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Abstract—Weighted order statistic filters (WOSF) generate 
linearly separable Boolean functions. In some cases, 2 
different WOSF may generate the same Boolean function. 
We thus can collect all of the WOSF together, which 
generate the same Boolean function. In this paper, we 
construct equivalent classes of WOSF, the BF equivalent 
class and the global equivalent class. Besides, we use 
minimum weight vectors as base vectors to build all global 
classes of same order and characterize WOSF to generalize 
three properties of global classes. Finally, we propose 3 
translated formulas to fast generate corresponding outputs 
of BF equivalent classes, not perform extra machine 
training or mathematical computation. 

Index Terms— hyperplane, WOSF, BF equivalent class, 
global equivalent class, base weight vector, corresponding 
outputs. 
 

I. INTRODUCTION 

Weighted order statistic filters (WOSF) have a variety 
of applications such as noise cancellation, image 
reconstruction, edge enhancement, and texture analysis 
on Ref. [1-2]. WOSF have a large of variations according 
to the practical implementation. Some scholars have 
presented several papers about the representation of 
WOSF. Their representations of WOSF are based on the 
pair of a weight vector and a threshold value on Ref. 
[3-6]. 

Ref. [7-8] support vector machine (SVM) has the 
characterization of maximal margin classification, it is a 
well suited method for studying the problem of linearly 
separable Boolean functions. Ref. [9] Yih-Lon Lin, et al. 
makes use of SVM to implement linearly separable 
Boolean functions, Ref. [10] C. C. Yao and P. T. Yu use 
dichotomous approach to design weighted order statistic 
filters by SVM. Ref. [11] W. C. Chen and J. H. Jeng 
utilize SVM to represent WOS filters  

In this paper, we propose a distinct method to 
character WOSF. The representation consists of two 
equivalent classes which are BF equivalent class and 
global equivalent class. The BF class is generated based 
on maximal margin classification by SVM. From SVM 

training, we generate a maximal margin hyperplane 
formulated by an optimal normal vector and an optimal 
bias. The hyperplane defines a discriminant function and 
this function has the same outputs as those of the WOSF. 
The normal vector and bias is unique, therefore they are 
used as the unique representative of the BF class. 

The global class is constructed by sign change and 
permutation operations on the components of the 
representative of BF class. It is known that sign change 
and permutation operations on components of the 
optimal normal vector or the sign change on the optimal 
bias result in another pair of optimal parameters. Based 
on this concept, we can rearrange a given BF 
representative such that all the components of the 
parameter are positive and decreasing component-wise. 
This rearranged parameter also is a unique representative 
of the global class. Although the sign change and 
permutation operations can generate a new vector and a 
bias to build a BF equivalent class, but the corresponding 
outputs of BF class be not generated. Therefore, we 
proposed 3 translated formulas to fast generate these 
outputs of BF equivalent classes, not perform extra 
machine training or mathematical computation. 

Besides, we collect the minimum weight vectors of 
WOSF in the order 2 to order 5 through SVM training. 
These weight vectors can be used to express all of global 
equivalent classes on same order, so we called them as 
base weight vectors. Finally, we characterize global 
equivalent classes by base weight vectors and generalize 
three properties. These properties explicitly describe the 
characterization of equivalent classes and show the 
computation of the numbers of global equivalent classes. 

In other words, we can efficiently represent all of the 
WOSF through only few representatives of equivalent 
classes and save computation cost when searching for 
various WOSF.  

II.  EQUIVALENT CLASSES OF WOSF  

For a given WOSF ) ,( 00 rΩ ,  denote 
the equivalent class such that all the WOSF in this set 
generates the same linearly separable Boolean function. 

BFr )] ,[( 00Ω
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For these WOSF, we can find one that is an unique 
maximal margin hyperplane  through SVM. 

Therefore we can regard the term  as the unique 
representative of the class . 

) ,( ** bw

) ,( ** bw

BFr )] ,[( 00Ω

Let WOSF , in order to 
compromise the notation, we define a new function 

. This function  is 
linearly separable, so it can be rewritten to 

BFrr )] , [() ,( 00
** Ω∈Ω

}1 , 1{}1 , 1{:)(**  , −→−Ω
n

r xF )(**  , xF rΩ

 

⎩
⎨
⎧

−
≥+>Ω<+

=Ω else    1
0,   if    1

)(
**

 , **

rx
xF r  (1) 

 
In terms of discriminant function, this function can be 

formed as 
 
    (2) ) ,sgn())(sgn( **

 , ** rxxF r +>Ω<=Ω

 
The sign of the discriminant function obtained from 

SVM 
 

) ,sgn())(sgn( **
 , ** bxwxf bw +><=   (3) 

 
also generates the same Boolean function with 

equation (2). As a consequence, we can regard the pair 
 as the unique representative of the equivalent 

class  and denoted as . 

),( ** bw

BFr )] ,[( 00Ω BFbw )] ,[( **

Under the concept of equivalent class and the property 
of unique representative through SVM, we will 
characterize the set of all WOSF. 

To explore other distinct equivalent classes without 
performing the same SVM procedure above, we operate 
on this representative by simple sign change and 
permutation on the quantities  and , respectively. 
Without the SVM training, we can therefore save the cost 
of complicated SVM training process. 

*w *b

For fixed , if 2 components of  are swapped or 
the sign of one component of  is changed, the vector 

 can generate a new vector, denoted by , we will 
therefore obtain a new equivalent class of WOSF. The 
new vector  is the unique representative of new class 
in the sense of SVM classification, which has the margin 

b w
w

w ŵ

ŵ

11    ˆ −−
= ww . In addition, when  fixed, the sign of 

 is altered, denoted as , we will also obtain another 
new equivalent class. Each new equivalent class is a new 
hyperplane, these new hyperplanes all have the same 
margin 

w

b b̂

1  −w . This suggests another equivalent 
relation. 

Given a maximal margin hyperplane , we 
define the global equivalent class  as the set of 
equivalent classes  such that if  is a 

permutation or sign change of , or b  is the sign 

change of  then . Here, we 

choose the symbol  in which 

, , and 

 as the representative of the global equivalent 
class and this global equivalent class  is then 

denoted by . It is easy seen that the 
representative is unique. It should be noted that each 
element in the global equivalent class is itself a BF 
equivalent class.  

) ,( bw

Gbw )] ,[(

BFbw )] ,[( ŵ

w ˆ

b GBF bwbw )] ,[()]ˆ ,ˆ[( ∈

) ,( ## bw

) ..., ,( ##
1

#
nwww = 0 ... ##

2
#

1 ≥≥≥≥ nwww

0 # ≥b
Gbw )] ,[(

Gbw )] ,[( ##

For example, let  and , if they 
are generated by SVM training based on the property of 
maximal margin classification, then the pair  is 
the unique representative of BF equivalent class 

. Apply permutation and sign operations on 

, it yields additional 23 new vectors , 
,…, and 

)1  1  2(# =w 1 # =b

) ,( ## bw

BFbw )] ,[( ##

#w )1  2  1(
)2  1  1( )2  1 1( − . Similarly, when sign change 

on  also yields additional 24 combinations. 
Therefore, including the origin one  and , it adds 
up to 48 hyperplanes and builds 48 BF equivalent classes. 
These BF classes form a global equivalent class 

 and  and  is the unique 
representative of the global class. Table II lists all of 
these hyperplanes. And as mentioned above, all of the 48 
hyperplanes have the same maximum margin 

# b
#w # b

Gbw )] ,[( ## #w # b

6/1 . 
 

III.   OUTPUTS GENERATION 

In above section, we have utilized the sign change and 
permutation of base weight vector  and bias  to 
generate many new vectors and bias. These new vectors 
and bias group into some BF equivalent classes. Each BF 
equivalent class has a distinct corresponding output. But, 
the output does not be generated by sign change or 
permutation. Therefore, we further propose 3 translated 
formulas to generate these outputs. Let  and 

 are respectively the representatives of BF 
equivalent classes  and  
derived from two distinct maximal margin hyperplanes. 
The BF class  has the corresponding output 

 and the BF class  has the corresponding 
output . Based on these formulas, we can directly 
generate the corresponding outputs of BF equivalent 
classes on same order, not need to perform extra training 
or mathematical computation. These formulas are listed 
in the following propositions: 

w b

) ,( 11 bw
) ,( 22 bw

BFbw )] ,[( 11 BFbw )] ,[( 22

BFbw )] ,[( 11

1y BFbw )] ,[( 22

2y

 

A.  Proposition 1—weight vector sign change 
For , let  is the new vector of 

1-component sign change of , i.e., 
12 bb = 2w

1w
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T
nj wwww ] ..., , ..., ,[ 11111 =  and 

, then the outputs  can be 
computed by the outputs  

T
nj wwww ] ..., , ..., ,[ 11112 −= 2y

1y
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where , , and vu yyy   1 += nj  ... 1= P  is the nn×  

matrix  
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where T
jj yy ]0 ...  ... 0[~

11 = . 
 

B.  Proposition 2—weight vector permutation 
For , let  is the new vector of 

2-components permutation of , i.e., 

 and 

, then the outputs  can 
be computed by the outputs  

12 bb = 2w

1w
T
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C.  Proposition 3— bias sign change 
For 12 ww = , let  is the new bias of sign change of 
, i.e., 

2b

1b 12 bb −= , then the outputs  can be computed 
by the outputs  

2y

1y
 

) ( 12 yMNOTy =     (6) 
 

where M  is an nn×  matrix of the form 
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IV.  PROPERTIES OF GLOBAL EQUIVALENT 
CLASS 

For any global class , , 

, and . The Hamming 

weight of  is 

Gbw )] ,[( ## ) ..., ,( ##
1

#
nwww =

0 ... ##
2

#
1 ≥≥≥≥ nwww 0 # ≥b

#w rw =# . Vector  can generate 

different global equivalent classes , and the 

vector  has less or equal order with , where 

#w

Gbw )]' ,'[(

'w #w
)' ..., ,'(' 1 nwww = , 1' −≤ rb . Based on the 

characterization of maximal margin, one has following 
properties: 

 

A.  Property 1 

For arbitrary global equivalent class , 

, , . 

When , 

Gbw )] ,[( ##

) ..., ,( ##
1

#
nwww = 0 ... ##

2
#

1 ≥≥≥≥ nwww 0 # ≥b
## ji ww ≠ nji ≤≤ ,1 , the global class contains 

 BF equivalent classes. !2 1 nn ⋅+

 
For this class , all elements are generated 

by permutation or sign change of  and sign change 
of . Let elements , each element 

 represent a BF equivalent class. When , 

by permutation, the vector  generates  different 
weight vectors . By sign change, each generated 
vector  can regenerate  different weight vectors 

. So, the vector  can generate  different 
vectors in all. Besides, by the sign change of , it also 
generates two thresholds, b  and . Each  

Gbw )] ,[( ##

#w
# b Gbwbw )] ,[()ˆ ,ˆ( ##∈

)ˆ ,ˆ( bw ## ji ww ≠
#w !n

'w
'w n2

ŵ #w !2 nn ×
#b

ˆ b̂− ŵ
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integrates  to build a BF equivalent class, therefore 
the permutation and sign change of  and the sign 
change of  that can together build  BF 
equivalent classes. For special case, when vector  
has  same components, implies , 

by permutation, the vector  can generates 

b̂
#w

# b !2 1 nn ⋅+

#w
q ### ...... mji www ===

#w
!
!

q
n  

different weight vectors . Hence, the  and  

together build 

'w #w # b

!
!2 1

q
nn ⋅+  BF equivalent classes. 

Example, for global class , the weight 

vector is . By permutation, vector 
 generates 60 different weight vectors , by 

sign change, each vector  regenerates 32 new vector 
. So, the permutation or sign change of vector 

 and the sign change of threshold  that 
can together build 3840 BF equivalent classes. 

G]2 ),43211[(

)43211(# =w
)43211( 'w

'w
ŵ

)43211( 2# =b

 

B.  Property 2 

For arbitrary global class , the Hamming 

weight 
Gbw )] ,[( ##

rw =# . When r  is odd, the  generates #w

2
1+r  different global equivalent classes. When r  is 

even, the  generates #w
2
r

 different global equivalent 

classes. 
 
For this class , the element  

represents a BF equivalent class. This class is composed 
of some WOSF with the same Boolean function. Let the 
function  represent a WOSF,  

Gbw )] ,[( ## ) ,( ## bw

)(## , xf bw

  
⎩
⎨
⎧

−
≥><

=
else    ,1

 ,    ,1   
)(

##

, ##

bxw
xf bw

The outputs of  are based on the 

computation between product  and thresholds 
. Since the input is , for each threshold  

and interval . When , the WOSF 
 generates same Boolean functions.  

)(## , xf bw

>< xw  ,#

# b }1 ,1{−∈x 'b
] ,2[ tt − ] ,2[' ttb −∈

)('# , xf bw

When r  is odd, based on above description, the 

weight r  could be divided into 
2

1+r  intervals, 

, , ……, and ]1  ,1[− ]3  ,1[ ] ,2[ rr − . When r  is even, 

it be divided into 
2
r  intervals, , , ……, 

and . For each interval, one can find a threshold 

 such that the threshold  integrates the vector  
to form a hyperplane , this hyperplane can be 

used to represent a BF equivalent class. In other words, 

when 

]2  ,0[ ]4  ,2[

] ,2[ rr −

'b 'b #w
)' ,( # bw

r  is odd, the vector  generates #w
2

1+r  

different global equivalent classes, and when r  is even, 

the vector  generates #w
2
r  different global equivalent 

classes. 
For the class , the Hamming weight G]2 ),52211[(

11# =w . Weight 11 is divided into 6 intervals, ]1 ,1[− , 

, , ,  and . So the vector 
 can generate 6 different classes , 

, , , 
 and . For this class 

, the Hamming weight 

]3 ,1[ ]5 ,3[ ]7 ,5[ ]9 ,7[ ]11 ,9[
)52211( G]0 ),31111[(

G]2 ),52211[( G)]3 ),42211[(( G)]4 ),32211[((

G)]5 ),22211[(( G)]4 ),11111[((

G)]1 ),53211[(( 12# =w . Weight 

12 is divided into 6 intervals, , , , 
, , and . So the vector  

generates 6 different classes , 
, , , 

, and . 

]2 ,0[ ]4 ,2[ ]6 ,4[
]8 ,6[ ]10 ,8[ ]12 ,10[ )53211(

G)]1 ),42211[((

G)]3 ),53211[(( G)]3 ),32111[(( G)]5 ),33211[((

G)]3 ),11110[(( G)]4 ),11111[((
All vectors  in the generated global classes that 

may have less or equal order with known vectors 
.For this class , the vector  

generates 6 classes, and 5 vectors in these classes have 
the same order with .Another class , 
the vector  only has order 4. 

'w

#w G)]1 ),53211[(( )53211(

#w G)]3 ),11110[((
)11110(

 

C.  Property 3 
For arbitrary two global equivalent classes of the same 

order  and , . The vector 

 has Hamming weight 
Gbw )] ,[( ##

Gbw )]' ,'[( #' ww ≠
#w rw =#  and the vector   

has Hamming weight 

'w

'' rw = , then the BF equivalent 

classes  and  are the same. BFrw )]1,[( # − BFrw )]1','[( −
 
Let the functions  and  

respectively represent two distinct WOSF. Since the 
input 

)(## , xf bw )(',' xf bw

}1 ,1{−∈x , each value of inner product >< xw ,'  
is shown by unit 2. By property 2, when thresholds 

]'  ,2'[' rrb −∈ , the WOSF  generates some 
Boolean functions and these Boolean functions have the 
same outputs 

)(',' xf bw

)1 ,1 ,........,1 ,1( −−− . Similarly, when 

thresholds , the WOSF  also 
generates some Boolean functions, these Boolean 
functions also have the same outputs 

]  ,2[# rrb −∈ )(## , xf bw

)1 ,1 ,........,1 ,1( −−− . Briefly, the WOSF  and 

 generate a group of same Boolean functions. In 
other words, the BF equivalent classes are the same, 

. When  and 

)' ,'( bw

) ,( ## bw

BFBF bwbw )] ,[()]' ,'[( ##= 1# −= rb
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1'' −= rb , the . BFBF rwrw )]1','[()]1,[( # −=−
For , given two global equivalent classes 

 and . The vectors 
 with Hamming weight 

5=n

G)]1),43221[(( G)]2),54321[((
)43221(=w 12=w  and 

vector  with Hamming weight )54321('=w 15' =w . 
The BF equivalent classes  and 

 generate the same Boolean function, 
hence . 

BF)]11),43221[((

BF)]14),54321[((

BFBF )]14),54321[(()]11),43221[(( =

V.  EXPERIMENT AND ILLUSTRATION 

One takes an arbitrary WOSF  that has a 
pack of output . Composing the all 
possible inputs and corresponding outputs 

 to form a training set  . 
From SVM training, we obtain a hyperplane with normal 
vector  and bias . In order to the 
convenient vision, we take the symbol of “0” instead of 
“-1”, therefore the outputs  are 
rewritten down as . 

)(2),131( xF
)1  1  1  1 1  1  11( −−−

3}1 ,1{−∈x

}1 ,1{−∈iy 8
1)},{( == iii yxS

)1  2  1(* =w 1* =b

)1  1  1  1 1  1  11( −−−
)1 1 1 0 1 1 0 0(

Because the WOSF is characterized by 
the output , the signed discriminant 
function  can represent all WOSF with 
the same outputs but different weight vectors and 
thresholds. Therefore, one can use a BF equivalent class 

 to present these WOSF with the same 
Boolean function. The relationship among WOSF, 
hyperplane and BF equivalent class are listed in the 
second column of Table I. 

)1 ),1  2  1((
)1 1 1 0 1 1 0 0(

))(sgn( 1 ),121( xf

BF)]1 ),1  2  1[(

From the second column in Table I, the WOSF 
, , ,  and 
 all have the same outputs . 

According to Section II, we can construct the BF 
equivalent class  in which the pair 

 is the unique representative. Note that there 
are infinitely many elements in the class  
and here only 5 instances are listed in the column. The 
other columns in Table I show additional examples of BF 
equivalent classes which is listed in the third row. 

)(2),131( xF )(3),231( xF )(4),243( xF )(5),154( xF
)(6),364( xF )11 1 0 1 1 0 0(

BF]1 ),1  2  1[(
)1 ),1  2  1((

BF]1 ),1  2  1[(

In Table II, we show the all elements of global class 
 which contains 48 BF equivalent classes. 

Each element can be obtained from vector 
G]1 ),1  1  2[(

)1  1  2(=w  
and bias  by sign change and permutation. For 
example, the representative  of a BF 
equivalent class is obtained by permutation on the first 
and the second components, and sign changes on the 
third component and the bias. 

1 =b
)1 ),1 2  1(( −−

Also, we search the minimum collection of vectors in 
the same order through SVM training. In table III, we list 
the minimum collection of vectors from order 2 to order 
5. The forth row shows the collected 30 base vectors and 

built 55 global classes of order 5. For order 4, we collect 
6 base weight vectors, and these vectors build 10 global 
equivalent classes listed in table IV. 

From table IV, we take the global class  
as an example to illustrate the outputs generation. In 
table V, we show all the vectors of permutation by vector 

 and corresponding outputs on left side, and 
show all the vectors of sign change and corresponding 
outputs on right side. For example, when fixed 

G]2 ),1 1 2 3[(

)1 1 2 3(

2=b , 
the base vector  of global equivalent 
class  has corresponding output 

)1 1 2 3(

G]2 ),1 1 2 3[(
)1 1 1 1 1 0 0 0  0 0 0 0 0 0 00(=y . On the 1rd row of right 

side, we show the new vector  of sign 
change and corresponding output 

)11 2 3(ˆ −=w

)1 1 1 1 0 1 0 0  0 0 0 0 0 0 00(ˆ =y  generated by equation 
(4). On the 1rd row of left side we show the new vector 

)3121(ˆ =w  of permutation and corresponding output 
)1 1 1 0 1 1 0 0  0 0 0 0 0 0 00(ˆ =y  generated by equation 

(5). Other vectors and corresponding outputs are listed 
on other rows in table V.  

One also takes all vectors of permutation from table 
V to build a new table, table VI. The table VI shows the 
fixed vector and corresponding output. For example, 
when sign change of 2=b  into , the 12−=b rd row 
shows the base vector )1 1 2 3(=w , and corresponding 
output )1 1 1 1 1 1 1 1  1 1 1 0 0 0 00(ˆ =y  generated by 
equation (6). The 2rd row shows the vector )1 2 1 3(=w  
of permutation, and corresponding output 

)1 1 1 1 1 1 1 1  1 1 0 0 1 0 00(ˆ =y . The additional outputs are 
listed on other rows in Table VI.  

VI.   CONCLUSION 

In this paper, we propose an alternative method to 
characterize WOSF. The characterization consists of two 
stages of equivalent classes. The first class, referred to as 
BF class, is generated based on maximal margin 
classification by SVM. From SVM training, we generate 
a maximal margin hyperplane formulated by an optimal 
normal vector and an optimal bias. The normal vector 
and bias are unique, Therefore they are used as the 
unique representative of the BF class. The second class, 
referred to as global class, is constructed by sign change 
and permutation operations on the components of the 
representative of BF class. The underlying idea is that 
sign change and permutation operations on components 
of the optimal normal vector and the optimal bias result 
in another pair of optimal parameters. This pair of 
parameters formulates another maximal margin 
hyperplane separating another linearly separable Boolean 
function. 

Although the sign change and permutation operations 
can generate new vector and bias to group distinct BF 
equivalent classes, but the corresponding output of each 
BF equivalent class is not directly find. Therefore, we 
proposed 3 translated formulas to fast generate these 
outputs of BF equivalent classes, not perform extra 
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training or build the truth table. 
Besides, we collect minimum weight vectors as base 

vectors of WOSF in the same order. These base vectors 
can be used to generate all of global equivalent classes. 
Also, we characterize all of global equivalent classes by 
base vectors and propose three properties. These 
properties explicitly explain the character of equivalent 
classes, and can compute the numbers of equivalent 
classes. Therefore we can efficiently represent all of the 
WOSF through only few representatives of equivalent 
classes and save computation cost when search for 
various WOSF. 
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TABLE I. 

THE WOSF REPRESENTATION AND BF EQUIVALENT CLASSES 

CORRESPONDING TO THE SAME OUTPUTS 

Output (01111111) (00110111) (00110011) (00010011) 

Hyperplane 
((111),2) 

)sgn( 2 , )111(f  
((121),1) 

)sgn( 1 , )121(f  
((101),0) 

)sgn( 0 , )010(f  
((121),-1) 

)sgn( 1 , )121( −f  

BF class [w, b]BF [(1 1 1),2]BF [(1 2 1),1]BF [(1 0 1),0]BF [(1 2 1),-1]BF

WOSF  ),( rΩ ((1 3 1),1) ((1 3 1),2) ((1 3 1),3) ((1 3 1),4) 

WOSF  ),( rΩ ((3 2 4),2) ((2 3 1),3) ((1 2 0),2) ((1 2 1),3) 

WOSF  ),( rΩ ((5 4 3),3) ((2 4 3),4) ((2 4 1),4) ((2 4 3),6) 

WOSF  ),( rΩ ((4 7 4),4) ((1 5 4),5) ((2 5 2),5) ((2 5 2),7) 

WOSF  ),( rΩ ((5 8 9),5) ((3 6 4),6) ((2 6 3),6) ((4 6 5),10) 

 

TABLE II. 

THE ALL ELEMENTS OF GLOBAL CLASS   G]1 , )1  1  2[(

BFbw ],ˆ[  BFbw ]ˆ,ˆ[  

ŵ  b  outputs ŵ  b̂  outputs 
( 2 1 1) 1 (0 0 0 1 1 1 1 1) ( 2 1 1) -1 (0 0 0 0 0 1 1 1) 
( 2 1-1) 1 (0 0 1 0 1 1 1 1) ( 2 1-1) -1 (0 0 0 0 1 0 1 1) 
( 1 2 1) 1 (0 0 1 1 0 1 1 1) ( 2-1 1) -1 (0 0 0 0 1 1 0 1) 
( 1 2-1) 1 (0 0 1 1 1 0 1 1) ( 2-1-1) -1 (0 0 0 0 1 1 1 0) 
( 2-1 1) 1 (0 1 0 0 1 1 1 1) ( 1 2 1) -1 (0 0 0 1 0 0 1 1) 
( 1 1 2) 1 (0 1 0 1 0 1 1 1) ( 1 1 2) -1 (0 0 0 1 0 1 0 1) 
( 1-1 2) 1 (0 1 0 1 1 1 0 1) ( 1 2-1) -1 (0 0 1 0 0 0 1 1) 
(-1 2 1) 1 (0 1 1 1 0 0 1 1) ( 1 1-2) -1 (0 0 1 0 1 0 1 0) 
(-1 1 2) 1 (0 1 1 1 0 1 0 1) (-1 2 1) -1 (0 0 1 1 0 0 0 1) 
( 2-1-1) 1 (1 0 0 0 1 1 1 1) (-1 2-1) -1 (0 0 1 1 0 0 1 0) 
( 1 1-2) 1 (1 0 1 0 1 0 1 1) ( 1-1 2) -1 (0 1 0 0 0 1 0 1) 
( 1-1-2) 1 (1 0 1 0 1 1 1 0) ( 1-2 1) -1 (0 1 0 0 1 1 0 0) 
(-1 2-1) 1 (1 0 1 1 0 0 1 1) (-1 1 2) -1 (0 1 0 1 0 0 0 1) 
(-1 1-2) 1 (1 0 1 1 1 0 1 0) (-1-1 2) -1 (0 1 0 1 0 1 0 0) 
( 1-2 1) 1 (1 1 0 0 1 1 0 1) (-2 1 1) -1 (0 1 1 1 0 0 0 0) 
( 1-2-1) 1 (1 1 0 0 1 1 1 0) ( 1-1-2) -1 (1 0 0 0 1 0 1 0) 
(-1-1 2) 1 (1 1 0 1 0 1 0 1) ( 1-2-1) -1 (1 0 0 0 1 1 0 0) 
(-1-2 1) 1 (1 1 0 1 1 1 0 0) (-1 1-2) -1 (1 0 1 0 0 0 1 0) 
(-1-1-2) 1 (1 1 1 0 1 0 1 0) (-1-1-2) -1 (1 0 1 0 1 0 0 0) 
(-1-2-1) 1 (1 1 1 0 1 1 0 0) (-2 1-1) -1 (1 0 1 1 0 0 0 0) 
(-2 1 1) 1 (1 1 1 1 0 0 0 1) (-1-2 1) -1 (1 1 0 0 0 1 0 0) 
(-2 1-1) 1 (1 1 1 1 0 0 1 0) (-1-2-1) -1 (1 1 0 0 1 0 0 0) 
(-2-1 1) 1 (1 1 1 1 0 1 0 0) (-2-1 1) -1 (1 1 0 1 0 0 0 0) 
(-2-1-1) 1 (1 1 1 1 1 0 0 0) (-2-1-1) -1 (1 1 1 0 0 0 0 0) 

 

TABLE III.  

THE BASE WEIGHT VECTORS FROM ORDER 2 TO ORDER 5 

Order Vector 
Num. 

Global
class Base weight vector 

2 1 1 (1 1) 

3 2 3 (1 1 1)(2 1 1) 

4 6 10 (1 1 1 1)(2 1 1 1)(2 2 1 1)(3 1 1 1) 
(3 2 1 1)(3 2 2 1) 

5 30 55 

(1 1 1 1 1)(2 1 1 1 1)(3 1 1 1 1)(4 1 1 1 1) 
(2 2 1 1 1)(3 2 1 1 1)(3 3 1 1 1)(4 2 1 1 1) 
(4 3 1 1 1)(2 2 2 1 1)(3 2 2 1 1)(3 3 2 1 1) 
(4 2 2 1 1)(4 3 2 1 1)(4 3 3 1 1)(5 2 2 1 1) 
(5 3 2 1 1)(5 3 3 1 1)(3 2 2 2 1)(3 3 2 2 1) 
(4 3 2 2 1)(4 3 3 2 1)(5 2 2 2 1)(5 3 2 2 1) 
(5 3 3 2 1)(5 4 2 2 1)(5 4 3 2 1)(3 3 2 2 2) 
(4 3 3 2 2)(5 4 3 2 2) 
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TABLE IV.  

THE ALL GLOBAL CLASSES BUILT BY BASE VECTORS ON ORDER 4 

Num. Base vector Global classes 

1 (1 1 1 1) [(1 1 1 1),1]G , [(1 1 1 1),3]G

2 (2 1 1 1) [(2 1 1 1),0]G ,  [(2 1 1 1),2]G

3 (2 2 1 1) [(2 2 1 1),1]G ,  [(2 2 1 1),3]G

4 (3 1 1 1) [(3 1 1 1),1]G 

5 (3 2 1 1) [(3 2 1 1),2]G 

6 (3 2 2 1) [(3 2 2 1),1]G , [(3 2 2 1),5]G

 

TABLE V.  

THE GENERATED VECTORS AND CORRESPONDING OUTPUTS 

WHEN SIGN CHANGE AND PERMUTATION OF BASE VECTOR (3 2 1 1) 

Permutation  Sign Change 

w  Outputs w  Outputs 

(3 2 1 1) (00000000 00011111) (3 2 1 1) (00000000 00011111) 

(3 1 2 1) (00000000 00110111) (3 2 1-1) (00000000 00101111) 

(3 1 1 2) (00000000 01010111) (3 2-1 1) (00000000 01001111) 

(2 3 1 1) (00000001 00001111) (3-2 1 1) (00000000 11110001) 

(2 1 3 1) (00000001 00110011) (-3 2 1 1) (00011111 00000000) 

(2 1 1 3) (00000001 01010101) (3 2-1-1) (00000000 10001111) 

(1 3 2 1) (00000011 00000111) (3-2 1-1) (00000000 11110010) 

(1 3 1 2) (00000101 00000111) (3-2-1 1) (00000000 11110100) 

(1 2 3 1) (00000011 00010011) (-3 2 1-1) (00101111 00000000) 

(1 2 1 3) (00000101 00010101) (-3 2-1 1) (01001111 00000000) 

(1 1 3 2) (00010001 00010011) (-3-2 1 1) (11110001 00000000) 

(1 1 2 3) (00010001 00010101) (3-2-1-1) (00000000 11111000) 

 

TABLE VI.  

THE GENERATED VECTORS BY VECTOR (3 2 1 1) AND CORRESPONDING OUTPUTS 

WHEN SIGN CHANGE OF BIAS b 

w  b  Outputs w  b  Outputs 

(3 2 1 1) 2 (00000000 00011111) (3 2 1 1) -2 (00000111 11111111) 

(3 1 2 1) 2 (00000000 00110111) (3 1 2 1) -2 (00010011 11111111) 

(3 1 1 2) 2 (00000000 01010111) (3 1 1 2) -2 (00010101 11111111) 

(2 3 1 1) 2 (00000001 00001111) (2 3 1 1) -2 (00001111 01111111) 

(2 1 3 1) 2 (00000001 00110011) (2 1 3 1) -2 (00110011 01111111) 

(2 1 1 3) 2 (00000001 01010101) (2 1 1 3) -2 (01010101 01111111) 

(1 3 2 1) 2 (00000011 00000111) (1 3 2 1) -2 (00011111 00111111) 

(1 3 1 2) 2 (00000101 00000111) (1 3 1 2) -2 (00011111 01011111) 

(1 2 3 1) 2 (00000011 00010011) (1 2 3 1) -2 (00110111 00111111) 

(1 2 1 3) 2 (00000101 00010101) (1 2 1 3) -2 (01010111 01011111) 

(1 1 3 2) 2 (00010001 00010011) (1 1 3 2) -2 (00110111 01110111) 

(1 1 2 3) 2 (00010001 00010101) (1 1 2 3) -2 (01010111 01110111) 
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