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Abstract—A new microcalcification clusters (MCs) detection 
method in mammograms is proposed, which is based on a 
new ensemble learning method. In this paper, we propose a 
bagging with adaptive cost adjustment ensemble algorithm; 
and a new ensemble strategy, called boosting with relevance 
feedback, by embedding the relevance feedback technique 
into the heterogenous base learner training, and meanwhile 
carefully design an effectively systematical feedback scheme, 
which promise the preventing of overfitting. The ground 
truth of MCs is assumed to be known as a priori. In our 
algorithm, each MCs is enhanced by a well designed high-
pass filter. Then the 116 dimentional image features are 
extracted by the feature extractor and fed to the ensemble 
decision model. In image feature domain, the MCs detection 
procedure is formulated as a supervised learning and 
classification problem, and the trained ensemble model is 
used as a classifier to decide the presence of MCs or not. 
Case study on microcalcification clusters detection for 
breast cancer diagnosis illustrates that the proposed 
algorithm is not only effective but also efficiency. 
 
Index Terms—feature, microcalcification clusters, bagging, 
bootstrap, boosting, ensemble learning 
 

I.  INTRODUCTION 

Breast cancer is the most common cancer in women. 
Mammogram is, at present, one of the most suitable 
methods for early detection of breast cancer. One of the 
important early signs of breast cancer is the appearance of 
microcalcification clusters (MCs) in mammogram. 
Calcifications in mammograms appears as relatively 
bright regions due to the higher X-ray attention 
coefficient (or density) of calcium as compared with 
normal breast tissue. Calcifications present within dense 
masses or superimposed by dense tissues in the process of 
acquisition of mammograms could present low gray-level 
differences or contrast with respect to their local 
background. On the other hand, calcifications present 
against a background of fat or low-density tissue would 
possess higher differences and contraset. Malignant 
calcifications tend to be numerous, clustered, small, 
varying in size and shape, angular, irregularly shaped, 
and branching in orientation. On the other hand, 
calcifications associated with benign diseases are 

generally larger, more rounded, smaller in number, more 
diffusely, and more homogeneous in size and shape.  

Because of the importance in early breast cancer 
diagnosis, accurate detection of MCs has become a key 
problem. The detection and classification of 
microcalcification clusters has been extensively studied, 
with many authors reporting on several successful 
approaches to this task. A thorough review of various 
methods for MCs detection was made in [1]. Considered 
MCs detection as a classification problem, various 
classification methodologies have been proposed for the 
characterization of MCs, such as, fuzzy rule-based 
systems [2], [3-8] , [9-16], etc. 

Most of the above methods are single models, which 
achieve the final decision task after training with the 
training samples. They can do well in some special cases, 
but, the result of classification accuracy is not good either 
when we change the features as inputs for classification 
sometimes. Ensemble learning techniques [17] have 
demonstrated powerful capacities to improve upon 
classification accuracy of a base learning algorithm. 
Ensemble methods are typically composed of multiple 
methods comprising different classification strategies or 
different classifiers with a unified objective function. The 
final predictions are chosen from the ensemble of 
methods by a learning rule. To improve the ensemble 
performance, in this paper a new ensemble algorithm, 
bagging with relative-feedback and adaptive cost 
(bracing), is proposed in this paper. By iteratively 
changing the training dataset with the relative feedback 
samples from the previous test procedure and the weights 
of the base learner, bracing is able to focus on the nearest 
error or true samples that the current base learning 
algorithm barely predicts right or wrong, on the other 
hand, our method attempts to pick a subset of classifiers 
from an existing ensemble to improve the effectiveness 
and efficiency of the ensemble. 

To get a good performance of the available MCs 
detection algorithms, bracing are employed as a final 
decision model to distinguish the MCs from the other 
ROIs (region of interests). In the experiments, a database 
of more than 100 case clinical mammograms from 
DDSM is selected as test bed. Three subsets are randomly 
chosen from test bed, the first one is used for training, the 
other for validation and another for testing. Compared 
with other existing methods, the proposed approach 
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yields superior performance when evaluated using 
receiver operating characteristic (ROC) curves.  

The rest of the paper is organized as follows. Image 
features and extraction method used in our paper is 
introduced in Section II. The proposed ensemble learning 
method with bracing is formulated in Section III. The 
MCs detection approach with bracing ensemble learning 
is proposed in section IV.  Performance evaluation study 
and database used in the proposed approach are described 
in Section V, and the experimental results are given in 
Section VI. Finally, conclusions are drawn in Section VII. 

II. FEATURE EXTRACTION 

To get the best feature or combination of features and 
get the high classification rate for MCs classification is 
one of main aims of the proposed research.In our task, a 
set of 116 features, shown in Table I, is calculated for 
each suspicious area from the textural, spatial and 
transform domains in our research. 

TABLE I.   
IMAGE FEATURES USED IN OUR EXPERIMENTS 

Feature groups Type  #No. 

Histogram based 
texture features 

Mean 1 
Standard deviation 2 
Smoothness 3 
Third moment 4 
Uniformity 5 
Entropy 6 

Multi-scale 
histogram 
features  

Histograms with different 
number of bins 3,5,7,9 7~30(total 24) 

Zernike Moments 
Features[18] Zernike Moments 31~66 (total 36) 

Tamura texture 
signatures[19] Tamura features 67~72 (total 6) 

Chebyshev 
transform 
histogram feature 

Chebyshev histogram 73~104 (total 32) 

Radon Transform 
Features Radon features 105~116 (total 12) 

 
Before training the classifier, we use the feature 

extractor discussed in Table 1 to extract MCs features in 
the feature domain. The 116-dimension feature vector 
will be calculated for each image block. When we get the 
image feature vector, feature normalization program 
should be user for normalizing the features to be real 
numbers in the range of 0-1. The normalization is 
accomplished by the following step: (1) change all the 
features to be positive by adding the magnitude of the 
largest minus value of this feature times 1.012, (2) divided 
by the maximum value of the same feature. The 
normalized features are used as the inputs of the proposed 
ensemble learning algorithm for training and 
classification. 
 

(1) Intensity histogram based texture feature 
A frequently used approach for texture analysis is 

based on statistical properties of the intensity histogram. 
One class of such measures is based on statistical 

moments. The expression for the nth moment about the 
mean is given by  

1

0
( ) ( )L n

n i ii
z m p zµ −

=
= −∑                                (1) 

where iz is a random variable indicating intensity, ( )p z is 
the histogram of the intensity levels in a region, L is the 
number of possible intensity levels, and 

1

0
( )L

i ii
m z p z−

=
= ∑                                           (2) 

is the mean(average)intensity. Table II lists the 
descriptors used in our experiments based on statistical 
moments and also on uniformity and entropy.  

TABLE II.   
DESCRIPTORS OF THE TEXTURE BASED ON THE INTENSITY HISTOGRAM 

OF A REGION 

Moment Formula #No. 
Mean 1

0
( )L

i ii
m z p z−

=
= ∑  1 

Standard 
deviation 

2
2 ( )zσ µ σ= =  2 

Smoothness 21 1/(1 )R σ= − +  3 
Third moment 1 3

3 0
( ) ( )L

i ii
z m p zµ −

=
= −∑  4 

Uniformity 1 2
0

( )L
ii

U p z−

=
= ∑  5 

Entropy 1
20

( ) log ( )L
i ii

e p z p z−

=
= −∑  6 

 
(2) Multiscale intensity histograms 
We compute signatures based on "multi-scale 

histograms" idea. Idea of multi-scale histogram comes 
from the belief of a unique representation of an image 
through infinite series of histograms with sequentially 
increasing number of bins. Here we used 4 histograms 
with number of bins being 3,5,7,9 to calculate the image 
feature, so we get a 1*24 row vectors. 

(3) Zernike moments 
We use derived moments based on alternative complex 

polynomial functions, know as Zernike polynomials[18]. 
They form a complete orthogonal set over the interior of 
the unit circle 2 2 1x y+ =  and are defined as 

2 2 1
( 1) / ( , ) ( , ) ,pq x y

Z p f x y V dxdyπ ρ θ
+ ≤

= + ∫                      (3) 

( , ) ( , ) ( ) exp( ),pq pq pqV x y V R jqρ θ ρ θ= =                         (4) 

( ) / 2 2

0

( 1) [( )!]( ) ,
! ! !

2 2

p q s p s

pq
s

p sR
p q p q

s s s

ρρ
− −

=
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=
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⎝ ⎠ ⎝ ⎠

∑                   (5) 

where p  is a nonnegative integer, q  is an integer subject 
to the constraint p q even− =  and q p≤ , 2 2x yρ = +  
is the radius from ( , )x y  to the image centroid, 

1tan ( / )y xθ −=  is the angle between ρ  and x-axis. The 
Zernike moment pqZ is order p  with repetition q . For a 
digital image, the respective Zernike moments are 
computed as 

2 2( 1) / ( , ) ( , ) , 1,pq i i
i

Z p f x y V dxdy x yπ ρ θ= + + ≤∑      (6) 
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where i  runs over all the image pixels. Zernike 
moments are used as the feature extractor where by the 
order is varied to achieve the optimal classification 
performance. 

(4) Combined first four moment features 
Signatures on the basis of first four moments (also 

known as mean, std, skewness, kurtosis) for data 
generated by vertical, horizontal, diagonal and alternative 
diagonal 'combs'. Each column of the comb results in 4 
scalars [mean, std, skewness, kurtosis], we have as many 
of those [...] as 20. So, 20 go to a 3-bin histogram, 
producing 1x48 vectors. 

(5) Tamura texture signatures 
Tamura et al. [19] took the approach of devising 

texture features that correspond to human visual 
perception. Six textural features: coarseness, contrast, 
directionality, line-likeness, regularity and roughness, are 
defined for the image feature for object recognition. 

(6) Transform domains feature 
We computes signatures (32 bins histogram) from 
coefficients of 2D Chebyshev transform (10th order is 
used in our experiments) [20]. Also we used signatures 
based on the Radon transform as a kind of image features. 
Radon transform is the projection of the image intensity 
along a radial line (at a specified orientation angle), total 
4 orientations are taken. Transformation n/2 vectors (for 
each rotation), go through 3-bin histogram and convolve 
into 1x12 vectors. 

III. BRACING ENSEMBLE LEARNING 

The important issue of ensemble learning is how to 
create a relatively small sized ensemble with a good bias 
and variance trade-off. Currently, many authors use the 
constructive building technology, such as bagging and 
boosting. Although the existing ensemble methods have 
proved to be powerful, each has its own drawbacks. To 
get rid of the drawbacks of previous methods, a new 
ensemble algorithm, bagging with relative-feedback and 
adaptive cost (bracing), is proposed in this paper. 
Suppose we have a set of classifiers { | 1,..., }kL k N=  for 
a two-class problem and a dataset S . S  is composed of 
two subsets, namely A  and B , where each sample in A  
and B  belongs to class +1 and -1, respectively. Each 
classifier kL  will give each sample iX  in the training set 
a classification label k

iy . If k
iy  is classified as class +1 by 

kL , then 1k
iy = and 1k

iy = −  otherwise. The final 
classification decision for the two-category case by the 
ensemble is decided by looking at the sign of the 
weighted average of the output of those single base 
learning algorithm. If this weighted average on a test 
point is positive, this point is classified as class +1 and 
vise versa. Thus the bracing procedure is shown in Fig.2 
and Fig. 3. 

 
 
 
 
 

 
Algorithm:  bracing( S , L , t , fraction , threshold ) 

Input: 
1 1{( , ),..., ( , )}m mS X y X y= , a dataset with m  pair of 

examples and labels; 
{ | 1,..., }kL L k K= = , base learning algorithms; 

Integer t  specifying the number of maximum training 
rounds; 
fraction , fraction of S for training, and 1-fraction for 

validation; 
threshold , threshold of the expected classification 
accuracy. 

Process: 
 

Construct a bracing consisting K  base learners. 
1/ , 1...iw K i K← =  

for {1,..., }i K∈  do 
0accuracy ←  

1 2( , ) randselect( , )i iS S S fraction←   
for {1,..., }j t∈  do 

if( accuracy threshold≥ ) break;  
1( , )

iL i iM train L S← ;  
2( , )

iL itst test M S← ;  

[ , , , ] ( )TP TN FP FN caculate tst← ; 
( ) /( )jaccuracy TP TN TP TN FP FN← + + + + ; 

if ( jaccuracy > accuracy  &&  

jaccuracy < threshold ) 
1 2 1 2( ', ') resel_with_RF( , ,  )i i i iS S tst S S←  

1 1 2 2', 'i i i iS S S S← ←  

jaccuracy accuracy←  

i jw accuracy←  

else if ( jaccuracy > threshold  ) 

break 
end if 

end for 

1
/ , ( 1,..., )K

i k kk
w w w k K

=
← =∑  

end for 

Outputs: {( , ) | 1,.., }
kL kENS M w k K← =  

Testing: ( )1
( )

k

K
k Lk

H sign w M S
=

← ∑%  

Figure 2. Pseudo code for bracing algorithm 

 

Algorithm: 1 2 1 2( ', ')  resel_with_RF( , , )S S tst S S←  
Input: tst, the test result of a learning model; 

1S , the training dataset used by a learning model 

2S , the validate dataset used by a learning model 
Process: 

 
1 2 1 2( , ) ( , , );inx inx finderr tst S S←  

1 2 1 2 1 2( ', ') ( , , , );S S exchange S S inx inx←  

Outputs: 1 2', 'S S  

Figure 3. Pseudo code for reselecting samples with relative feedback 

 
Bracing is able to focus on the nearest error or true 

samples that the current base learning algorithm barely 
predicts right or wrong,  by iteratively changing the 
training dataset with the relative feedback samples from 
the previous test procedure and the weights of the base 
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learner, so that the margins on these ‘difficult’ points can 
be considered by the learner, on the other hand, our 
method attempts to pick a subset of classifiers from an 
existing ensemble to improve the effectiveness and 
efficiency of the ensemble. 

Our approach is based on the observation that the 
generalization error of an ensemble base model could be 
improved if the base learners on which averaging is done 
disagree and if their fluctuations are uncorrelated[21]. 
The theoretical background of bracing is provided by 
diversity, and the bias/variance decomposition of the 
generalization error. As we known, many ensemble 
paradigms employ the same classification model, for 
example, a decision tree or a neural network, but there is 
no evidence that this strategy is better than using different 
models. We argue that an ensemble of heterogeneous 
models leads to a reduction of the ensemble variance and 
an increase of the ensemble diversity because the errors 
of the individual components have small correlation and 
thus the cross terms in the variance are small. To improve  
the ensemble accuracy, bracing employs different base 
learner to build an ensemble. As we known, the 
combination of the output of several base learners is only 
useful if they disagree on some inputs. In our paper we 
refer to the measure of disagreement as the diversity of 
the bracing ensemble. For regression problems, mean 
squared error is generally used to measure accuracy, and 
variance is used to measure variance. In this context, 
Krogh and Vedelsby [22] show that the generalization 
error, E , of the ensemble can be expressed as 
E E D= − , where E  and D  are the mean error and 
variance of the ensemble while maintaining the average 
error of ensemble members, should lead to a decrease in 
ensemble error. There is strong reason to believe that 
increasing diversity or decrease variance should decrease 
ensemble generalization error. In our task, we use the 
disagreement of an ensemble member (base learner) with 
the ensemble’s final decision as a measure of diversity. 
More precisely, if ( )iL X  is the prediction of the entire 
ensemble, then the diversity of the ith  base learner on 
example X  is given by 

*0 : ( ) ( )
( ) ,

1:
i

i

if L x L x T
Div x

otherwise

⎧ − ≤⎪= ⎨
⎪⎩

                       (7) 

where * ( )L x  is the ground truth of sample x , T  is the 
error tolerant parameter, which is set as the variance of 
prediction accuracy of all the ensemble members. To 
compute the variance of an ensemble of size K , on a 
training set of size m , we average the above term: 

1 1

1( ) ( ).K m
ens i ji j

Div X Div x
mK = =

= ∑ ∑                (8) 

This measure estimates the probability that a classifier 
in an ensemble will disagree with the prediction of the 
ensemble as a whole. Our approach is to build ensembles 
that are consistent with the training data and that attempt 
to maximize this diversity term and minimize the 
variance term at the same time. 

IV. MCS DETECTION BASED ON BRACING ENSEMBLE 

In this paper, MCs detection is formulated as a binary 
classification problem. At each location in a 
mammogram, the proposed ensemble is applied to 
determine where a MCs object is present or not. We 
defined nX R∈  as a pattern to be classified, and y  as its 
class label (i.e., { 1}y∈ ± ).  

A.  Mammogram preprocessing 
Before MCs detection our task is to suppress the 

mammogram background of each image block. A high-
pass filter is designed to preprocess each mammogram 
before extracting samples. With the Gaussian filter, we 
use a n n×  window size Gaussian filter where  

24 1n σ= + , experimentally in the study 2=σ . The 
output of high-pass filter is denoted by 

),(),(),(),( 112 yxIyxfyxIyxI ∗−= , where ∗  is linear 
convolution. 

To enhance the spot-like characteristics ( 
microcalcifications ), the top-hat operation is performed, 

),()),(),((),(),( 223 yxByxByxIyxIyxI ⊕−= ∃ , where 
∃  is a morphological erosion operation, ⊕  is a 
morphological dilation operation, and ),( yxB  is structure 
element. After applied the filter and enhancement method 
each image blocks seem to be effective in reducing the 
inhomogeneity of the background and the 
microcalcifications are also enhanced in mammogram. 

B. Input patterns for MCs detection 
After the preprocessing stage, we extract image 116-

dimensition features iX  of i
m mA × . i

m mA ×  is a small 
window of mm×  pixels centered at a location that we 
concerned in a mammogram image. The choice of m  
should be large enough to include MCs (in our 
experiment, we take m =115). The task of the trained 
ensemble classifier is to decide whether the input window 

i
m mA ×  at each location is a MCs pattern or not. 
The procedure for extracting training data from the 

training mammograms is given as follows. For each MCs 
location in a training mammogram set, a window of 

mm×  image pixels centered at its center of mass is 
extracted; the area is denoted by mm

iA × , with respect to ix  
after subspace feature extraction, and then ix  is treated as 
an input pattern for the positive sample ( 1+=iy ). The 
negative samples are collected ( 1−=iy ) similarly, except 
that their locations are randomly selected from the non 
MCs locations in the training mammograms. In the 
procedure, no window in the training set is allowed to 
overlap with any other training window. 

C. Base learning algorithms for bracing 
In our task we choose a lot of models (base learner) as 

base learning algorithm to solve our problem. All models 
belong to the canonical collection of machine learning 
algorithms for classification tasks so details can be found 
in the textbooks like for instance Duda et al. [23]. Table 
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III shows the used base models or learners in our research 
work. 

TABLE III.   
MODELS USED IN ENSEMBLE LEARNING 

Types Models # Base Learner 

Global Models 

Linear Models 1 LDA 

Neural Networks 2 
3 

MLP 
BP 

Support Vector 
Machines 

4 
5 
6 
7 
8 

SVMRBF( 2, 1000Cσ = = ) 
SVMRBF( 3, 1000Cσ = = ) 
SVMRBF( 4, 1000Cσ = = ) 
SVMRBF( 5, 1000Cσ = = ) 

Semi-global 
Models Decision Trees 9 

10
C4.5 

CART 

Local Models K-Nearest-
Neighbors 11 KNN 

 

D.  Training ensemble with bracing algorithm 
In the MCs detection context, we have formulated our 

task as a binary classification problem. For a given data 
set of input-output pairs ( , ) , 1,...,D

i iX y R R i m∈ × = , we 
aim to choose a ensemble model (function) f̂  out of 
hypothesis space H  which is as close to true dependency 
f  as possible, where : { 1, 1}Df R + −a . In order to 

improve the classification by combining classifiers 
trained on randomly generated subsets 1 ,S  2S  of the 
dataset S , we using bracing algorithm to reselected the 
subset 1 ,S  2S  by using the relative feedback of the 
previous test/validation procedure. In the feedback stage 
the nearest classification error samples of the previous 
test step in 2S  will replace the nearest true classification 
samples in 1S . 

V. DATABASE AND PERFORMANCE EVALUATIONS 

In this part, the digital database for screening 
mammography (DDSM) database [24] built by 
University of South Florida is used, which is available for 
research at [25]. In making the database, the optical 
density range of the scanner was 0-3.6 (OD). The 12bits 
digitizer was calibrated so that the gray values were 
linearly and inversely proportional to the optical density. 
In our experiments, all selected images are intensity 
images, digitized at 43.5 /m pixelµ  and a 12-bit gray 
scale. In the DDSM database, the boundaries for the 
suspicious regions are derived from markings made on 
the film by at least two experienced radiologists. Each 
boundary for the abnormality is specified as a chain code, 
which allows us to easily extraction ROIs for each of the 
suspicious areas in the image files.  

To evaluate the proposed MCs detection method, a set 
of 267 images of clinical mammograms from the DDSM 
database were selected to form the evaluation database. In 
our experiments, the negative samples were automatically 
selected from the normal breast region. While the positive 
samples dataset were manually selected from the 
suspicious areas of each selected images, following the 

reported ROI selection method in [26]. A 115 115×  
window (approximately 5 5mm mm× ) was chosen as the 
ROI size, since the microcalcification cluster was defined 
as a region containing three or more microcalcifications 
per 5 5mm mm×  area. Therefore, we need to select ROIs 
at a shorter interval so that the center of a 
microcalcification cluster will be at the center of one of 
the ROIs. Although we must select ROIs at intervals of 1 
pixel (0.0435 mm) to analyze a mammogram in detail, 
there were no large differences between adjacent ROIs 
selected at intervals of 1 mm. Therefore, we selected the 
ROIs at intervals of 23 pixels (approximately 1 mm) so 
that one ROI would overlap with the adjacent ROIs. So 
we can get more positive ROIs because of the 
overlapping. In our experiments, we got 2,231 positive 
samples in our dataset, and the negative samples were not 
limited (e.g., we choose 8,364 negative samples) because 
we could get a lot more normal tissues than the 
suspicious areas. 

To evaluate the performance of the trained bracing 
classifier, we used receiver operating characteristic 
(ROC) curves as an evaluation criteria [27]. Receiver 
operating characteristic (ROC) analysis, based on 
statistical decision theory, is a commonly used approach 
for classification performance evaluation. A ROC curve 
is a plotting of the classifier’s true positive detection rate 
(TPR) (also known as sensitivity) as a function of the 
classifier’s false positive detection rate (FPR) (1.0-TPR 
also known as specificity). The true positive rate is the 
probability of correctly classifying a target object, while 
the false positive rate is the probability of incorrectly 
classifying a target object. The Area under the ROC 
curve (Az) is an accepted way of comparing classifier 
performance. A perfect classifier should have a TPR rate 
of 1.0 (or 100%) and FPR rate of 0.0% and therefore an 
Az of 1.0. A higher Az would indicate greater 
discrimination capacity of a classifier. We constructed the 
ROC curves by the following procedure by applying the 
trained bracing classifier with varying thresholds to 
classify each test samples as positive sample ( 1+ ) or 
negative sample ( 1− ). 

VI. EXPERIMENTAL RESULTS 

Up till now, we have shown our approach to MCs 
detection. In this section we evaluate the performance of 
our method by using the real mammogram data from 
DDSM. The data in the training, validation, and test sets 
was randomly selected from the preprocessed dataset. 
Each selected sample was covered by a 115x115 window 
whose center coincided with the center of mass of the 
suspected MCs. The database of blocks included 2231 
with true MCs and 8364 with normal tissue. To simply 
our task, we only choose the same number 
( 2231 50% 1116× ≈ ) of positive samples (MCs) and negative 
samples (normal tissue) from the database during the 
training stage each time. In our experiments, 70% of the 
blocks were assigned to the training set, 15% to the 
validation set, and 15% to the test set. Table IV gives a 
summarization of the selected blocks in the three data 
sets. 
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TABLE IV.   
DISTRIBUTION OF SELECTED DATA SET. 

Data pool Training 
data set(1) 

Validation 
data set (2) 

Test 
data set (3) 

Total 
(1)+(2)+(3) 

MCs(a) 1116*70% 1116*15% 1116*15% 1116 
Normal tissue(b) 1116*70% 1116*15% 1116*15% 1116 

 
In the experiments, we first run experiments with 11 

base classifiers for 20 rounds to select the suitable base 
classifiers. The results are averaged over twenty five-fold 
cross-validations. Table 5 summarizes the comparison 
performance results of each single base learner on the 
same dataset. 

TABLE V.   
TEST RESULTS OF OVERALL ACCURACY(ACC), SENSITIVITY (SE), 
SPECIFICITY(SP) AND AREA UNDER ROC CURVE(AZ) ACROSS 100 

EXPERIMENTS USING 5-FOLD CROSS-VALIDATIONS WITH THE SAME 
TRAINING AND TEST DATASET 

# Acc Se Sp Az 

1 87.83±0.02 85.61±0.08 90.62±0.07 0.9304±0.0002 

2 87.73±0.02 85.50±0.08 89.62±0.07 0.9296±0.0002 

3 91.79±0.01 91.69±0.05 92.01±0.03 0.9605±0.0001 

4 91.75±0.01 91.93±0.04 91.71±0.04 0.9460±0.0002 

5 91.79±0.01 92.14±0.04 91.58±0.04 0.9537±0.0001 

6 92.37±0.01 92.78±0.04 92.08±0.03 0.9553±0.0001 

7 92.81±0.01 93.09±0.03 92.62±0.03 0.9574±0.0001 

8 92.76±0.01 92.67±0.03 92.94±0.03 0.9579±0.0001 

9 92.65±0.01 93.99±0.03 91.48±0.03 0.9764±0.0000 

10 86.30±0.02 86.36±0.08 86.46±0.06 0.9238±0.0002 

11 88.09±0.02 89.73±0.07 86.77±0.05 0.9271±0.0003 

 
According to the experimental results listed in Table 5, 

we find that some base classifiers are not suitable for our 
task, so we only choose the best diverse five as base 
classifiers in the bracing ensemble algorithm to evaluate 
our method. For constructing the bracing ensemble, we 
set the ensemble size to 5 in our experiments, because we 
only use 5 of the base learning algorithms in Table 5. 
Note that in the case of bracing we can specify a desired 
ensemble size, if we have enough base learners. 

To evaluate the performance and observe the 
characteristics of bracing ensemble algorithm on the 
microcalcification clusters detection problem thoroughly, 
five-fold cross validation is carried out, where the labeled 
samples are sampled into five subsets with similar class 
distribution to that in the original labeled samples and in 
each partition samples are divided into two groups: one 
for training and the other for test. In each fold, classifiers 
are evaluated on the test set after being trained on the 
other training group in each partition. We first run 
experiments 20 times with 11 base classifiers for each 
rounds. The results are averaged over twenty five-fold 
cross-validations. According to the experimental results, 
we find that some base classifiers are not suitable for our 
task, so we only choose the best five as the base 

classifiers in the bracing ensemble algorithm to evaluate 
our method.  

So in our following experiments, we set the ensemble 
size to 5, because we only use 5 base learning algorithms. 
Note that in the case of bracing we can specify a desired 
ensemble size, if we have enough base learners. In the 
bracing relevance feedback stage the algorithm 
terminates if the number of iterations exceeds the 
maximum limit or the desired result is obtained.  

The performance of each base classifier was evaluated 
and compared with bracing by using 

( 10,20,...,100)N N =  complete runs of five fold cross 
validation. Final experimental results are shown in Fig. 4. 
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Figure 4. Average results of MCs detection under different training 
rounds, which from 10 to 100: average results of MCs detection by 
using (a) bracing ensemble and (b) bagging ensemble learning method. 

 
Since bracing can be viewed as a modification of 

bagging, a comparison was made between bracing and 
bagging (shown in Fig. 5). In each test, the same 
bootstrap samples were obtained for both algorithms in 
each round. Compared the performance of bracing with 
base learning algorithms, we also drawn the ROC curve 
of each base learner in our experimental context with the 
same relevance feedback scheme. Results are shown in 
Fig. 6.  

All of the above experiments, which compare this 
algorithm with other peer algorithms on the real datasets, 
demonstrate the capabilities of the new algorithms. Our 
results indicate that bracing outperforms bagging and it is 
also ahead of its peer algorithms in terms of accuracy. Its 
application in the classifier improves the effectiveness 
and robustness of the selected ensembles. 

VII. CONCLUSION 

In this paper, we proposed a new ensemble learning 
algorithm, named arcing, to detect microcalcification 
clusters (MCs) in digital mammograms. The proposed 
ensemble learning method hold the potential for 
providing improvements in MCs detection accuracy 
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without resorting to the use of additional data. Compared 
with other ensemble methods, such as bagging, in terms 
of their ability to detection MCs in the breast cancer early 
stage, our proposed method can increase classification 
performance and reduce the false positive rate. 
Experimental results using a set of 267 mammograms 
indicate that bracing outperforms bagging, and it is also 
ahead of its peer algorithms in terms of accuracy. In our 
experiments, ROC curves also indicate that the proposed 
ensemble approach yielded the best performance 
compared with the traditional ensemble methods. 
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Figure 5. ROC curves of different ensemble method in MCs detection: 
(a) ROC curve of the bracing ensemble learning method with overall 
accuracy=92.60%, sensitivity=94.18% and specificity (1-FPR)=91.13%; 
(b) ROC curve of the bagging ensemble learning method with overall 
accuracy=89.29%, sensitivity=91.40% and specificity (1-FPR)=87.38%.
 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Tr
ue

 p
os

iti
ve

 ra
te

(T
P

R
)

False positive rate(FPR)

 

 

Bracing ensemble(1)
Percepton+RF(2)
Kridge+RF(3)
SVM1+RF(4)
SVM2+RF(5)
MLP+RF(6)

Figure 6. ROC curves of base classifiers and bracing ensemble classifier 
with the same training and test set to detect MCs. 
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