finally, Column #5 gives the total number of assertion
violations achieved by EA and ES algorithms. For
example, the second entry of TABLE I shows (i) that the
EA spent approximately three hours and nineteen minutes
to explore 24 assertions found in program GCD while the
ES spent about an hour to explore the same number of
assertions, (ii) that EA explored all the 24 assertions
found in this program while ES explored only eleven
assertions, and (iii) none of the assertions found in this
program were violated by either EA or ES algorithms.

A. The Programs

A brief description of the programs, developed for the

purpose of this experiment, will now be given. Program
Bank performs simple banking operations such as

opening an account and depositing and withdrawing
money. Program GCD computes the greatest common
divisor of an array of integers. Program Bubble sorts an
array of integer using the bubble sort algorithm. Program
Stack implements typical stack operations such as push,
pop, empty and full. Program Prime finds the set of
prime numbers out of a given input integers list. Program
MinMax finds the minimum and the maximum of an
array of integers (versions 1 to 6 of this program differ in
the type and location of the fault seeded, while versions 7
and 8 differ from other versions in the algorithm used to
compute the minimum and the maximum). Programs
Total and Average compute the total and the average of
an array of integers, respectively. Number of
uncommented lines of code for the programs is as
follows: Bank (336), GCD (177), Bubble (54), Stack
(114), Prime (94), MinMax (68), Total (52), and Average
(54).

B. Discussion of the Experiment

As shown in TABLE I, by using ES algorithm we were
able to reduce the amount of time spent for assertion
processing by 56%. This means that by using the ES
algorithm, more than half of the time that is consumed by
EA algorithm has been spared. This is a significant
saving considering the value of time during software
testing. The good performance by the ES is mostly
attributed to its ability to better invest the search time by
eliminating unpromising assertions and/or nodes during
assertions processing. In this respect, ES algorithm was
able to reduce the number of assertions explored by 17%
as shown in the bottom of TABLE II. Although
eliminating assertions is not possible for some programs,
ES algorithm attempts to eliminate unpromising nodes
within assertions which results in reducing the overall
time required for assertions processing. This explains
why ES algorithm spends less time than EA algorithm to
explore the same number of assertions (six assertions) in
program Stack (shown in the “Time” column in the fourth
entry of TABLE I). The reason for this is that through
nodes elimination, ES algorithm was able to eliminate the
processing of four out of twelve assertion’s nodes found
in program Stack. This has reduced the number of nodes
to explore in this program to eight while EA algorithm
had to explore all twelve nodes (shown in the fourth entry
of TABLE II). For all programs in this experiment, ES
algorithm reduced the number of assertion’s nodes to
explore by 37% as reflected in TABLE II. In addition to
these improvements by ES over EA algorithm, ES
algorithm was able to violate the same number of
assertions as EA algorithm, which means that there was
no risk incurred by using the ES with respect to the
programs used in this experiment. Node elimination
raises an important issue. It was discussed previously in
Sec III.B, that during assertion processing some
unpromising nodes are eliminated by the AIF heuristic.

JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010 651

© 2010 ACADEMY PUBLISHER

TABLE I.
EXPERIMENTAL RESULTS

Keys:
NA: Total number of assertions in the program
NE: Number of explored assertions
NV: Number of violated assertions
ES: ExploreSelect algorithm
EA: ExploreAll algorithm

Program NA Time (minutes) NE NV

 EA ES EA ES EA ES

Bank 19 72.66 49.21 19 17 1 1
GCD 24 191.42 58.49 24 11 0 0

Bubble 4 1.18 0.79 4 3 0 0
Stack 6 3.50 2.34 6 6 0 0
Prime 6 12.15 10.11 6 6 0 0

MinMax1 5 0.32 0.33 5 5 2 2
MinMax2 5 0.32 0.32 5 5 2 2
MinMax3 5 0.25 0.22 5 5 4 4

MinMax4 5 0.32 0.30 5 5 3 3
MinMax5 5 0.28 0.30 5 5 3 3
MinMax6 5 0.23 0.22 5 5 4 4
MinMax7 5 0.58 0.39 5 4 1 1
MinMax8 5 0.58 0.39 5 4 1 1

Total 2 0.54 0.5 2 2 1 1
Average 2 0.29 0.3 2 2 1 1

Total 103 284.62 124.21 103 85 23 23

Average 6.87 18.97 8.28 6.87 5.67 1.53 1.53

Reduction by ES 56% 17%

Elimination’s Risk 0%

TABLE II.
NUMBER OF EXPLORED ASSERTION’S NODES

 Program Total No. of

Nodes
EA ES

Bank 35 35 13
GCD 53 53 15

Bubble 12 12 8
Stack 12 12 8
Prime 11 11 11

MinMax1 7 7 7
MinMax2 7 7 7
MinMax3 7 7 7
MinMax4 7 7 7
MinMax5 7 7 7
MinMax6 7 7 7
MinMax7 7 7 5
MinMax8 7 7 5

Total 3 3 3
Average 3 3 3

Total 179 179 113
Reduction By ES 37%

Because of the nature of the test data generation

problem, where it is impossible to test a program for all
possible inputs [12], some eliminated nodes may have
some chance in being executed (i.e., results in an

assertion violation) had they given the opportunity to be
explored.

Although the risk imposed by node elimination is
considered a limitation of ES algorithm, the results of our
experimental study shows that this risk is minimal where,
for all programs used in this study, both EA and ES
algorithms were able to violate the same number of
assertions (i.e., no risk was incurred by using ES
algorithm). Although there is a little risk associated with
node elimination by ES algorithm, this risk is a
reasonable compromise to take for the speed achieved
using this heuristic because (i) this risk is minimal as
supported by our experimental evaluation and (ii)
eliminating an unpromising node np only takes place
when the search was not successful in finding input data
to violate a related node nk and, in most cases, executing
node np would unlikely lead to the violation of the
currently explored assertion.

V. CONCLUSIONS

This paper presents ExploreSelect, an algorithm for
efficient assertion-based automated test data generation.
ExploreSelect uses data-dependency analysis among
assertions found in the program in order to reduce the

652 JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010

© 2010 ACADEMY PUBLISHER

time required for assertion-based test data generation.
Currently, this algorithm is implemented for assertions

represented as Boolean formulas. Considering the
number assertions of this type may be very large as they
are generated automatically, (as they are supported by
some programming language), the time required to
process such larger number of assertions may hamper the
applicability of assertions-based testing for large
programs. Examples of such are assertions that guard for
array-boundary violations, division by zero, integer/float
underflow/overflow, stack overflow, etc. ExploreSelect
utilizes data-dependency analysis in eliminating
unpromising assertions during a pre-scan process, thereby
avoiding wasting valuable search time trying to violate
such assertions.

Our experimental evaluation shows that, using
ExploreSelect has significantly reduced the time required
to perform assertion-based test data generation as
compared to ExploreAll algorithm which process all
assertions independently. Although ExploreSelect may
eliminate some assertion’s nodes or decide not to explore
a given assertion(s) altogether, our experimental
evaluation shows that this process did not diminish its
ability in assertion violation nor does it change the
program’s testability. This is because removed nodes
and/or assertions have a very little chance to be violated.;
Therefore, ExploreSelect preserves the performance of
the ExploreAll in terms of assertion violations. The
purpose of this experiment is to show that information
among assertions may be utilized during assertion-based
testing but does not guarantee the same result for all
programs. Improvements may vary depending on the
number and the relationship among assertions found in
each program. In the future, we plan to perform
additional experiments using larger sized programs in
order to evaluate the applicability of this algorithm for
commercial software.

REFERENCES

[1] C. Ramamoorthy, S. Ho, W. Chen, “On the Automated
Generation of Program Test Data,” IEEE Transactions on
Software Engineering, vol. 2, No. 4, 1976, pp. 293-300.

[2] B. Jones, H. Sthamer, D. Eyres, “Automatic Structural
Testing Using Genetic Algorithms,” Software Eng.
Journal, 11(5), 1996, pp.299-306.

[3] B. Korel, “Automated Test Data Generation,” IEEE
Transactions on Software Engineering, vol. 16, No. 8,
1990, pp. 870-879.

[4] B. Korel, “Dynamic Method for Software Test Data
Generation,” Journal of Software Testing, Verification,
and Reliability, vol. 2, 1992, pp. 203-213.

[5] B. Korel, “TESTGEN – An Execution-Oriented Test Data
Generation System,” Technical Report TR-SE-95-01,
Dept. of Computer Science, Illinois Institute of
Technology, 1995.

[6] B. Korel, A. Al-Yami “Assertion-Oriented Automated Test
Data Generation,” Proc. 18th Intern. Conference on
Software Eng., Berlin, Germany, 1996, pp. 701-80.

[7] B. Korel, , Q. Zhang, L. Tao, “Assertion-Based Validation
of Modified Programs,” Proc. 2009 2nd Intern. Conference
on Software Testing, Verification and Validation, Denver,
USA, 2009, pp. 426-435.

[8] C. Hulten, “Simple Dynamic Assertions for Interactive
Program Validation,” AFIPS Conference Proceedings, Las
Vegas, 1984, pp. 405-410.

[9] C. Michael, G. Mcgraw, M. Schatz., “Generating Software
Test Data by Evolution,” IEEE Tran. on Software
Engineering, 27(12), 2001, pp. 1085-1110.

[10] D. Bird, C. Munoz, “Automatic Generation of Random
Self-Checking Test Cases,” IBM Systems Journal, vol. 22,
No. 3, 1982, pp. 229-245.

[11] D. Rosenblum, “Toward A Method of Programming With
Assertions,” Proceedings of the International Conference
on Software Engineering, 1992, pp. 92-104.

[12] G. Myers, “The Art of Software Testing,” John Wiley &
Sons, New York, 1979.

[13] J. Voas, “How Assertions Can Increase Test
Effectiveness,” IEEE Software, March 1997, pp. 118-122.

[14] J. Voas, K. Miller, “Putting Assertions in Their Place,”
Proceedings of the International Symposium on Software
Reliability Engineering, 1994.

[15] J. Wegener, A. Baresel, H. Sthamer, “Evolutionary Test
Environment for Automatic Structural Testing,”
Information and Software Technology, 43, 2001, pp. 841-
854.

[16] L. Clarke, “A System to Generate Test Data and
Symbolically Execute Programs,” IEEE Transactions on
Software Engineering, vol. 2, No. 3, 1976, pp. 215-222.

[17] L. Stucki, G. Foshee, “New Assertion Concepts for Self-
Metric Software Validation,” Proceedings of the
International Conference on Reliable Software, 1975, pp.
59-71.

[18] P. Mcminn, M. Holcombo, “The State Problem for
Evolutionary Testing,” Proc. Genetic and Evolutionary
Computation Conference, 2003, pp. 2488-2498.

[19] R. Boyer, B. Elspas, K. Levitt, ”SELECT - A Formal
System for Testing and Debugging Programs By Symbolic
Execution,“ SIGPLAN Notices, vol. 10, No. 6, 1975, pp.
234-245.

[20] R. DeMillo, A. Offutt, “Constraint-Based Automatic Test
Data Generation,” IEEE Transactions on Software
Engineering, vol. 17, No. 9, 1991, pp. 900-910.

[21] R. Ferguson, B. Korel, “Chaining Approach for Automated
Test Data Generation,” ACM Tran. on Software Eng. and
Methodology, (5)1, 1996, pp.63-68.

[22] R. Pargas, M. Harrold, R. Peck, “Test Data Generation
Using Genetic Algorithms,” Journal of Software Testing,
Verification, and Reliability, 9, 1999, pp. 263-282.

[23] S. Yau, R. Cheung, “Design of Self-Checking Software,”
Proceedings of the International Conference on Reliable
Software, 1975, pp. 450-457.

[24] N. Levenson, S. Cha, J Knight, T. Shimeall, “The Use of
Self Checks and Voting in Software Error Detection: An
empirical study,” IEEE Trans. on Software Eng., 16(4),
1990, pp. 432-443.

Ali M. Alakeel, also known as Ali M. Al-Yami, obtained his
PhD degree in computer science from Illinois Institute of
Technology, Chicago, USA on Dec. 1996, his M.S. degree in
computer science from University of Western Michigan,
Kalamazoo, USA on Dec. 1992 and his B.Sc. degree in
computer science from King Saud University, Riyadh, Saudi
Arabia on Dec. 1987. He is currently an Assistant Professor of
Computer Science at the College of Telecomm & Electronics,
Jeddah, Saudi Arabia. His current research interests include
automated software testing, fuzzy logic and distributed
computing.

JOURNAL OF SOFTWARE, VOL. 5, NO. 6, JUNE 2010 653

© 2010 ACADEMY PUBLISHER

