
Research on Online Monitoring and Analyzing of
Interactive Behavior of Distributed Software

Junfeng Man
School of Information Science and Engineering, Central South University, Changsha, China
College of Computer and Communication, Hunan University of Technology, Zhuzhou, China

Email: mjfok@tom.com

Luming Yang1, Lanjun Wan2, Xiangbing Wen2
1School of Information Science and Engineering, Central South University, Changsha, China

2College of Computer and Communication, Hunan University of Technology, Zhuzhou, China

Abstract—The paper pays close attention to scenario and
relationships between behavior and behavioral effects of
distributed software at running time, presents a novel online
monitoring and analyzing method for software behavior.
Dynamic AOP monitoring technology is adopted to monitor
interactive events related with business logic which are
produced by the third party entities; Scenario-sensitive
method is used to model complicated Interactive Behaviors
(IBs) among these entities. By fusing real-time self-
experience and pervious experience based on knowledge, the
creditability of interactive entities is computed
automatically. Multi-Entity Bayesian Network (MEBN) tool
is adopted to construct reusable domain “knowledge
fragment”. If current scenario is similar to pervious one,
then pervious one is reused; if there is no similar scenario,
evidences gained from monitoring and pervious experience
are fused to construct behavior model for this scenario. The
combination of large and small knowledge reuse improves
analysis efficiency of IBs. Above method is used to “Trusted
Purchasing Network” that we develop, deceitful or
fraudulent behaviors in trade process are online monitored
and analyzed.

Index Terms—distributed software, interactive behavior,
behavior analyzing, scenario, multi-entity Bayesian network

I. INTRODUCTION

The emergence of Internet makes running environment
of software from static and close to dynamic and open. In
order to adapt to this trend, software system architecture
gradually changes from centralization to distribution [1].
In recent years, distributed software plays more and more
important role in national economy, many of them (e.g.,
service systems in telecommunication, finance and
medical treatment, traffic control system, e-commerce
system) are melting into our daily work and life.
However, distributed software are always out of order or
failure, which brings negative impact on our daily work
and life, e.g., the failure of e-commerce system will lead
to economic loss, the failure of medical treatment even
threats to life. With the scales of distributed software
become more and more enormous and function more and

more complicated, people pay special attention to
software creditability (i.e., availability, reliability and
security).

Software trust means that software system always runs
according to the way that we set up [2]. The nature of
software is to substitute for people to carry out certain
behaviors. Software trust is mostly embodied in its
behavior trust, which demands that running time
behaviors and results of software system are always
consonant with people’s expectation [3]. Behavior trust
isn’t no factual basis, which needs to monitor IBs of
software entities, and collect data related to trust. On this
basis, the system can achieve online diagnosis, prediction
and trust-evaluation, which helps to implement dynamic
regulation for software behavior, and ultimately improve
behavior creditability of software. It is obvious that
monitoring and analyzing of IBs are in basic position in
ensuring software trust.

In open and dynamic network environment, distributed
software is loosely aggregated with several
heterogeneous entities. Entity elements may enter and
leave dynamically, these elements may interconnect,
intercommunicate, collaborate and unite each other in
terms with variously cooperative work way. Although
software monitoring technology has undergone forty
years’ development, for the monitoring and analyzing of
IBs of distributed software, it is still confronted with
many challenges.

(1) What contents does system monitor? How is
monitoring effectively implemented? Because the scale
of distributed software is enormous and IBs are
complicated, system can not and need not monitor all
running time behavior. In my opinion, making clear
monitoring contents and target and controlling
monitoring granularity within reasonable range are
indispensable. Monitoring mechanism can be integrated
into target system with flexible, loose and transparent
way; Monitoring target can be flexibly customized in
running process of target system, and monitoring function
can be opened or closed dynamically; To a certain degree,
autonomous monitoring can be implemented; Monitoring

JOURNAL OF SOFTWARE, VOL. 5, NO. 4, APRIL 2010 361

© 2010 ACADEMY PUBLISHER
doi:10.4304/jsw.5.4.361-368

http://dj.iciba.com/within/
http://dj.iciba.com/range/
http://dj.iciba.com/certain/

scale can be online extended with the extension of target
system. In open and dynamic distributed software
environment, designing and implementing an effective
monitoring tool that satisfies above demands is a very
important technological problem that we will
emphatically solve.

(2) How is monitoring information fused with
historical data to provide evidence for the analysis of IBs.
In open and dynamic distributed software environment,
the data monitored from multi-source may be represented
with many forms. It is unpractical that information fusion
is implemented by simple syntax matching. Advancing
information processing from data to knowledge level, the
realization is growing that sharing knowledge among
distinct information systems requires first arriving at a
common understanding of their respective semantics, and
then formalizing that semantics in computable
representations. Thus, computer can analyze and reason
about IBs, proactively predict subsequently possible trend.

(3) In open and dynamic distributed software
environment, how to solve the problem of uncertain
knowledge between complicated interactive entities and
their relationships. Uncertainty is ubiquitous to
knowledge fusion. Almost any source of primary data
carries some degree of uncertainty. Bayesian probability
is a principled formalism for representing uncertainty and
drawing inferences in the presence of uncertainty.
Specifically, in a standard Bayesian Network (BN), all
the hypotheses and relationships are fixed in advance, and
only the evidence can vary from problem to problem. In
open and dynamic distributed software environment,
loosely-coupled interactive entities may be strange for
each other, or the entities which ever have interacted may
have new interaction in new scenario, numbers of
interacting entities cannot be known in advance. Standard
BN cannot flexibly represent complexity and uncertainty
of interactive entity behavior. It is another technological
problem to be solved that we find an effective method
which effectively represents the uncertainty of
complicated interactive entities and relationships, and
provides support for online analysis and trend prediction
of IBs by multi-source fusion of knowledge.

Because loosely-coupled entities in distributed
software have their own profits, behavior strategies and
rules, their running time behaviors have inherent laws,
the collaboration of interactive entities makes them show
some statistical characteristic in the mass at running time.
Distributed software should be “monitored” and
“grasped” in open and dynamic environment, the scenario
and relationships between behavior and behavioral effects
at running time are investigated, and Multi-Entity
Bayesian Network (MEBN) tool is adopted to analyze
running time behavior states and traces, behavior
analyzing and predicting model is constructed, the
intentions of interactive entities are inferred, and
subsequently possible trend is proactively predicted.

The rest of this paper is organized as follows: Section
2 is related research and corresponding analysis; Section
3 introduces monitoring mechanism of IBs of distributed
software; Section 4 illustrates online analyzing

technology of IBs; In Section 5, above method and
technology are used to “Trusted Purchasing Network”
that we develop, deceitful or fraudulent behaviors in trade
process are online monitored and analyzed, experiment
results and corresponding analysis testify our theory.

II. RELATED RESEARCH AND ANALYSIS

A. Software Monitoring Technology
Software behavior monitoring refers to monitoring

software running behavior, collecting behavior
information and providing basic data for diagnosis,
prediction and trust-evaluation. For widespread
applications of distributed Software, its behavior
monitoring attracts more and more attention. Many
scholars are engaged in related researches and many
mature monitoring technologies are constantly emerging.

In the aspect of monitoring mechanism, there are
wrapper, interceptor, AOP method, reflection method,
instrumenter and monitoring API. In the aspect of
monitoring technology based on component wrapper,
papers [4] research on a kind of running monitoring
mechanism for distributed components. Component
wrapper encapsulates monitored code, which helps to
monitor performance, status and interactive events, and
collects components’ interactive information. Paper [5]
presents a kind of Behavior and Capture Technique
(BCT), which uses component wrapper to capture
running behavior of program automatically. The
advantages of using component wrapper are no need to
modify source code, and fit for third party components.
Its obvious disadvantages for developers are to program
lots of monitoring code manually, it is not fit for
distributed software with large scales and complicated
functions.

In the aspect of monitoring technology based on AOP,
paper [6] applies AOP to running trace monitoring of
software, which can inject into monitoring function of
running behavior when system is running, and provide
quantization evidences for system failure diagnosis. The
monitoring logic and business logic are separate and
loosely-coupled, which is convenient to construct a
monitoring system whose scale can continuously increase
to satisfy new demands.

The reflection middleware provides supports for
monitoring system. DynamicTAO [7] is reflection
CORBA software based on ORB reflection mechanism,
which can monitor interactive information of distributed
middleware based on CORBA.

Obvious disadvantages of above researches about
software monitoring are as follows: 1) Above researches
lack effective supports for IBs monitoring among entities.
Some of them support the monitoring for IBs of
components, but their monitoring granularity is too large
to provide detailed IBs information. 2) Most of these
researches only pay attention to monitoring themselves,
and lack enough monitoring for business logic of
software system. Furthermore, they mostly pay attention
to unilateral trust of software themselves, such as the
monitoring for availability, reliability and security. For

362 JOURNAL OF SOFTWARE, VOL. 5, NO. 4, APRIL 2010

© 2010 ACADEMY PUBLISHER

IBs monitoring of distributed software, we should pay
more attention to the monitoring related to business logic
except the monitoring of software themselves. 3) Most
researches do not provide a set of favorable monitoring
mechanism, and their monitoring logic and business logic
are closely-coupled. These methods need to modify
source codes and increase programming burden, and do
not support to open or close monitoring mechanism when
target system is running, are not suitable for IBs
monitoring of distributed software with large scale and
dynamic change. 4) Most of existing researches do not
consider the characteristic of dynamic change of
distributed network environments, lack effective
collection and storage mechanism of monitoring
information, which lead to heavy monitoring load and
low monitoring efficiency.

B. Software Behavior Analyzing Technology
Paper [8] defines the concept of software behavior

trust that IBs and results of entity elements can be
predicted and controlled at running time, namely,
behavior states can be monitored, behavior process can be
analyzed, behavior results can be evaluated and predicted
and exceptional behaviors can be controlled. Software
behavior analyzing and predicting are very important
parts of software creditability analysis. In this aspect,
many researchers have had beneficial exploration.

Some people predicted software subsequent behaviors
by referring historical behaviors. Based on past behavior
patterns, Nielsen et al. computed maximum expectation
of future software behaviors [9]. Mello et al. used neural
network to analyze and predict the behaviors of
application [10]. Bouguila et al. used statistical method of
BNs to analyze and predict application accessing contents
[11]. Above predicting methods have definite restriction,
do not adapt to open, dynamic and complicated
distributed software environment.

Some researchers analyzed and predicted behavior
trust of entities with the models that were defined in
advance. For example, Tian et al. used BNs to predict
user behavior trust, their method might predict qualitative
rating of behavior trust under multi-attribute [12]. Peng et
al. presented a kind of distributed trust mechanism, based
on bargaining history and iteration method, which could
compute global buying and selling reputation of every
node [13]. In open and dynamic distributed software
environment, loosely-coupled interactive entities may be
strange for each other, or the entities which ever have
interacted may have new interaction in new scenario,
numbers of interacting entities cannot be known in
advance, the evidences gained from different scenarios
are likely to be different. Above models are already fixed
before behavior analysis and prediction, which are not
suitable for open, dynamic and complicated distributed
software environments.

Most of above models or methods adapt to
conventional distributed software system. Though a few
researches discuss the problems of software trust in
current ones, they do not present perfect solution to
running time behavior monitoring and analyzing. New
software environments are faced with new problems, and

a novel method should be presented to solve them. In my
opinion, by fusing monitoring information with historical
data, MEBN tool is used to construct behavior analyzing
and predicting model for specific scenario, Multi-Entity
Decision Graphs (MEDGs) are used to effectively
analyze IBs, which provides solid foundation for whole
management and flexible adjustment of distributed
software.

III. INTERACTIVE BEHAVIOR ONLINE MONITORING

For having right understanding for IBs, the definition
of software behavior is presented. Software behavior is
the sequence composed of Interactive Events (IEs), an IE
is for subject to employ a service to an object, which is
represented with formula: Event = { e = S: f (O) | S:
Subjects, f: Functions, O: Objects}. Here, e represents an
event, S represents a subject, f represents a service, O
represents an object. An event is composed of three
elements: subject, object and employed service. For two
events, if one of these three elements is different, two
events are different.

In distributed components software, when a component
as a subject accomplishes a certain functions, it needs to
interact with other components by interface, which is
defined as IEs of component. IEs of component can be
understood as follows: behavior subject and object are all
components of system. That the subject employs a service
to an object means that a component provides service or
send request to another component. For the interaction
between two components, it reflects in their inner state
transition from inner behavior view, and reflects in a
series of call between them from external behavior view.

The IBs of components are divided into functional and
non-functional IBs: 1) Functional IB is interactive
activity between components to accomplish a certain
function, which is related with business logic; 2) Non-
functional IB is interactive activity between components
to accomplish a certain non-functional property, which is
not related with business logic, and involves log record,
transaction processing and performance optimization.

A. Monitoring Target of IBs
According to different IBs monitoring types of

components, the system can monitor different types of
data. Basic information monitoring of IBs is to acquire
data included in IEs and thread and performance
information related with IEs execution. For the
monitoring of validity, security, reliability, availability
and timeliness, related data can be acquired from
corresponding measure formulas. The system may
selectively monitor IBs we are interested in according to
different application scenarios.

B. Monitoring Requirement Management Framework
Monitoring requirement is to guide and confirm

monitoring agent how to monitor business rules of IBs
according to user intention and running environment
change, which is the basis of system monitoring. The
object of monitoring requirement management to ensure
business rules to be conformed to, and supports dynamic

JOURNAL OF SOFTWARE, VOL. 5, NO. 4, APRIL 2010 363

© 2010 ACADEMY PUBLISHER

http://dj.iciba.com/exploration/
http://dj.iciba.com/reflected/
http://dj.iciba.com/in/
http://dj.iciba.com/reflected/
http://dj.iciba.com/in/

configuration, autonomous regulation and automatic
deployment of business logic. Monitoring requirement

management is a very important part of monitoring center
module, its basic framework is showed in figure 1.

GUI

Monitoring
requirement

customization
component

Monitoring
requirement
deployment
component

Running
system

Monitoring
requirement

analysis
component

Monitoring
requirement
regulation
component

Monitoring requirement
configuration information

Monitoring
requirement XML

 description file

Monitor

Monitoring
system

Analyzing
results

Analyzing results

Component
reflector

The third party component list

Monitoring
target

Monitoring requirement
regulation information

Figure 1. Monitoring requirement management framework

In figure 1, monitoring requirement management
framework includes component reflector, monitoring
requirement customization component, monitoring
requirement deployment component, monitoring
requirement regulation component and monitoring
requirement analysis component. The management
process of monitoring requirement is illustrated as
follows: 1) According to the third party component list of
target system, component reflector is used to extract inner
structure information of the third party component and
uncover monitoring target, which is convenient to
configure and regulate monitoring requirement. 2)
Manager may dynamically configure monitoring
requirement, customize monitoring target and acquire
monitoring configuration information by GUI in the
running process of target system. 3) Monitoring
requirement customization component uses XML file to
store monitoring requirement configuration information
and generate monitoring requirement description file. 4)
Monitoring requirement deployment component parses
monitoring requirement description file (XML), and
automatically generates monitor with the help of code
template. Monitor is dynamically deployed to
corresponding node of target system, it can monitor IBs
of components, collect the information of IEs, and store
them into repository. Monitoring requirement analysis
component takes charge of analyzing and processing
these information. 5) Monitoring requirement regulation
component autonomously regulates monitoring
requirement according to analyzing results, generates
regulation information of monitoring requirement, and
transmits monitoring requirement to customization
component. 6) Manager may dynamically reconfigure
monitoring requirement by GUI according to analyzing
results.

C. Monitoring information storage
Monitoring information storage mechanism solves the

problem of which format and where IBs information of
components collected is stored. The IBs information
captured by monitors is often discrete and fragmenting,
they should be organized according to standard and
consistent IBs trace format before they are stored.

In order to accurately understand IBs trace, software
behavior trace is defined: the events that the same subject
produces within an observation interval are ordered
according to occurrence time and recorded as event
sequence. Software behavior trace is represented with
formula: EventTrace = (∂ = S: | S: Subjects, e1,

e2, … , en: Event), here,
1 2e e ... ne

∂ represents a behavior trace, S
represents a subject, represents a string

composed of events . The sequence of the
string represents the sequence that events occur. Events
are recorded as string according to occurrence time,
which is software behavior trace. Conforming to this
definition, component IBs trace is defined: interactive
actions that the same component occurs within an
observation interval are ordered according to occurrence
time and recorded as event sequence. The format of
component IBs trace is showed in figure 2.

1 2e e ... ne

1 2e , e ,..., en

Interaction
Event ID

Time
Stamp Monitor Type Monitor Data

Basic Monitoring
Valid Monitoring
Safe Monitoring
Reliable Monitoring
Available Monitoring
Timely Monitoring

Basic Monitor
Data Valid Monitor Data

Num of Total
Interaction

Num of Successful
Interaction

Num of Failure
Interaction

… other

Figure 2. The format of component IBs trace

From figure 2, we know that component IBs trace is
indexed with IEs ID and ordered with Time Stamp,
different IEs monitoring types have different formats of
monitoring data, e.g., monitoring data of IEs basic
information includes event name, event type<request
event or offering event>, sender<component and
interface name that produces event>, receiver<
component and interface name that receives event >,
event input parameter<parameter name, parameter type,
parameter value>, return results<return type, return
value>, start time, end time. Corresponding formalization
representation is {event 1, required event,

364 JOURNAL OF SOFTWARE, VOL. 5, NO. 4, APRIL 2010

© 2010 ACADEMY PUBLISHER

Subject<component 1, interface 1>, Object<component 2,
interface 2>, Event Parameter<param 1, int, 100>, Return
Result<int, 200>, 01/01/2009 00:00:00, 01/01/2009
00:00:01, other}.

In monitoring agent, monitors gain primary IEs
information from monitoring event message sequence,
and then send these information to monitoring event
processor, which organizes these information into
continuous and whole IBs trace, and stores them into
local monitoring information repository.

IV. INTERACTIVE BEHAVIOR ONLINE ANALYSIS

In software creditability computing, the creditability of
interactive entities is computed automatically by fusing
real-time self-experience and pervious experience based
on knowledge, which can objectively and instantaneously
judge whether current interactive entities is trusted. We
present scenario-sensitive method to model complicated
entities and their interactive relationships. If current
scenario is similar to pervious one, then pervious one is
reused; if there is no similar scenario, evidences gained
from monitoring and pervious experience are fused and
“knowledge fragments” are reused to construct behavior
model for this scenario. This new behavior model is
stored into repository and convenient for reuse in similar
scenario.

A. Multi-Entity Bayesian Network
The W3C responded to this limitation with the recently

created Uncertainty Reasoning for the World Wide Web
Incubator group (URW3-XG) [14]. The group’s mission
was to better define the challenge of representing and
reasoning about uncertain information within the World
Wide Web and its related technologies. The use of
probabilistic reasoning enables information systems to
derive benefit from uncertain, incomplete information,
instead of being restricted to complete knowledge alone.
This seems to be a promising prospect for the SW. One of
the most promising approaches to deal with uncertainty in
the SW is BNs, a graphical, flexible means of
parsimoniously expressing joint probability distributions
over many interrelated hypotheses. However, BNs have
some limitations on representational power that restricts
their use for the SW. Amongst these limitations are the
fact that the number of variables has to be known in
advance and the technique’s lack of support for recursion.
In order to address these shortcomings within the context
of the SW, Costa proposed a Bayesian framework to
probabilistic ontologies that provides a basis for
representation and reasoning under uncertainty with the
expressiveness required by SW applications [15]. This
framework is based on the probabilistic ontology
language PR-OWL, which uses MEBN [16] as its
underlying logic. MEBN is a formalism that brings
together the expressiveness of First-Order Logic (FOL)
with BN’s ability to perform plausible reasoning.

MEBN represents the world as comprised of entities
that have attributes and are related to other entities.
Knowledge about the attributes of entities and their
relationships with each other is represented as a

collection of MEBN fragments (MFrags) organized into
MEBN Theories (MTheories). MFrag consists of both a
set of Conditional Probabilistic Tables (CPTs) and FOL
logical constraints that establish their validating
conditions. The number of random variables (RV) is not
fixed in a MEBN model. Instead, RVs are instantiated
dynamically. An MTheory is a set of MFrags that satisfy
certain FOL consistence conditions that guaranty the
existence of a unique Joint Probabilistic Distribution
(JPD) under its RVs. When all RVs are instantiated, all
consistence conditions are satisfied, and all CPTs are
generated, the MEBN yields a Scenario Specific
Bayesian Network (SSBN). An SSBN is a normal BN.
SSBN is stored into repository, which may be reused in
similar scenario. Thus we implement two-stage
knowledge reuse, MFrags are reused in constructing
SSBN, SSBN is reused in analyzing similar scenario.
This is a very important feature of the logic for modeling
complex and intricate scenario.

“Trusted Purchasing Network” online business system
is composed of 14 Mfrags (figure 3). Each of these eleven
MFrags represents the probability information about a
group of their respective RVs. Collectively, the group
implicitly expresses a JPD over truth-values of sets of
FOL sentences. That is, probability distributions are
specified locally over small groups of hypotheses and
composed into globally consistent probability
distributions over sets of hypotheses. MEBN theories
extend ordinary BNs to provide an inner structure for
RVs. RVs in MEBN theories take arguments that refer to
entities in the domain of application. This is because an
MFrag is just a template, in other words, it does not
represent individuals RVs, but a class of RVs. The values
of its states appear only when the MFrag is instantiated.

MTheories includes three kinds of nodes: context node,
input node and resident node. The context nodes are
Boolean variables that represent conditions that have to
be satisfied so that the probabilistic distribution of the
resident nodes applies. Their possible values are: True
(the condition is satisfied), False (the condition is not
satisfied), and Absurd (a condition expression does not
make sense). Input nodes are variables that influence the
probabilistic distribution of its child resident nodes, but
their distributions are defined within their own MFrags.
In other words, in a complete MTheory, every input node
must be a resident node in another MFrag, where its
probabilistic distribution will be defined. Resident nodes
have the local probabilistic distributions defined in that
MFrag, including the probabilistic dependence on its
parent values (that can be input or resident nodes). A
node can have a list of arguments in parenthesis, which
are replaced by unique identifiers of domain entities
when the net is instantiated.

Another advantage of MEBN is to support recursion
when constructing BNs. Its obvious difference with
dynamic BNs is to execute recursion for part nodes,
which decreases complexity of constructing BNs and
improves inference efficiency. Figure 4 is the Mfrag
AddtoCart operation, whose the second parameter is

JOURNAL OF SOFTWARE, VOL. 5, NO. 4, APRIL 2010 365

© 2010 ACADEMY PUBLISHER

orderable, i.e., AddtoCarts(OR123, T1) is computed on condition that AddtoCarts(OR123, T0) is known.

Figure 3. The MTheory of “Trusted Purchasing Network” online business system

ConsumReasonable(mjfok)ConsumerLevel(mjfok) GeneralPrice(GD001)

AddtoCarts(OR123, T1)

AddtoCarts(OR123, T0)

PriceReasonable(OR123)

GeneralPrice(GD003)

AddtoCarts(OR123, T3)

AddtoCarts(OR123, T2)

PriceReasonable(OR123)

GeneralPrice(GD002)PriceReasonable(OR123)

Figure 4. AddtoCarts SSBN with recursion

B. Decision-making and inference
MEDGs extend MEBN logic to support decision

making under uncertainty. MEDGs are related to MEBNs
in the same way influence diagrams are related to BNs. A
MEDG can be applied to any problem that involves
optimal choice from a set of alternatives subject to given
constraints. When a decision MFrag (i.e. one that has
decision and utility nodes) is added to a generative
MTheory, the result is a MEDG.

The MTheory depicted in Figure 3 is a generative
MTheory, which provides prior knowledge that can be
updated upon receipt of evidence represented as finding
MFrags. In a BN model, assessing the impact of new
evidence involves conditioning on the values of evidence
nodes and applying a belief propagation algorithm. When
the algorithm finishes, beliefs of all nodes, including the
node(s) of interest, reflect the impact of all evidence
entered thus far. This process of entering evidence,
updating beliefs, and inspecting the posterior beliefs of
one or more nodes of interest is called belief propagation.
Usually, the belief propagation process is carrying on
answering probabilistic queries. Whereas BNs are static
models that must be changed whenever the situation
changes (e.g. number of buyers, time recursion, etc.), an
MTheory implicitly represents an infinity of possible
scenarios. Figure 5 illustrates the scenario that two

users(users1 and user2) earn reputation for user3 by
deceitful trade, thick arrows represent the process of
decision-making.

MEBN inference begins when a query is posed to
assess the degree of belief in a target RV given a set of
evidence RVs. It is started with a generative MTheory,
add a set of finding MFrags representing problem-
specific information, and specify the target nodes for the
query. The first step in MEBN inference is to construct
the SSBN, which can be seen as an ordinary BN
constructed by creating and combining instances of the
MFrags in the generative MTheory. Next, a standard BN
inference algorithm is applied. Finally, the answer to the
query is obtained by inspecting the posterior probabilities
of the target nodes.

V. DECEITFUL OR FRAUDULENT BEHAVIORS ANALYZING

A. Online monitoring tool
We have developed visual monitoring tool for

monitoring the third part components. Figure 6 is the GUI
of monitoring requirement configuration. Component
reflector is used to extract inner structure information of
components, and these information is showed in GUI of
monitoring requirement configuration, user may
configure monitored targets. Running time IEs
information of monitored targets are saved automatically,
which provide basic data for online analysis of IBs.

B. Deceitful analyzing of AddtoCarts behavior
AddtoCarts IB is composed of several AddtoCarts

events. For ‘PriceReasonable’ of every added goods,
‘ConsumReasonable’ of this user, the creditability of
AddtoCarts IB is computed. Formula (1) is used to
compute ‘PriceReasonable’, formula (2) is used to
compute the creditability of AddtoCarts IB after an
AddtoCarts event. The process of computing posterior
probability of the creditability of IBs with SSBN is the
process of fusing real-time self-experience and pervious
experience based on knowledge.

366 JOURNAL OF SOFTWARE, VOL. 5, NO. 4, APRIL 2010

© 2010 ACADEMY PUBLISHER

TakingAction(Manager)

CollusionAnalysis(User3)

BuyerReviewFair(ORD123)

BuyingHonest(User3)SellerReviewFair(ORD123)

BuyerReviewFair(ORD124)
TradeTrust(user1, user3)

SellerReviewFair(ORD124)

BuyerReviewFair(ORD125)

SellerReviewFair(ORD125)

BuyerReviewFair(ORD234)

SellerReviewFair(ORD234)

BuyerReviewFair(ORD236)

SellerReviewFair(ORD236)

SellingHonest(User3)
BuyingRepuAdding(User3)

SellingRepuAdding(User3)

AddtoBlackList(User3) ContinueMonitor(User3)ForbidTrade(User3)

UserHonest(user3)

TradeTrust(user2, user3)

BuyerReviewFair(ORD235)

SellerReviewFair(ORD235)

Figure 5. The MEDGs of earning reputation by deceitful trade

Figure 6. The GUI of Monitoring requirement Configuration

 |CurrentPrice-GeneralPrice|PriceReasonable =1 - Min(, 1)
GeneralPrice

 (1)

 (2)
AddtoCarts(t) = AddtoCarts(t-1)*W 1 +
 PriceReasonable*W 2 + ConsumReasonable*W 3
W 1+W 2+W 3=1

Figure 7 is the analysis of practical AddtoCarts IBs. In
the process of AddtoCarts, the trust vaule of AddtoCarts
IBs constantly fluctuates. It this value is no less than
threshold, AddtoCarts operation may continue, or else,
the system will send early alarm to user, which may warn
sellers’ reputation or price reasonableness.

Figure 7. The analysis of practical AddtoCarts IBs

We analyze four types of creditability of AddtoCarts
IBs. User1 has good pervious reputation, he has an honest
trade this time; User2 has bad pervious reputation, he has
a deceitful trade this time; User3 has good pervious
reputation, he has a deceitful trade this time; User4 has
bad pervious reputation, he has an honest trade this time.
Trusted threshold is set to 0.5. From figure 8, we can see
that this online analyzing method of IBs can accurately

and instantaneously identify deceitful or fraudulent
behaviors.

Figure 8. Creditability analysis of four types of AddtoCarts IBs

C. The analysis of earning reputation by deceitful trade
 In figure 5, the value of ‘TradeTrust’ is computed

with formula (2). Here, PF is Penalty factor, if user has
continuous dishonest trade, he will be punished, his
TradeTrust value will decrease very quickly.
‘UserHonest’ is computed with formula (4),
‘CollusionAnalysis’ is computed with formula (5).

1

() 4 * (1)
 5* (Re Re) / 2 * (1)

(Re 0.5 and Re 0.5)
4 5 1

n

TradeTrust n W TradeTrust n
W Sell viewFair Buyer view PF
Sell viewFair Buyer view

W W

−

= − +

+ −
≤ ≤

+ =

(3)

6* 7* 8*
 (1) 9*(1)

6 7 8 9 1

UserHonest W BuyingHonest W SellingHonest W
BuyingRepuAdding W SellingRepuAdding

W W W W

= + +
− + −
+ + + =

(4)

10 * (1, 3)

 11* (2, 3) 12*
10 11 12 1

CollusionAnalysis W TradeTrust user user
W TradeTrust user user W UserHonest

W W W

= +
+

+ + =
 (5)

 CollusionAnalysis 0.3
 CollusionAnalysis>0.3

 and CollusionAnalysis<0.7
 CollusionAnalysis 0.7

ForbidTrade
AddtoBlackList

TakingAction

ContinueMonitor

≤⎧
⎪
⎪= ⎨
⎪
⎪ ≥⎩

(6)

Figure 9 shows the collusion analysis for four kinds of
trade process. At first, honest values of Type1 and Type3
are greater than threshold (0.5), there is no collusion to
earn reputation, honest values of Type2 and Type4 are
less than threshold, there are possibly deceitful behaviors
of collusion. The system will send early alarm. With the

JOURNAL OF SOFTWARE, VOL. 5, NO. 4, APRIL 2010 367

© 2010 ACADEMY PUBLISHER

http://dj.iciba.com/fluctuate/
http://dj.iciba.com/warn/

increase of trade number, posterior probability of
collusion analysis is also constantly changing, if their
values are less than threshold, the system will send early
alarm. The system makes decision according to collusion
analysis results. There three kinds of strategies:
ContinueMonitor, AddtoBlackList and ForbidTrade. This
method can execute real-time analysis for collusion in the
process of trade, analyzing results guide system to take
appropriate measure, which guarantees trade to be secure
and reliable by the greatest extent.

Figure 9. Creditability analysis of earning reputation by deceitful trade

VI. CONCLUSION

Open and dynamic distributed software system loosely
aggregates several heterogeneous entities. Entity
elements may enter and leave dynamically, their IBs are
complicated and changeful. How to monitor and analyze
IBs of distributed software is a very important scientific
problem that has academic meaning and application value.
We develop a set of online monitoring software for the
third part components. Using MEBN tool, IBs analyzing
efficiency is improved by reusing large and small
granularity knowledge.

In subsequent research, we will improve the efficiency
of SSBN construction and query; continue consummating
formalization representation of behavior; pay more
attention to solve the problem of inconsistent knowledge
in the process of behavior analysis and inference;
constantly enrich rules and repository to implement
unsupervised monitoring and analyzing for IBs.

ACKNOWLEDGMENT

The financial supports from the national natural
science fund of China under the grant No. 60773110,
post-doctoral science fund of China under the grant No.
20080440216, natural science fund of Hunan province
under the grant No. 09JJ6087 is gratefully acknowledged.

REFERENCES

[1] F.Q. Yang, H. Mei and J. Lv. “Some discussion on the
development of software technology”. Chinese of Journal
Electronics, 2002, vol. 30, No 12, pp. 1901-1906.

[2] H. W. Chen, J. Wang and W. Dong. “Trusted software
model and security evaluation in telecom field with open
network”. Chinese of Journal Electronics, 2003, Vol. 31,
No. 12, pp. 1933-1938.

[3] H. M. Wang, Y. B. Tang and G. Yin. “Trust mechanism of
Internet software”. Science in China Ser. E Information
Sciences, 2006, vol. 36, No. 10, pp. 1156-1169.

[4] P. Herrmann and H. Krumm. “Trust-adapted enforcement
of security policies in distributed component-structured
applications”. Proceedings of the 6th IEEE Symposium on
Computers and Communications, Hammamet, Tunesia,
2001, pp 2-8.

[5] L. Mariani and M. Pezze. “A technique for verifying
component-based software”. Electronic Notes in
Theoretical Computer Science, 2005, vol. 116, No. 19, pp.
17-30.

[6] P. Avgustinov, J. Tibble and E. Bodden. ”Aspect for trace
monitoring - formal approaches to testing systems and
runtime verification”, Seattle, WA, USA, 2006, pp. 20-39.

[7] F. Kon, M. Román and P. Liu. “Monitoring, security, and
dynamic configuration with the dynamicTAO reflective
ORB”. Proceedings of the IFIP International Conference
on Distributed Systems Platforms and Open Distributed
Processing (Middleware'2000), New York, 2000, pp. 121-
143.

[8] C. Lin, L. Q. Tian and Y. Z. Wang, “Research on user
behavior trust in trustworthy network”, Journal of
Computer Research and Development, vol. 12, No.12, Dec.
2008, pp. 2033-2043.

[9] M. Nielsen and K. Krukow, “A Bayesian model for event-
based trust”, Electronic Notes in Theoretical Computer
Science (ENTCS), vol. 172, No.4, 2007, pp. 499-521.

[10] R. Mello, L. Senger, and L. Yang, “Automatic text
classification using an artificial neural network”, High
Performance Computational Science and Engineering, vol.
17, No.9, 2005, pp. 1–21.

[11] N. Bouguila, J. H. Wang and A. B. Hamza. “A Bayesian
approach for software quality prediction. 2008 4th
International IEEE Conference "Intelligent Systems", 2008,
pp. 49-54.

[12] L. Q. Tian and C. Lin. “A kind of game-theoretic control
mechanism of user behavior trust based on prediction in
trustworthy network”. Chinese Journal of Computer. 2007,
vol. 30, No. 11, pp. 1930-1938.

[13] D. S. Peng, C. Lin and W. D. Liu. “A distributed trust
mechanism directly evaluating reputation of nodes”.
Chinese Journal of Software. 2008, vol. 19, No. 4, pp. 946-
955.

[14] K.J. Laskey, K.B. Laskey and P.C.G. Costa. “Uncertainty
reasoning for the world wide web Incubator group charter
(W3C Incubator Activity) (2007)”,
www.w3.org/2005/Incubator/urw3/charter

[15] P.C.G. Costa. “Bayesian semantics for the semantic web”.
PhD thesis, Department of Systems Engineering and
Operational Research, George Mason University, 2005, pp.
60-100

[16] K.B. Laskey. “MEBN: a language for first-order Bayesian
knowledge bases”. Artificial Intelligence, 2007, vol. 172,
No. 2, pp. 172–225

Junfeng Man Born in Suihua, China, on
January, 8, 1976. He received the master
degree in Computer Software and Theory
from Yanshan University in 2003. He is
presently working on his PhD in College
of Information Science and Technology
of Central South University. He is

associate professor in College of Computer and
Communication of Hunan University of Technology. His
research interests include trust software, pervasive
computing. Contact: mjfok@tom.com.

368 JOURNAL OF SOFTWARE, VOL. 5, NO. 4, APRIL 2010

© 2010 ACADEMY PUBLISHER

http://dj.iciba.com/greatest/
mailto:mjfok@tom.com

