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Abstract— Business Process Modeling Notation (BPMN) is
the de facto standard for modeling business processes
on a conceptual level. However, BPMN lacks a formal
semantics and many of its features need to be further
interpret, Consequently that hinders BPMN as a standard to
statically check the semantic correctness of models. YAWL
(Yet Another Workflow Language) allows the specification
of executable workflow models. A transformation between
these two languages enables the integration of different levels
of abstraction in process modeling. This paper discusses
how to transform BPMN diagrams to YAWL nets. The
benefits of the transformation are threefold. Firstly, it
clarifies the semantics of BPMN via a mapping to YAWL.
Secondly, the deployment of BPMN business process models
is simplified. Thirdly, BPMN models can be analyzed with
YAWL verification tools.

Index Terms— BPMN, YAWL, Transformation, Algorithm

I. INTRODUCTION

Process modeling is used at different levels of ab-
straction. First, models serve to communicate as-is busi-
ness processes, pinpoint improvement options, conduct
resource and cost analysis and capture to-be processes.
The Business Process Modeling Notation (BPMN [1]) is
the de facto standard for process modeling at this level. On
the other hand languages targeting at technically realizing
business processes is used as input for process execution
engines. The YAWL [2] is a standard for implementing
process-oriented composition of web services, with a
strictly defined execution semantics, a first-class concept
of “task”, and sophisticated support for data mappings
and task-to-resource allocation.

BPMN is a graph-oriented language in which con-
trolling nodes can be connected in arbitrary way. It
primarily targets at domain analysts and is supported by
many modeling tools. The notation inherits and combines
elements from a number of previously proposed notations
for business process modeling, including the XML Pro-
cess Definition Language (XPDL) [3] and the Activity
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Diagrams component of the Unified Modeling Notation
(UML) [4].

BPMN provides a number of advantages to modeling
business processes, it offers a process flow modeling
technique that is more conducive to the way of business
analysts model and its solid mathematical foundation is
expressly designed to map to business execution lan-
guages. BPMN is already supported by more than 54 tools
(see www.bpmn.org), but in its current form, BPMN lacks
the semantic precision which is required to capture fully
executable business processes. Consistent with the level
of abstraction targeted by BPMN, none of these tools
support the execution of BPMN models directly. Close
inspection of existing translation from BPMN to BPEL
standard, the one sketched in [1], [5]–[7], shows these
translations fail to fulfill the key requirements, such as
completeness, automation, readability, etc. The translation
patterns and algorithms in these papers address issues that
arise generally when translating from graph-oriented pro-
cess languages to block-structured ones. However, map-
ping between graph-oriented and block-structured process
definition languages is notoriously challenging, it is likely
to require refinement as well as testing and debugging,
which defeat the purpose of BPEL as a domain-specific
language. Another attempt at defining a formal semantics
for a subset of BPMN did so using Petri nets [8]–[11].
The proposed mapping serves not only the purpose of
disambiguating the core constructs of BPMN, it also
provides a foundation to statically check the semantic
correctness of BPMN models. However, their semantics
does not properly model multiple instances, exception
handling, message flows and OR-join.

YAWL is a workflow language specially designed to
support the 20 workflow patterns [12] that proposed by
Van der Aalst, ter Hofstede, Kiepuszewski and Barros in
an intuitive manner. YAWL can be used as a lingua franca
to express the behavior of Web services (for example,
described using BPEL or OWL-S [13]). YAWL has a well
defined formal semantics. Furthermore, the basis on Petri
nets provides a firm tool for the formal analysis of real-
world services. In order to benefit from the expressive
power of YAWL, a large amount of business process

396 JOURNAL OF SOFTWARE, VOL. 5, NO. 4, APRIL 2010

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.4.396-404



models are mapping to YAWL, such as the Event-driven
Process Chain (EPC) to YAWL [14] and BPEL to YAWL
[15].

The transformation from BPMN to YAWL can be
used as an instrument to implement process-oriented
applications. It also opens the possibility of reusing static
analysis techniques available for YAWL. Like Petri nets,
YAWL has a formally defined semantics that enables the
analysis of YAWL nets to detect semantic errors such
as deadlocks. Close inspection of existing translations
from BPMN to YAWL, e.g. sketched in [16], however,
serveral properties and assignments are missing in the
mapping, the translations fail to fulfill the following key
requirements: (i) message flows are lost; (ii) transactions
and compensation handlers are not covered; (iii) complex
gateways are neglected. At first glance, this mapping may
seem straightforward. Indeed, the conceptual mismatch
between BPMN and YAWL is not as significant as the
one between BPMN and BPEL, especially with regards
to control-flow structures. However, mapping BPMN to
YAWL turns out to be tricky in the details, revealing
subtle differences between the two languages.

Our goal is to provide a methodology for transforming
a model from BPMN to YAWL. The mapping is in the
following five ways:

– Although BPMN and YAWL share most of their
concepts, there is a fundamental difference in the
way of joins and splits are treated in each lan-
guage. While BPMN inherits the connector types
from EPCs which define them as first class objects
independent of functions, YAWL includes joins and
splits in task objects. Accordingly, there is no direct
equivalent in YAWL elements for BPMN connector
chains, i.e. multiple consecutive connectors.

– YAWL requires processes to have only one start and
one end condition. In BPMN, multiple start and end
events are allowed.

– BPMN task or subprocess has a lot of attributes,
which attributes can be applied in YAWL and which
ones should be extended.

– A message flow is used to show the transmission
of messages between two participants via commu-
nication actions such as send task, receive task, or
message event in different pools in BPMN, although
the information of pool or lane will be lost in
conversion. How to map these messages to flow
messages and not affect the YAWL initial marking
is a challenge.

– BPMN exception handling is captured by exception
flow. The conversion should be clear regarding the
semantics of an exception handler attached on a task
or subprocess.

The rest of the paper is organized as follows. Section
II provides the mathematical notations. Our contribution
starts in Section III, which illustrates the solutions of
the transformation from BPMN to YAWL. Section IV
presents the structure of the tool implementation and its
application to static analysis of BPMN models. Finally,

Section V concludes and outlines future work.

II. BASIC DEFINITIONS

A BPMN process, which uses the core subset of BPMN
elements as shown in Figure 1, is referred to as a core
BPMN process. We define the syntax of the core BPD.

Definition 1 (Core BPMN Process): [17]
A core BPMN process is a tuple: M =
(O, A, ε, g, P, L, T, S, TR,εS , εI , εE , εIφ , εIM , εIT , εIE ,
εIC , gAs, gAj , gXs, gXj , geXs, gOs, gOj , F, Cond, Exc,
Mes)

– O is a set of objects which can be partitioned into
disjoint sets of activities A, events ε, gateways g.

– A can be partitioned into disjoint sets of tasks T
and subprocesses invocation activities S.

– P/L is a set of pools/lanes. For any node o ∈ O,
P (o)/L(o) is a function showing which pool/lane
the object o belongs to.

– TR ⊆ T is a set of receiving tasks.
– ε can be partitioned into disjoint sets of start events

εS , intermediate events εI and events εE .
– εI can be further partitioned into disjoint sets of

intermediate events without any trigger εIφ , inter-
mediate message events εIM , intermediate timer
events εIT , intermediate exception events εIE , and
intermediate cancel events εIC .

– g can be partitioned into disjoint sets of parallel
fork gateways gAs, parallel join gateways gAj , data-
based XOR decision gateways gXs, XOR merge
gateways gXj , event-based XOR decision gateway
geXs, inclusive decision gateways gOs and inclusive
merge gateway gOj .

– F ⊆ O × O is the control flow relation, i.e. a set
of sequence flows connecting objects.

– Cond : F ∩ (gXs × O) → C is a function which
maps sequence flows emanating from data-based
XOR gateways to conditions.1

– Exc : εI → A is a function assigning an intermedi-
ate event to an activity such that the occurrence of
the event signals an exception and thus interrupts
the performance of the activity.

– Mes ⊆ Oi × Oj , P (o′) 6= P (o′′), o′ ∈ Oi ∧ o′′ ∈
Oj , i.e. objects belong to different pools.

Definition 1 allows for graphs which are unconnected,
not have start or end events, contain objects without any
input and output, etc. Therefore we need to restrict the
definition to well-formed core BPMN. Before this, we
first define the predecessor and successor nodes.

Definition 2 (Predecessor and Successor Nodes): Let
O be a set of objects and Edge be a binary relation
over O, Edge = F ∪ Cond ∪ Exc. For each node o,
we define the set of predecessor nodes •o = {x ∈ O |
(x, o) ∈ Edge ∧ o ∈ O \ dom(Exc)}, and the set of
successor nodes o• = {x ∈ O | (o, x) ∈ Edge ∧ o ∈ O}.

1A condition is a Boolean function operating over a set of proposi-
tional variables that can be abstracted out of the control flow definition.
The condition may evaluate to true or false, which determines whether or
not the associated sequence flow is taken during the process execution.
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Definition 3 (Well-formed core BPMN): [17] A core
BPMN process P in Definition 1 is well formed if and
only if relation F satisfies the following requirements:

– ∀s ∈ εS ∪ dom(Exc),•s = φ ∧ |s•| = 1, i.e. start
events and exception events have an in-degree of
zero and an out-degree of one,

– ∀e ∈ εE ,e• = φ ∧ |•e| = 1, i.e. end events have an
out-degree of zero and an in-degree of one,

– ∀x ∈ A ∪ (εI\dom(Exc)), |•x| = 1 and |x•| = 1,
i.e. activities and non-exception intermediate events
have an in-degree of one and an out-degree of one,

– ∀g ∈ gAs ∪ gXs ∪ geXs ∪ gOs : |•g| = 1∧ |g•| > 1,
i.e. fork or decision gateways have an in-degree of
one and an out-degree of more than one,

– ∀g ∈ gAj ∪ gXj ∪ gOj : |•g| > 1 ∧ |g•| = 1, i.e.
join or merge gateways have an out-degree of one
and an in-degree of more than one,

– ∀g ∈ geXs, g• ⊆ εIM ∪ εIT ∪ TR, i.e. event-
based XOR decision gateways must be followed
by intermediate message or timer events or receive
tasks.

– ∀g ∈ gXs,∃x ∈ g•,Cond((g, x)) = ¬∧y∈g•\{x} =
Cond((g, y)), i.e. (g, x) is the default flow among
all the outgoing flows from g,

– ∀x ∈ O,∃s ∈ εS ∪ dom(Exc),∃e ∈ εE ,sF ∗x ∧
xF ∗e, i.e. every object is on the path from a start
event or an exception event to an end event.

Definition 4 (YAWL-Net): [2] A YAWL-net N is de-
fined as a tuple (C, i, o, T, F low, split, join, rem, nofi)
such that:

– C is a set of conditions.
– i ∈ C is the unique input condition.
– o ∈ C is the unique output condition.
– T is a set of tasks.
– Flow ⊆ (C \ {o} × T )∪ (T ×C \ {i})∪ T × T is

the flow relation.

– split : T → {AND, XOR, OR} specifies the split
behavior of each task.

– join : T → {AND, XOR, OR} specifies the join
behavior of each task.

– rem : T → ρ(T ∪C \ {i, o}) specifies the token to
be removed from the tasks and conditions given in
the mapping.

– nofi: T → N ×N inf ×N inf ×{dynamic, static}
specifies the multiplicity of each task (minimum,
maximum, threshold for continuation, and dy-
namic/static creation of instances).

III. FROM BPMN TO YAWL
We only consider map well-formed core BPMN di-

agrams to YAWL nets in this paper, using simplified
notation M = (O, P,L, F,Exc, Mes) for their represen-
tation. The study is focused on control-flow constructs.

A. Activities, Events, Gateways, Sequence flow and Mes-
sage Flow

Figure 2 gives the transformation from a set of BPMN
activities, events, gateways and sequence flows. An inter-
mediate event or task is mapped to an atomic task with
one input and output. The other activities except for Ad-
hoc subprocess are mapped onto corresponding composite
task or multiple instance tasks with one predecessor and
one successor. BPMN start and end events are easy to
transform if there is only one. In this case, the BPMN
start event maps to YAWL input condition and the end
event to a output condition. Multiple start and end events
will be discussed in the Section III-B.

As gateways are independent elements in BPMN,
which is allowed to build so-called gateway chains, i.e.
paths of two or more consecutive gateways. Splits and
joins in YAWL are only allowed as part of tasks. As
a consequence, there may be need to introduce empty
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Figure 3. Transformation of multiple start and end events

tasks only to map a gateway. Figure 2 illustrates how
a gateway is transformed, an additional empty task is
required to include the join rule or split rule except
event-based decision gateways. Especially, an event-based
gateway is captured in a way that the gateway mapped to
an empty task with split rule and all the elements of the
gateway output corresponding atomic task compete for
the determines which path is taken. Generally, sequence
flow or message flow is transformed to a YAWL flow edge
in straight-forward manner. More details are depicted in
Figure 2.

B. Transformating Start and End Events

If there are multiple start events, they have to be
bundled: the one YAWL input condition is followed by
an empty task with an OR-split rule. Each BPMN start
event is then mapped to a YAWL condition that is linked
as a successor. Analogously, each of multiple BPMN
end events is mapped to YAWL conditions which are all
connected with an OR-join of an empty task that leads
to the one YAWL output condition. This transformation
rule makes these models difficult to analyze, because 2|n|

states have to be considered with n being the amount of
BPNN start or end events. In this case, graph reduction
rules could be applied in order to get compacter models.
Yet, this issue is beyond the scope of this paper. The
example is shown in Figure 3.

C. Activities Macro and Ad-hoc construct

An activity in a BPD can have attributes specifying
its additional behavior, these attributes can be set to
determine the values of nofi in the corresponding task
in YAWL. Table I demonstrated how to map the BPMN
attributes to the values of nofi.

There is another special attribute for Ad-hoc subprocess
activity. This attribute defines if the activities within the
process can be performed in parallel or must be performed
sequentially. Without lose the generality, the multiple
instance attributes for activities in Ad-hoc subprocess can
referred from Table I. The example in Figure 4 considered
each activity will be performed one at a time.

Algorithm 1: B Mes2Y Flow(Mes m)
Input: εS ;εE ;m ∈ Mes,m = (x, y)|P (x) 6= P (y) . Suppose there

exists an input task tinT ask and output task
toutT ask ,split(tinT ask) = OR, join(toutT ask) = OR;

Output: yawl flow;
if ∀s ∈ εS , ∃x ∈ εE ∪ T ∪ S, s.t.(x, s) ∈ Mes then1

add empty task t′ with join(t′) = XOR to yawl;2
add f ∈ Flow ∧ f = (tinT ask, t′) to yawl;3
add f ∈ Flow ∧ f = (t′, s•) to yawl;4
if x ∈ S ∪ T ∧ |x•| = 1 then5

add f ∈ Flow ∧ f = (x, t′) ∧ split(x) = AND to yawl;6
end7
else if x ∈ S ∪ T ∧ |x•| = 0 then8

add f ∈ Flow ∧ f = (x, t′) to yawl;9
end10
else if x ∈ εE then11

add f ∈ Flow ∧ f = (•x, t′) to yawl, delete x;12
end13
delete s;14

end15
if ∀e ∈ εS , ∃y ∈ εS ∪ T ∪ S, s.t.(e, y) ∈ Mes then16

add empty task t′′ with split(t′′) = AND to yawl;17
add f ∈ Flow ∧ f = (t′′, toutT ask) to yawl;18
add f ∈ Flow ∧ f = (•e, t′′) to yawl;19
if x ∈ S ∪ T ∧ |•y| = 1 then20

add f ∈ Flow ∧ f = (t′′, y) ∧ join(y) = AND to yawl;21
end22
else if x ∈ S ∪ T ∧ |y•| = 0 then23

add f ∈ Flow ∧ f = (t′′, y) to yawl;24
end25
else if y ∈ εS then26

add f ∈ Flow ∧ f = (t′′, y•) to yawl, delete y;27
end28
delete e;29

end30
while |Mes| 6= φ do31

if x ∈ (T ∪ S) ∧ y ∈ (T ∪ S) then32
if |x•| = 0 ∧ |•y| = 0 then33

add f ∈ Flow ∧ f = (x, y) to yawl;34
end35
else if |x•| = 1 ∧ |•y| = 0 then36

add f ∈ Flow ∧ f = (x, y) ∧ split(x) = AND to37
yawl;

end38
else if |x•| = 0 ∧ |•y| = 1 then39

add f ∈ Flow ∧ f = (x, y) ∧ join(y) = AND to40
yawl;

end41
else if |x•| = 1 ∧ |•y| = 1 then42

add f ∈ Flow ∧ f = (x, y) ∧ split(x) =43
AND ∧ join(y) = AND to yawl;

end44
end45
else if x ∈ (T ∪ S) ∧ y ∈ εS then46

if |x•| = 0 then47
add f ∈ Flow ∧ f = (x, y•) to yawl;48

end49
else if |x•| = 1 then50

add f ∈ Flow ∧ f = (x, y•) ∧ split(x) = AND to51
yawl;

end52
delete εS ;53

end54
else if x ∈ εE ∧ y ∈ (T ∪ S) then55

if |•y| = 0 then56
add f ∈ Flow ∧ f = (•x, y) to yawl;57

end58
else if |•y| = 1 then59

add f ∈ Flow ∧ f = (•x, y) ∧ join(y) = AND to60
yawl;

end61
delete εE ;62

end63
else if x ∈ εE ∧ y ∈∈ εS then64

add f ∈ Flow ∧ f = (•x, y•) to yawl, delete εE and εS ;65
end66

end67
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TABLE I.
HOW TO MAP THE BPMN ATTRIBUTES TO THE VALUES OF nofi

BPMN activity attributes YAWL task nofi

LoopType LoopMax LoopCondition TestTime nofi

standard m The expression xq3 should determine how many instances of activities are to be created before [0, m, xq3, static]
standard m The expression xq3 should determine how many instances of activities are to be created after [1, m, xq3, static]

BPMN activity attributes YAWL task nofi

LoopType LoopMax MICondition MIOrdering MIFlow Condition nofi

multiInstance m All activity instances should generate a token
when the instance is completed

parallel none [n, m, m, static]

multiInstance m The token should continue past the activity after
all of the activity instances have completed

parallel all [m, m, m, static]

multiInstance m Only one token can passed from the activity parallel one [1, m, 1, static]

multiInstance dynamic The Expression should determine when and how
many tokens will continue past the activity

parallel complex [xq1, xq2, xq3, dynamic]

Note that the n, m is integer and the expression xqi(i = 1, 2, 3) is evaluated at run time to help determine how many instances of activities
are to be created. The LoopCondition and MICondition will be replaced in a mathematical expression to be either tested as True or False or to
be evaluated to update the value of Properties in actual use

~
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B input

inTask

output

outTask

B

A

~

A

B
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set to include the completion 

of Task A and B

input
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B

A

AdhocOrdering attribute set 
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AdhocCompletionCondition 

set to include the completion 

of Task A and B

Figure 4. Transformation of Ad-hoc subprocess with different attribute
of AdhocOrdering

D. Message Flow

The information of pools and lanes will be lost in
the conversion. However, some related information such
as message flow should be inherited. Message flows are
used to model message passing between organizations
or applications. It can be mapped to a flow message in
YAWL and modify some objects’ join or split attribute.
Some special cases for the mapping involves the start
event and end event. Mapping rules are established for
distinguish these cases. Algorithm 1 gives the method
for mapping the message flow. Figure 5 shows some
examples with special rules. Note that in Definition 2, the
predecessor or successor of nodes and the binary relation
between them do not include message flow. On the other
hand, some detail discussions involving activity attributes
such as receive task, user task, service task etc. refer to
[17].

E. Exception Handling

While the intermediate event is attached to the bound-
ary of an activity, either a task or a subprocess, they create
an exception flow. The event will respond to specific
triggers to interrupt the activity and redirect the flow
through the intermediate event. The source of the trigger
may from external or caused by a “throw” intermediate
event from any other active in the process. YAWL presents
a direct and intuitive support of the remove tokens, sounds
like “vacuum cleaner” removing tokens from selected
parts of a net. At the same time, we have to impose
one restriction that a subprocess associated with exception
handing is not allowed to be interrupted by the occurrence
of the exception event in itself, which will violate the seal
principle in a subprocess. This is ambiguous in the BPMN
specification states. We will describe two different source
of the trigger circumstances in the following:

Firstly, assuming the Timer, Message, Exception and
Error trigger will be invoked from the external of the
process execution, Figure 6(1) shows the mapping of an
exception associated with a task or subprocess via an
exception task and cancel arc in YAWL.

Secondly, except the Timer trigger, an intermediate
event attached on a task or subprocess will be invoked
by an event occurs, and location in the process with
the name exact consistency. Assuming there are two
intermediate events with the same name, if ambiguity is
possible, we use throw or catch as subscript convenient
for marking their positions in the process. For example,
ithrow is an intermediate exception event in the process,
and icatch refer to an intermediate event associated with
a task invoking exception handing activities by ithrow.
Figure 6(2) depicts the mapping, Algorithm 2 shows the
exception flow conversion algorithm.
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Algorithm 2: B Exc2Y Flow(Exc e)
Input: e ∈ Exc,e = (x, y)|x ∈ εI , y ∈ O, r is the Task(Subprocess)

associated with x on the boundary;
Output: yawl flow;
if Name(x) is not exclusive, i.e.1
∃z ∈ εI ∧ |•z| 6= φ ∧Name(x) ≡ Name(z) then

map x to a task;2
add cancel edge(r, x) to yawl;3
map z to a task and Split(z) = AND;4
add f ∈ Flow ∧ f = (z, x) to yawl;5

end6
else7

map x to a task;8
add cancel edge (r, x) to yawl;9

end10

F. Transformating gateway chains

As joins and splits are first class elements of BPMN
while in YAWL they are part of tasks. As a consequence,
there may be need to introduce empty tasks only to map
a connector. This is in particular the case with connector
chains. Figure 7(1) illustrates how a connector chain is
transformed. If a join connector is followed by a split, they
can be combined into one empty task. Otherwise, splits
and joins can be combined with the pre-event predecessor
function or the post-event successor function, respectively.

In addition, if there have a split connector as the suc-
cessor of one task (subprocess), which can be embedded
into the task(subprocess). It is similar with a task (sub-
process)’s predecessor. Figure 7(2) and (3) respectively
show these possible.

G. Tranformation Algorithm and Example
We traverse the BPMN process graph and take ad-

vantage of the fact that YAWL does not enforce an
alternation of tasks and conditions. Basically, we ignore
events except start or end events. Therefore, most states of
the generated YAWL process model are associated with
implicit conditions.

Based on the mapping of each of the components
aforementioned, we now define an algorithm to translate
a well-formed core BPD into YAWL. The algorithm
is arranged in two stages, the first stage is depending
on the type of the current node, its predecessor nodes
and successor nodes, respective elements of the YAWL
target model are generated. The second stage is reducing
gateway chains if necessary. These steps repeated until no
elements can be folded.

Now, we can analyze the complexity of the algorithm 3.
Given a well-formed BPD M = (O, P,L, F,Exc, Mes),
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Algorithm 3: WF BPMN2YAWL (BPD M )
Input: a well-formed BPD M = (O, P, L, F, Exc, Mes);
Output: a yawl model

Y = (C, i, o, T, F low, split, join, rem, nofi);
Add YAWL input and output condition:i ∈ C and o ∈ C;1
if |εS | > 1 then2

add OR split task tinT ask ;3
end4
if |εE | > 1 then5

add OR join task toutT ask ;6
end7
while |M | 6= φ do8

for ∀node ∈ Mes; if node is not be mapped; M = M \node do9
B Mes2Y Flow(node);10

end11
M = M \ (P ∪ L);12
for ∀node ∈ Exc; if node is not be mapped; M = M \ node do13

B Exc2Y Flow(node);14
end15
for ∀node ∈ O; ; M = M \ node do16

if node ∈ εS (or node ∈ εE ) then17
add c ∈ C and •node = tinT ask (or18
node• = toutT ask);

end19
if node ∈ g then20

add empty task with corresponding split or join type;21
end22
if node ∈ T then23

add task to YAWL with corresponding attributes;24
end25
if node ∈ S then26

add composite task to YAWL, all elements in this27
subprocess is represented by
node = (O′, P ′, L′, F ′, Exc′, Mes′), and Do
WF BPMN2YAWL( node);

end28
if node ∈ F then29

add an flow edge to YAWL;30
end31

end32
if tx, ty is close relations in YAWL ∧ there are two empty task or33
one is task (composite task) and the other is empty task
∧t•x = ty ∧• ty = tx then

tx and ty can be fold to a new task(composite task)t,34
•t =• tx ∧ t• = t•y ;

end35
end36

For each transformation of BPMN node, the conversion
operation is performed in linear time and the algorithm
will be completed. The completeness is granted because
BPMN are coherent; every node will be ultimately pro-
cessed when navigation begins from the start events. In
the extreme case, the algorithm will terminate when each
node is processed exactly once (no influence by the ex-
ception handling event). Assuming that converse a BPMN
object onto a YAWL element is trivial, the complexity of
the algorithm is O(|O|+ |P |+ |L|+ |F |+ |Exc|+ |Mes|).

We present the complaint handling process model
shown in Figure 8. This example has been taken from
[5]. We use this example to illustrate how a BPD can
be translated into a YAWL net. First the complaint is
registered (task register) then in parallel a questionnaire
is sent to the complainant (task send questionnaire)
and the complaint is evaluated (task evaluate). If the
complainant returns the questionnaire within two weeks
(event returned-questionnaire), task process questionnaire
is executed. Otherwise (event timeout), the result of the
questionnaire is discarded. After either the questionnaire
is processed or a time-out has occurred, the result needs to
be archived (task archive), and in parallel, if the complaint
evaluation has been completed, the actual processing of

Figure 9. Structure of the BPMN to YAWL transformation

the complaint (task process complaint) can start. Next,
the processing of the complaint is checked via task check
processing. If the check result is not ok, the complaint
requires re-processing. Otherwise, if the check result
is ok and also the questionnaire has been archived, a
notice will be sent to inform the complainant about the
completion of the complaint handling (task send notice).
Figure 8 sketches the translation procedure following the
translation algorithm as mentioned above.

IV. EMPIRICAL EVALUATION

As a proof of concept we have implemented the al-
gorithm, an open-source plug-in called BPMN2YAWL
is available in ProM 5.0. Each reader interested in this
field can use the http://www.processmining.org web page
for a more complete overview and download the latest
version. Figure 9 shows the structure of the tool that we
implemented.

We use the ILog BPMN Modeler2as a graphical editor
to create BPMN models. To the author’s knowledge, no
existing tool for modeling BPMN can perform properties
checks. We can analyst the BPMN model after them
mapped to a YAWL net. The plugin in ProM subsequently
transforms the BPMN models into a YAWL net and export
the YAWL net as a XML file. This XML file can serve
as input to a YAWL-based verification tool [11], [18]. A
lot of properties such as the deaklock free, no dead task,
proper completion, no OR-join and soundness [19]–[21]
etc, can be checked via these tools.

We tested BPMN2YAWL on a set of models3, some
collected from the BPMN Web log2, and the others are
designed by the authors. Table II shows the size of
each tested BPMN models in terms of number of tasks,
events, gateways, subprocesses and message flows. It also
shows the size of the resulting YAWL-nets in terms of
number of conditions, atomic tasks and composite tasks.
BPMN2YAWL was able to deal with all the models,
although preprocessing was needed to transform some of
them into well-formed BPMN models, how to generate a
well BPD refer to [9], [17], [22], [23].

2http://www.ilog.com/products/jviews/diagrammer/bpmnmodeler/
3This set of test models are included in the distribution of the

BPMN2YAWL tool, http://is.tm.tue.nl/trac/prom/wiki/TestBPMN
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Figure 8. Translating the complaint handling process model into YAWL

TABLE II.
RESULTS OF IMPLEMENTING THE MAPPING TOOL TO EXISTING MODELS

Model No. BPMN Model YAWL net
tasks events gateways subprocesses sequence flows message flows composite tasks atomic tasks conditions flows

0 5 4 9 7 6 15
1 6 5 2 3 8 2 3 16 12 30
2 20 10 5 6 30 9 6 47 20 81
3 20 4 28 22 6 34
4 2 2 2 6 6 4 10
5 2 4 3 1 6 4 10

Fig 10 shows a screenshot of ProM, generating the
YAWL net from the No.1 BPMN model, which violate the
deaklock free and soundness properties via the analysis of
YAWL editor4. Moreover, We detected model 2 contained
incomplete process executions. Models 0, 3, 4 and 5 did
not contain any errors.

V. CONCLUSION AND FUTURE WORK

Ongoing work aims at extending the BPMN2YAWL
plugin in order to make the transformation reversible.
After generating a model, the plugin will be able to prop-
agate changes in the YAWL net into the BPMN diagram
(and vice-versa) in order to maintain the models syn-
chronized. We aim to analyze the whole BPMN process
models with YAWL verification tools such as WofYAWL
[11]. This will provide insight into the correctness of
large enterprise models described in BPMN. We also
plan to investigate process mining using BPMN processes
and focusing on the OR-join semantic particularities of
BPMN.

4http://www.yawl-system.com/

Figure 10. Screenshot of BPMN model to YAWL net in ProM and the
analysis resulting by YAWL editor
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