
A New Slack Reclaiming Algorithm for Real-time
Systems

Wenzhi Chen
College of Computer Science and Technology, ZheJiang University, HangZhou 310027, China

Email:chenwz@zju.edu.cn

Qingsong Shi, Weifang Hu, Wei Hu and Sha Liu
College of Computer Science and Technology, ZheJiang University, HangZhou 310027, China

Email:{zjsqs, huwf, huwei,liusha}@zju.edu.cn

Abstract: Real-time applications are ubiquitous in general-
purpose computing environments, while the real-time systems
are growing in complexity. Thus in these hybrid real-time
systems, schedulers must guarantee that all hard real-time jobs
be completed before their deadlines and improve QoS of soft
real-time tasks as much as possible. Towards this goal we have
proposed a new slack reclaiming algorithm for server-based
real-time systems, and have also implemented it in a real time
emulator (RTSIM). This algorithm, named HBASH, which
enhances the Constant Bandwidth Server (CBS) by slack
reclaiming, allocates slack generated from the running process
to the task that needs the slack most, and then this selected task
will be scheduled immediately. Hence the algorithm is able to
make full use of slack and reduce the response time of soft real-
time tasks as much as possible. In this paper, we proved that our
algorithm does not violate the schedulability of tasks, and we
also evaluated the performance of this algorithm. The
experimental results demonstrate that HBASH outperforms
other slack reclaiming algorithms and improves soft real-time
performance significantly.

Index Terms: server-based; scheduling algorithm; slack reclaiming

I. INTRODUCTION

Modern operating systems always support applications
with a variety of timing constraints including hard real-
time, soft real-time and best-effort. In recent years, to
guarantee performance, many researchers have proposed
some effective solutions. For example, the hierarchical
HLS scheduler [1], the integrated RBED scheduler [12], and
two-level hierarchical scheme [3], server-based schedule,
etc. And the server-based scheduling algorithm is
becoming a hot subject of research. A server is similar to
a virtual processor with a certain speed, and is dispatched
by scheduler in EDF (Earliest Deadline First) [2]. Every
real-time task is served by a dedicated server. Common
server-based algorithms include CUS(Constant

Utilization Server)[3],TBS(Total Bandwidth Server)[4]、
CBS(Constant Bandwidth Server)[5], etc. From the
perspective of system utilization, CUS and TBS are able
to isolate logical irrelevant applications, and solve
scheduling problem with coexistence of periodic and
sporadic real-time task. But we must provide task’s
precise running parameters for these algorithms, which
makes them not suitable for soft real-time tasks, such as
multimedia tasks. CBS algorithm, raised by L. ABni in
1998, doesn’t need to know task’s precise parameters. So
that it is more suitable for soft and aperiodic real-time
tasks. In addition, the algorithm recharges the server
immediately when the server exhausts its budget,
therefore it is able to reduce the average delay as much as
possible.

In CBS algorithm, when a task budget is less than its
execution time, it may be delayed for a long time. On the
contrary, the system will waste a lot of budget if without
reclaiming. Recent researches have begun to address this
problem, raising some slack reclaiming algorithms
including IRIS[9], GRUB[8], CASH[6], BASH[7], etc. IRIS
enhances CBS with fairer slack reclaiming, but it is
unable to recharge the server immediately when server
exhausts budget[13]. Slack is not reclaimed until all
current jobs have been serviced and the system will
otherwise be idle[14]. GRUB is a CBS-like algorithm that
dynamically allocates excessive capacity to active servers,
but these dynamic operations will cause a large overhead.
CASH extends CBS with slack reclaiming algorithm[15].
When a server becomes idle with residual budget, the
slack is inserted to the cash queue ordered by deadline.
Whenever a new server is scheduled for execution, it will
firstly use any queued budget whose deadline is less than
or equal to its own. CASH has the shortcoming: the extra
budget is only allocated to the earliest deadline task, and
it will be unfair to the other tasks which may have more
needs of the slack. BASH enhanced CASH, in which it
operates better; however, it also has the same drawback.

This paper is based on “Introduction to Reform on the Course of
Fundamental Logic and Computer Design” by Qingsong Shi, Wei Hu,
Sha Liu, Tianzhou Chen, Which appeared in the Workshop of the 9th
International Conference for Young Computer Scientists(ICYCS
2008), The First International Workshop on Computer System
Education and Innovation(IWCSEI 2008), p2528-2532, Zhang Jia Jie,
Hunan, China, November 18-21, 2008.

This research was supported in part by National Foundation Research
Project No.A1420080190 and No.9140A15040309JW0402

A new slack reclaiming algorithm based on CBS is
proposed in this article. The algorithm will allocate slack
to the task with earliest virtual deadline, not always the
task with the earliest deadline, and it will schedule the
task which has got the slack immediately. Experiments
have proved that the algorithm can guarantee that all of
hard real-time jobs be completed before their deadlines

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1045

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.10.1045-1052

and reduce the average latency of soft real-time tasks as
much as possible.

The rest of the paper is organized as follows: Section 2
specifies our notation, definition and basic assumptions.
Section 3 describes our scheduling algorithm in detail and
analyzes the algorithm. Section 4 illustrates some
experimental results achieved on a real-time simulator
(RTSIM). Section 5 contains our conclusions and future
work.

II. TERMINOLOGY AND ASSUMPTIONS

A. Task Module
Generally, we identify a specific application in real-

time system as task, such as displaying a video clip. Each
task consists of a sequence of jobs, for example,
displaying video requires decompressing frame data, and
decompressing each frame can be seen as a job of the task.
We consider that a system is composed of three types of
task: hard, soft, and best-effort task.

A task Ti iis characterized by the parameters (Ci，
Pi ，Di), where Ci represents worst case execution time
(WCET) for hard real-time tasks, otherwise, mean
execution time for soft real-time tasks, Pi is the minimum
inter-arrival time for successive jobs, and Di is the
relative deadline for the task.

The jth job of the task Ti is Ji,j , characterized by the
parameters (ri,j ，ei,j ，di,j)，ri,j represents the release
time for the job , ei,j represents the execution time for job,
and di,j represents the relative deadline for job.

B. Server Module
Each server is associated to a task and is characterized

by pair（Bi ，Pi）, where Pi is the period of the server,
Bi is the budget of the server. For hard real-time task, Bi
is set to the task's WCET, and Pi is set to task's period.
For soft real-time task, Bi is set to the task's mean
execution time, and Pi is set to task's expect period. Both
the relative deadline dk (k represents the number of
server’s recharging times) and the current budget q are
associated with the server at each instant. When the
server is recharged, q is set to max budget (q = B), and
its deadline is increased (dk+1 = dk + P).

The bandwidth for the server Si is Ui (Ui = Bi/Pi), and
the total bandwidth of all servers can't exceed 1, i.e.

 ≤ 1.
1

n

i
i

U
=
∑

Each server can be in one of the following states:
1. idle: the served task has no pending job.
2. ready: the server is ready to execute, waiting for

being scheduled.
3. executing: the server is now being scheduled ,and

the served task is running.

III. HBASH ALGORITHM

In this section, we will introduce this algorithm in
detail. The algorithm includes two parts: one is the global
scheduling algorithm, the other is the slack reclaiming
algorithm. In running process, when the server has extra
budget, the latter algorithm will be called by the former.
In this algorithm, the slack will be allocated to the task
which demands it most. When a task gets the slack, it will
be scheduled immediately. Firstly we introduce the
related parameters of this algorithm, and then describe the
algorithm in detail. At last, we will give the analysis and
the theoretical proof for this algorithm.

A. Related parameters
1)

2)

1)

Vdeadline
Vdeadline (virtual deadline) represents the original

deadline for the task. When Ji,j is started to run, we set
the task’s Vdeadline to the server’s dk. While a server’s
deadline may be extended upon expiration, Vdeadline
remains unchanged until the job completes. Earliest
Virtual Deadline First (EVDF) is used to select server to
get the slack, and orders servers by Vdeadline. In EVDF,
the earlier the Vdeadline, the higher priority the server
will get.

 global_slack
When no server is selected by EVDF, which means

that system is in idle state. We identify the residual
budget as global_slack which will be given to the next
earliest running server. If the idle time interval of the
system is greater than global_slack, global_slack is set to
0, otherwise, global_slack subtracts the interval.

B. HBASH algorithm
Global Algorithm

The global algorithm is described as follows:
1. while the system is running,
2. when a new task arrives , a new server is created for

the task and its parameters (B, P) are initialized as
described in section 2.2 . At the beginning, the server
state is set to idle, d0 =0 , q = B, and q is decreased while
the served task is running.

3. When a new job arrives at time t, we insert the job
into the server’s waiting queue.

If the server is idle
(a) if t >dk - q*P/B, then recharge the server. (q=

B ;dk= max(t , dk-1)+P ;)
(b) otherwise, use the remaining time. q and dk remain

unchanged.
Vdeadline is set to the deadline dk of the server. The

server is set to ready
4. The ready server with the earliest deadline becomes

executing. If there is no ready or executing server, the
system becomes idle. Otherwise, if there is global slack
time, we allocate it to the server (q = q + global_slack;
global_slack =0;)

5. An executing server will not stop executing its
pending jobs on the CPU until it has finished its jobs or

1046 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

consumed its budget and decreases its budget q by the
actual amount of CPU consumed.

(a) If it has consumed its budget, the server is
recharged with full budget q = B, and its deadline is
incremented dk+1 = dk + P

(b) If it has no pending task,
 if vdeadline <dⅰ k, the server is set to idle. Goto step

4
 otherwise, goto ⅱ Slack Reclaiming algorithm ,

donates any remaining budget q to the task of another
server with the earliest virtual deadline (instead of earliest
deadline). Vdeadline is set to dk + P, and the server is set
to idle. Goto step 4.

6. end of while
2)

3)

4)

Slack Reclaiming algorithm
The variable slacktime describes the extra budget

generated in running process, and slack reclaiming
algorithm is as follows:

begin
1. if slacktime is greater than 0 , select a server Si in

EVDF.
2. if no server Si is selected, we add the slacktime to

global_slack (global_slack = slacktime; slacktime = 0;).
3. If Si is in ready state, we allocate slacktime to it, and

schedule it immediately. Otherwise goto step 5.
4. Si does not stop executing its pending job on the

CPU until it has finished its job or consumed the
slacktime and decrease slacktime by the actual amount of
CPU consumed.

(a) if Si have completed the job , goto step 1.
(b) if slacktime is equal to 0, Si stops running and is set

to ready . Return to global algorithm
5. if Si is in idle state and q <B and q!=0, slacktime is

used to make up the server’s budget time until q to the
max budget B, goto step 1

end
Algorithm Analysis

In this algorithm, hard real-time task, as its execution
time is no more than its budget, won’t postpone deadline.
Moreover, it maybe yield slack. Soft real-time task, as its
execution time may be more than its budget, may delay
deadline, i.e. Vdeadline is less than deadline.

In terms of the EVDF, slack may be allocated to three
kinds of server as follows:

(1) The server whose Vdeadline is less than deadline.
According to the above analysis, we can see that the
server serves a soft real-time task. If this task can be
completed within the slack time, which can avoid task
delaying, and improve its quality of service. Otherwise,
the task demands less running time than before, hence it
can be completed as soon as possible.

(2) The server whose Vdeadline is equal to deadline,
and the server is idle. According to the above analysis,
we can see that the server serves a soft real-time task too.
Then the slack will be used to make up the budget of the
server until server’s budget reaches maximum budget B,

which can decrease the possibility of task’s postponing
deadline.

(3) The server whose Vdeadline is equal to deadline,
and the server is ready. Now it allocates slack to the
earliest deadline task the same as BASH algorithm, and it
doesn’t influence other tasks.

From the analysis, we know that the algorithm doesn’t
allocate slack to the task which has earliest deadline, but
to the task which have more need of the slack, i.e. the
task which should be completed earlier. In addition, the
task which gets the slack will be scheduled immediately.
As the two advantages, the algorithm can improve the
soft real-time performance.

Theoretical Validation
In this section, we analyze the schedulability condition

for a hybrid task set consisting of hard periodic and soft
tasks.

Each task is scheduled using a dedicated server. If each
hard periodic task is scheduled by a server with
maximum budget equal to the task WCET and with
period equal to the task period , it behaves like a standard
hard task scheduled by EDF. The difference is that each
task can gain and use extra budget and yield its residual
budget to other tasks. The new algorithm HBASH is able
to improve the average responsiveness of soft tasks by
performing slack reclaiming .The runtime exchange
performed by HBASH, however, does not affect
schedulability. The periodic task set can be guaranteed
using the classical Liu C L and Layland J W condition[2]:

1

1
n

i
i

u
=

≤∑ . Each server is similar to a special periodic

task in system, and is scheduled by EDF. The total
bandwidth of all servers is no more than 1.

i.e. . (B is the maximum server budget and P

is the server period). So it satisfies the schedulability
condition, and the slack reclaiming algorithm does not
affect the schedulability.

A. A case for study
To understand the proposed approach better, we will

describe a simple example which shows how our
reclaiming algorithm works, and compare new algorithm
with BASH algorithm which is another reclaiming
algorithm.

Consider a task set consisting of three periodic tasks,
taskA, taskB, taskC, and their tasks parameters and server
parameters are given in the Table 1. Cavg is the average
execution time of the task. We have implements HBASH
in RTSIM[11]. Fig.1 and Fig.2 are the running charts of
the two algorithms in RTSIM . All tasks running for
100,000 time units, and they release synchronously. The
light marks the deadline miss.

From the running charts, it can be seen that the number
of deadline miss of the new algorithm HBASH is less
than BASH, and the finish time of every instance is no
later than BASH. The average response time of HBAS

1

1
n

i /Pi

i

B
=
∑ ≤

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1047

© 2009 ACADEMY PUBLISHER

Figure 1. HBASH’s running chart

Figure 2. BASH’s running chart

is also shorter than BASH (HBASH is 10.0909, BASH is
11.3636, reduced by about 12%)

We take the first instance of the taskA as an example,
other instances run similarly. At the beginning, taskA
（q=2, d0=8, Vdeadline=d0=8） , taskB (q =3, d0=9,
Vdeadline=d0=9 ） ,and taskC(q = 5, d0 = 12,
Vdeadline=d0=12).

HBASH: At time t=0, taskA is scheduled with earliest
deadline. When taskA consumes the residual budget at
time t = 2, it is recharged with full budget (q=2, d1=
d0+8=16). Now execute taskB, and taskB is completed at

time t = 4 with one extra time unit. In principle of EVDF,

the one time unit is given to the earliest virtual deadline
taskA. TaskA runs at time t = 4, and finishes the job at
time t = 5. At last, execute taskC, and it finishes at time t
= 10.

TABLE I.
TASK SET AND SERVERS PARAMETERS

Task Cavg WCET P

BASH: At time t=0, taskA is scheduled with earliest
deadline. When taskA consumes the residual budget at
time t = 2, it is recharged with full budget (q =2, d1
=d0+8=16). Now execute taskB, and taskB completes at
time t=4 with one extra time unit. In principle of EDF,
the one time unit will be given to taskC with earliest
deadline. TaskC runs at time t = 4, and finishes the job at
time t = 9. Then it will give the extra one time unit to

Server B P

TaskA 2 3 8 Server1 2 8

TaskB 2 3 9 Server2 3 9

TaskC 5 5 12 Server3 5 12

1048 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

taskA. TaskA finishes at time t = 10. But taskA could
have completed earlier.

IV. PERFORMANCE EVALUATION

The HBASH algorithm has been implemented in the
real-time simulator RTSIM to measure the performance.
In this section, we present the experimental results of the
simulations that have been conducted: In particular,
HBASH has been compared with the BASH and CBS
algorithms. We have done two sets of experiment to
investigate the effect of load and period on the
performance of soft-time tasks. The first set shows the
performance as varying the load of the soft real-time
server, and the second shows the performance as the
period of the soft real-time server. The performance of
the algorithms was measured by computing the soft task’s
average response time.

A. Task’s execution time
In all of our experiments, we apply the approach in

paper [10]. The actual execution time c of a task is a
random value drawn from the following distributions:

2

2
()

21 ,0() 2
0, 0 ||

x

e xNW
x x

μ
δ μμ π

μ

−
−⎧

< ≤⎪= ⎨
⎪ ≤ >⎩

（1）

A normal distribution (with mean μ and standard
deviation 0.1σ μ=) except for the values that are non-

positive or greater than . Random values drawn from
this distribution could simulate hard real-time task’s
execution time, and task’s WCET is .

2

2
()

21 ,0() 2
0, 0

x

e xNA
x

μ
δ

μ π

−
−⎧

<⎪= ⎨
⎪ ≤⎩

 （2）

A normal distribution (with mean μ and standard
deviation 0.1σ μ=) except for the values that are non-
positive. Random values drawn from this distribution
could simulate soft real-time task’s execution time, and

task’s mean execution time is .

B. Task’s response time
A task’s response time has been normalized with

respect to the average response time of all the jobs.

RTi= 1
()

n

j j
j

f r

n
=

−∑
（3）

(fj is the finish time of job j, and rj is the release time

of the jth job)
Since we are focusing on the performance of real-time

applications in a mixed environment, we reserve a
minimum of 2% of the CPU for best-effort tasks.

C. Experiments and Results
1) First experiment
The first experiment shows soft real-time performance

as a function of soft-time task’s load. The workload
consists of 1 periodic soft real-time task and 5 hard real-
time tasks. The soft real-time task's parameters are given

in Table 2. We change the two parameters U and ,
while keeping the other parameters fixed. Periods of hard
tasks are chosen to be uniformly distributed in the
interval [100,300], while their computation times are
randomly generated such that their total utilization is
equal to 0.98-Us. Each point in Fig.3 has been computed
over 50 runs, and has duration of 100,000 units of time.
All the tasks release synchronously.

In each discrete point, HBASH outperforms CBS, but
BASH is similar to CBS. It demonstrates that HBASH
performs better than BASH. If the load of the soft real-
time is higher, the load of the hard real-time will be lower,
so that the amount of available slack for reclaiming will
be less. From the Fig3, we know that HBASH still
perform better than other algorithms in the case of few
slack .Because it not only reclaim the slack fully, but also
schedule the task which gets the slack in advance.

2) Second experiment
The second experiment shows soft real-time

performance as a function of soft-time task’s period. The
workload consists of one periodic soft real-time task and5

TABLE II.
TASK AND SERVER‘S PARAMETERS

Task Task

parameters
Server parameters Parameter adjustment

 f() p B = P = p U=B/P △() △(U)

SRT1 NA(20) 200 20 200 10% +4 +2%

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1049

© 2009 ACADEMY PUBLISHER

Figure 3. Average response time as load

hard real-time tasks. The soft real-time task's parameters
are given in Table 3. We change the two parameters p

and , while keeping the other parameters fixed.
Periods of hard tasks are chosen to be uniformly
distributed in the interval [200,600], while their
computation times are randomly generated such that their
total utilization is equal to 0.98-U. Each point in Fig.4 has
been computed over 50 runs, and has duration of 100,000
units of time. All the tasks release synchronously.

From Fig.4, we can see that HBASH is similar to CBS
at first, and when the period is longer, HBASH
outperforms CBS better. But BASH performs no better

than CBS. In terms of EDF, the longer the soft real-time
tasks' period, the lower task’s priority, so that tasks'
response time is longer too. From Fig.4, we know that
HBASH still outperforms other algorithms, and as period
is longer, it performs better.

V. CONCLUSION

This paper presents a new slack reclaiming algorithm
for server-based real-time systems. Not only can it
allocate slack to task more reasonably, but also the task
will be scheduled immediately using greedy method,
which reduces the response time of soft tasks by great

TABLE III.
TASK AND SERVER‘S PARAMETERS

Task Task Parameters Server Parameters Parameter Adjustment

 f() p B = P = p U=B/P △() △(p)

SRT1 NA(50) 100 50 100 50% +20 +40

1050 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

Figure 4. Average response time as period

extent. In order to evaluate the algorithm, we have
implemented it in RTSIM (a real-time simulator).
Experimental results show that the algorithm performs
better than other algorithm, and can improve the
performance of soft real-time task.

Resource sharing has not been taken into consideration
in this algorithm. But in real system, sharing resources is
of great importance. In future, we will add resource
constraints to the algorithm, and apply it in a more
complex environment, such as an open system
environment.

REFERENCES

[1] J.Regehr , J.A.Stankovic. HLS: A framework for

composing soft real-time schedulers. In proceeding of the
22nd IEEE Real-Time Systems Symposium (RTSS 2001),
3-14, Dec. 2001

[2] Liu C L, Layland J W. Scheduling Algorithms for Multi-
Programming in a Hard-Real-Time Environment. Journal
ACM,20(1):46~63,1973

[3] Z.Deng J. W.-S. Liu J.Sun. A scheme for scheduling hard
real-time applications in open system environment. Proc.
Of 9th Euromicro Workshop on Real-Time Systems.
Toledo, Spain: IEEE Computer Society, 1997:191-199

[4] M Spuri, GC Buttazzo. Efficient aperiodic service under
the earliest deadline scheduling. Proc. Of IEEE Real-time
Systems Symposium. San Juan, Puerto Rico: IEEE
Computer Society, 1994:2-11

[5] L.ABni,G.Buttazzo. Integrating multimedia applications in
hard real-time systems. In Proceedings of the 19th IEEE
Real-Time Systems Symposium(RTSS 2004),Dec.2004

[6] M.Caccamo, G.Buttazzo, L.Sha. Capacity sharing for
overrun control. In Proceedings of the 21th IEEE Real-
Time Systems Symposium(RTSS 2000),295-304,Dec.2000

[7] M.Caccamo, G.Buttazzo, D.C.Thomas. Efficient
reclaiming in reservation-based real-time systems with
variable execution times. IEEE Transactions on
Computers,54(2):198-213,Feb.2005

[8] G.Lipari and S. Baruah. Greedy reclaimation of unused
bandwidth in constant-bandwidth servers. In Proceedings
of the 12th Euromicro Conference on Real-Time
Systems,193-200,June 2000

[9] L.Marzario, G.Lipari, P.Balbastre, A.Crespo. IRIS: A new
reclaiming algorithm for server-based real-time systems. In
10th IEEE Real-time and Embedded Technology and
applications Symposium(RTAS04), May 2004

[10] Caixue Lin, Scott A. Brandt: Improving Soft Real-Time
Performance through Better Slack Reclaiming. RTSS 2005:
410-421

[11] http://rtsim.sssup.it/
[12] S.A.Brandt, S.Banachowski, C.Lin, and T.Bisson.

Dynamic integrated scheduling of hard real-time, soft real-
time and non-real-time processes. In Proceedings of the
24th IEEE Real-Time Systems Symposium(RTSS
2003):396-407

[13] Amotz Bar-Noy, Sudipto Guha, Yoav Katz, Joseph Naor,
Baruch Schieber and Hadas Shachnai. Throughput
maximization of real-time scheduling with batching. ACM
Transactions on Algorithms(TALG), 5(2),2009

[14] Rajeev Alur and Gera Weiss. RTComposer: a framework
for real-time components with scheduling interfaces. In
Proceedings of the 8th ACM international conference on
Embedded software(2008):159-168.

[15] Rodolfo Pellizzoni and Marco Caccamo. M-CASH: A real-
time resource reclaiming algorithm for multiprocessor
platforms. Real-Time Systems ,Springer Netherlands,
40(1), 2008:117-147.

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009 1051

© 2009 ACADEMY PUBLISHER

WenZhi Chen was born in 1969. He got his PhD’s degree of
computer science from College of Computer Science and
Technology, Zhejiang University, Hangzhou City, China.

He is a associate professor in College of Computer Science
and Technology, Zhejiang University. His current research
interests include: embedded real-time systems, distributed
computing and virtualization technology.

Qingsong Shi He works as a associate professor in College
of Computer Science and technology, Zhejiang University. His
current research interests include: embedded systems and
distributed computing.

Weifang Hu is a graduate student in College of Computer
Science and technology, Zhejiang University. Her current
research interest is embedded real-time systems.

Wei Hu is a post- PH.D. in College of Computer Science and
technology, Zhejiang University. His current research interest is
embedded real-time systems.

Sha Liu is a graduate student in College of Computer
Science and technology, Zhejiang University. His current
research interest is embedded real-time systems.

1052 JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009

© 2009 ACADEMY PUBLISHER

