
A Framework forModel Checking Concurrent
JavaComponents

Brad Long

School of Maths, Physics and Information Technology,
James Cook University (Brisbane Campus), Australia.

Email: brad.long@jcu.edu.au

Abstract— The Java programming language supports con-
currency. Concurrent programs are harder to verify than
their sequential counterparts due to their inherent non-
determinism and a number of specific concurrency prob-
lems, such as interference and deadlock. In this paper we
illustrate how to construct a base model of Java concurrency
primitives using the Promela language of SPIN. Subse-
quently, a readers-writers monitor, and eighteen mutants,
are used as an example to show the power and simplicity of
using SPIN for verifying concurrent Java components. This
builds on previous work and contributes in three ways, 1)
each Java concurrency primitive is modelled directly and
added to a standard modelling library for inclusion into
models for a range of concurrent components, 2) we assume
a concurrent component may be used in potentially many
contexts rather than simply the context or contexts it may
have been used or found, 3) by providing a modelling library
we illustrate how model checking can be implemented in a
simple, powerful, and practical manner.

Index Terms— model checking, concurrency, Java, testing
and verification

I. I NTRODUCTION

A concurrent program specifies two or more processes
(or threads) that cooperate in performing a task [1]. Each
process is a sequential program that executes a sequence
of statements. The processes cooperate by communicating
using shared variables or message passing. Programming
and testing concurrent programs is difficult due to the
inherent non-determinism in these programs. That is, if
we run a concurrent program twice with the same input,
it is not guaranteed to return the same output both times.

The Java programming language has included con-
currency primitives as part of the core language ever
since its first public release. Tools and techniques for
testing concurrent Java programs are still under active
research and include static analysis, dynamic analysis,
model checking, and combinations of these techniques.

The SPIN model checker has successfully checked
models of software written in various programming lan-
guages including Java. This paper illustrates, in detail,
the construction of a simple yet powerful Promela library
that models each individual Java concurrency language
primitive, which is then used to build a model to verify
that an example readers-writers monitor is free from
interference, deadlock and other liveness errors. This
facilitates the construction of models of monitors (and

other concurrent components) using the Promela library,
rather than reconstructing entirely new models for each
monitor under verification. An interesting observation is
the suitability of the SPIN language (Promela) functions
to model Java components used in a concurrent context.

We review related work in Section II. In Section III,
Java concurrency primitives are reviewed and the mod-
els of each are constructed and described in detail. In
Section IV, the readers-writers example is introduced and
a model is constructed using the framework detailed in
the previous section. Section V introduces 18 mutant
monitors and presents the results of verifying the monitors
using SPIN.

II. RELATED WORK

A model is a simplified representation of the real world.
It includes only those aspects of the real-world system
relevant to the problem at hand. Models of software are
often based on finite state machines or call graphs with
well-defined mathematical properties [2], [3].

There are many tools and ongoing research in model
checking. Of particular note, with respect to the Java lan-
guage, is Java PathFinder (or JPF). JPF [4], [5] combines
model-checking techniques with techniques for dealing
with large or infinite spaces. JPF uses state compression
to handle complex states, and partial order reduction,
abstraction, and runtime analysis techniques to reduce
state space. JPF runtime analysis uses the Eraser [6]
and GoodLock [7] algorithms as guides to the model
checker for detecting potential deadlocks and race con-
ditions. JPF allows predicate abstraction across classes
by automatically translating a Java program annotated
by user-specified predicates to another Java program that
operates on the abstract predicates (using the Stanford
Validity Checker [8]). It has been used with Bandera to
take advantage of program slicing techniques. An earlier
version of JPF converted Java source code to Promela (the
language of the model checker SPIN [9], [10]).

Motivation for this paper was driven from previous
research on model checking [11], [12] and a strong inter-
est to assess the practicality of applying model checking
techniques in industry. The eighteen mutant monitors that
are examined in Section V are the same as those used
in [13]. However, this paper does not compare model

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 867

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.8.867-874

checking with the techniques used in [13] to detect the
eighteen mutants. There is recent research [14], [15] on
these complementary testing and verification techniques
and how to select the best combination for a purpose
[16]. It is widely accepted that each have their particular
strengths and weaknesses. Whilst much of the work
contained in this paper builds on previous research on
applying model checking to verify Java programs [11],
[12], it contributes in three ways:

1) A Promela procedure is created for each Java con-
currency primitive. Hence, models of monitors (and
other components) can be constructed using the
Promela library, rather than reconstructing entirely
new models for each monitor under verification.

2) By focusing on verifying an individual component
we do not need to be concerned with the number of
threads that are executing in the system as a whole,
because we assume the component can be used
in potentially many contexts and therefore may be
accessed by any number of threads at a time. That
is, we verify a component under the assumption of
multiple thread access. Hence, a model is created
to verify a component (potentially many uses) and
not a particular use, which would require modelling
the surrounding context (i.e. calling classes) of the
component.

3) By implementing a Promela library, we illustrate
how simple and practical it is to create SPIN models
of Java monitors using the Promela language. The
library of Promela procedures corresponding to Java
concurrency primitives assists in keeping the model
uncluttered and similar in structure to the Java
program under verification.

The goal of this paper is to describe a practical Promela
library and technique to model check Java programs
for verifying concurrent components without the need
to install other more complex tools, and show how this
technique can be applied in industrial and commercial
settings today.

III. C ONCURRENCY INJAVA

Each Java concurrency construct and its model repre-
sentation is reviewed in this section. Interrupts are not
included in the Promela library. Interrupts are discussed
in previous work [11] and may be incorporated in the
future. Also, it is assumed that the Java memory model
has been fixed [17].

A. Mutual Exclusion and Object Locking

In the Java programming language [18], [19] mutual
exclusion is achieved by a thread locking an object. Two
threads cannot lock the same object at the same time,
thus providing mutual exclusion. A thread that cannot
access a synchronised block because the object is locked
by another thread isblocked. In Java there are two ways
of locking an object.

1) Explicitly call a synchronised block.

synchronized (anObject) {
...

}

The Java code above, locks the objectanObject.
The lock is released when the executing code leaves
the synchronised block. If another thread is already
executing code within the synchronised block, the
requesting thread will be blocked until the thread
holding the lock leaves the synchronised block.

2) Synchronize a method.

public synchronized void aMethod() {
...

}

The Java code above, which synchronises a
method, is the same as locking thethis object in
a synchronised block. The following code provides
identical behaviour:

public void aMethod() {
synchronized (this) {

...
}

}

A thread can lock more than one object. For example,
the thread executing the following Java code locks the
two objectsobject1 and object2. Both locks are
held whilst in the inner-most synchronised block. As each
block is exited, the associated lock is released. The Java
scheduler is not required to be fair, that is, locks are not
necessarily served to blocked threads in a first-in first-out
(FIFO) manner.

synchronized (object1) {
...
synchronized (object2) {

...
}

}

B. Modelling Mutual Exclusion and Object Locking with
Promela

1) Modelling Lock Acquisition:

inline getLock(obj) {
atomic {

if
:: (locked[obj] == _pid)

-> skip;
:: (locked[obj] == -1)

-> locked[obj] = _pid;
fi;

}
}

868 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

The above Promela code models a request for an object
lock. This occurs at the beginning of a synchronised
method or block and also when re-acquiring the lock after
a call to the Javawait method. Theatomic construct
is used to group statements together. As expected, state-
ments within theatomic block are executed in sequence
and are treated as an atomic operation (i.e. no interleaving
within statements in the block).

The getLock code accepts an object to be locked
as its argument. If the current owner of the lock is this
thread (identified bypid), then do nothing (skip). This
models the behaviour of threads requesting locks that they
already own. Otherwise, if the object is not locked, then
it is locked, and the owner is set to this thread (where this
thread has been selected by the JVM to receive the lock).
If neither of the guards are satisfied, the model checker
will treat this thread as being blocked, awaiting a lock,
until one of the guards becomes true. This is exactly what
is needed to model a blocking thread and is a powerful
feature of the model checker.

The model checker evaluates all possible interleavings
of statements, so a blocked thread is checked for progress
after every statement. Thread progress is then checked
from every point of possible progression. That is, progress
is checked immediately after a lock is available and
similarly after every statement past that point. Verification
traces all paths.

2) Modelling Synchronisation:

inline synchronized(obj) {
getLock(obj);
lockDepth[obj] = lockDepth[obj] + 1;

}

The above code models thesynchronizedkeyword in
Java. Consideration must be given to re-entrant monitor
calls, hence thelockDepth variable is incremented.
When the synchronised block is exited, the lock will
only be released if the code exits the last enclosing
synchronised block.

3) Modelling Lock Release:

inline releaseLock(obj) {
// Assertion JM.1
assert(locked[obj] == _pid);
locked[obj] = -1;

}

The above Promela code models the releasing of a lock.
The assertion is not strictly necessary since a lock can
only be released by exiting an enclosing synchronised
block (i.e. the program structure enforces it). However,
the assertion can help during modelling. If a model of a
synchronised block has been incorrectly constructed the
assertion will fail. ThereleaseLock subroutine erases
the owner of the lock. The value-1 is used to represent
an unassigned lock.

4) Modelling Synchronisation Exit:

inline exit_synchronized(obj) {
lockDepth[obj] = lockDepth[obj] - 1;
if

:: (lockDepth[obj] == 0)
-> releaseLock(obj);

:: else
-> skip;

fi;
}

The above Promela code models leaving a synchronised
block. Note thatlockDepth is decremented for each
call (i.e. each exit of a synchronised block). The lock is
only released once the outer-most synchronised block (for
a particular object) has been exited.

C. Waiting and Notification

Threads are suspended by calling the Javawait
method. This causes the lock on the object to be released,
allowing other threads to obtain a lock on the object. Sus-
pended threads remain dormant until woken. As an exam-
ple, a particular implementation of the producer-consumer
monitor provides two methods. Theput method places
an item into the buffer and theget method (refer below)
retrieves an item from the buffer. A thread will be
suspended via thewait statement if it callsget whilst
there are no items in the buffer.

public synchronized Item get() {
while (buffer.size() == 0)

wait();
...

}

A thread calling notify will cause the run-time
scheduler, managed by the Java Virtual Machine (JVM),
to arbitrarily select a waiting thread to be woken. The
selected thread will then attempt to regain the object lock
for re-entry to the synchronised block. Theput call (refer
below) places an item into the buffer and then notifies
a waiting thread. Only one arbitrarily selected thread is
notified. A notified thread attempts to regain the object
lock and re-enter the synchronised block at the statement
immediately after the call towait. There is also a method
notifyAll that wakes all waiting threads on the object.

public synchronized void put(Item item) {
...
buffer.add(item);
notify();

}

D. Modelling Waiting and Notification with Promela

1) Modelling Waiting Threads:

inline wait(obj) {
// Assertion JM.2
assert(locked[obj] == _pid);
atomic {

releaseLock(obj);
waiting[obj] = waiting[obj] + 1;
WAIT[obj]?0;

};
getLock(obj);

}

The above Promela code for thewait operation
initially checks the assertion, which ensures that this

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 869

© 2009 ACADEMY PUBLISHER

thread owns the object lock. An assertion failure in-
dicates that the Java code is trying to call pro-
cess synchronisation primitives without holding the ob-
ject lock. In practical terms, this would raise an
IllegalMonitorStateException if the program
is executed.

After the assertion check, the object lock is released
(via releaseLock), the number of threads waiting on
the object is incremented (this is used by thenotifyAll
code), and the thread is suspended on theWAIT channel.
Finally, when the thread is awoken by a call tonotify
or notifyAll, the lock is reacquired via thegetLock
subroutine.

2) Modelling Notification:

inline notify(obj) {
// Assertion JM.3
assert(locked[obj] == _pid);
if
:: (waiting[obj] > 0)

-> WAIT[obj]!0;
waiting[obj] = waiting[obj] - 1;

:: else
-> skip;

fi;
}

The above Promela code fornotify begins by assert-
ing that the thread owns the object lock. Then, if there
are objects waiting, one is non-deterministically selected.
In fact, during verification every combination of waiting
thread is notified, thus testing every possible execution
path.

inline notifyAll(obj) {
// Assertion JM.4
assert(locked[obj] == _pid);
do
:: (waiting[obj] > 0)

-> WAIT[obj]!0;
waiting[obj] = waiting[obj] - 1;

:: else
-> break;

od;
}

The above Promela code fornotifyAll is similar to
the notify implementation. However, in this case, all
waiting threads are notified.

E. Putting It All Together

To simplify model creation, each of the Promela sub-
routines are contained within file calledjava.model
(see Appendix A). For convenience, two further files have
been created:single lock.model (see Appendix B)
and multi lock.model (see Appendix C). Both of
these files use the corejava.model and, in the sin-
gle lock case, eliminate unnecessary lock handling. As
described in the next section, the appropriate file is
included in the Promela model of the component under
verification.

class ReaderWriter {
private int readers = 0;
private boolean writing = false;
private int writersWaiting = 0;

// Start Read routine
public synchronized void startRead()
throws InterruptedException {
while (writing||(writersWaiting>0)){

wait();
}
++readers;

}

// End Read routine
public synchronized void endRead() {
--readers;
if (readers == 0) {

notifyAll();
}

}

// Start Write routine
public synchronized void startWrite()
throws InterruptedException {
++writersWaiting;
while (writing || (readers != 0)) {

wait();
}
writing = true;
--writersWaiting;

}

// End Write routine
public synchronized void endWrite() {
writing = false;
notifyAll();

}
}

Figure 1. Java code for the readers-writers monitor

IV. READERS-WRITERS EXAMPLE

This section introduces a version of the readers-writers
monitor that gives writer threads priority over waiting
reader threads. It is described in detail here, and will be
used as the example throughout this paper. The readers-
writers problem involves a shared resource that is read
by reader threads (thereaders) and written to by writer
threads (thewriters) [20]. To prevent readers and writers
interfering with each other, individual writers must be
given exclusive access to the resource, locking out other
writers and readers. However, as reading does not result
in interference, multiple readers may access the resource
concurrently. A monitor is used to control this access to
the resource. Typical Java code for such a monitor is given
in Figure 1.

The monitor state is maintained through three variables:
writing is a boolean that is true if and only if a
writer has access to the resource, the integerreaders
represents the number of readers currently accessing the
resource, and the integerwritersWaiting represents
the number of writers waiting for access to the resource.

The startWrite method is required to be executed

870 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

prior to a writer gaining mutually exclusive access (to
write) to a shared resource. TheendWrite method
is required to be executed when the writer no longer
requires access to the shared resource. Only one writer
can have access to the resource at a time; if a sec-
ond writer seeks access by executing thestartWrite
method it will satisfy the condition of the while-loop
(as writing will be true) and hence execute await.
Similarly, if a writer seeks access to the resource by
executing thestartWrite method when one or more
readers currently have access to the resource, await
will also be executed asreaders will be non-zero.
As a consequence of waiting,writersWaiting will
become positive.

The startRead method is required to be executed
prior to a reader gaining access (to read) a shared re-
source. TheendRead method is required to be executed
when the reader no longer requires access to the shared
resource. Many readers can access the shared resource at
the same time. If another reader seeks access by executing
the startRead method, provided there are no writers
waiting (i.e. writersWaiting is 0) it will fail the
condition of the while-loop and hence complete execution
of the method and gain access to the resource. However,
if a reader executes thestartRead method when a
writer currently has access to the resource (in which case
writing is true) or when there are writers waiting (in
which casewritersWaiting is positive), the condition
of the while-loop will be satisfied and the reader will
execute await. In effect, this implementation of the
monitor gives writers priority; if both readers and writers
are waiting for access to the resource, preference is given
to writers.

A. Modelling Readers-Writers

Constructing a model of the readers-writers monitor is
straightforward (see Figure 2). Two processes are defined,
a reader and a writer. Since the component being modelled
uses only one lock, the filesingle lock.model is
included. The reader process has code for modelling
startRead and endRead. Similarly, the writer pro-
cess includes code for modellingstartWrite and
endWrite. The translation to Promela is simple. Java
while loops are replaced with Promela equivalents
(i.e. do ... od). Occurrences ofwait, notify, and
notifyAll are easily replaced with the subroutines
previously detailed in Section III, which are now part
of our Promela library of Java primitives. Similarly, syn-
chronised blocks are modelled withsynchronized and
exit synchronized. Little abstraction is required
since every variable in the Java monitor is involved in, or
affects, one or more concurrent statements. Hence, each
instance variable is appropriately modelled. Theinit
procedure details the number and type of processes to be
verified by the model checker.

Four assertions have been added to the readers-writers
model. Violating any of these assertions means that the
monitor has not met its behavioural specification. That is,

#include "single_lock.model"
bool writing = false;
short readers = 0;
short writersWaiting = 0;

proctype reader() {

/* startRead */
synchronized();
do
:: (writing || writersWaiting>0) -> wait();
:: else -> break;
od;
readers = readers + 1;
exit_synchronized();

assert(readers > 0); // Assertion RW.1
assert(!writing); // Assertion RW.2

/* endRead */
synchronized();
readers = readers - 1;
if
:: (readers == 0) -> notifyAll();
:: else -> skip;
fi;
exit_synchronized();

}

proctype writer() {

/* startWrite */
synchronized();
writersWaiting = writersWaiting + 1;
do
:: (writing || readers != 0) -> wait();
:: else -> break;
od;
writing = true;
writersWaiting = writersWaiting - 1;
exit_synchronized();

assert(writing); // Assertion RW.3
assert(readers == 0); // Assertion RW.4

/* endWrite */
synchronized();
writing = false;
notifyAll();
exit_synchronized();

}

// system
init {

run reader(); run reader();
run writer(); run writer();

}

Figure 2. Readers-writers model

the monitor contains a fault that may lead to a failure.
The assertions,RW.1 - 4, are trivial to create and are
derived from the requirements of the monitor. After a call
to startRead, RW.1 asserts that there must be at least
one reader in the critical section of the monitor, andRW.2
asserts that there must be no thread writing. After a call to
startWrite, RW.3 asserts that there must be a writing
thread, andRW.4 asserts that there are no readers in the
critical section of the monitor.

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 871

© 2009 ACADEMY PUBLISHER

Mutant Method Original Code Mutant Code Killed By
1 startRead while (writing ||

waitingW>0) wait()
while (waitingW>0)
wait()

Assertion
(RW.2)

2 endRead if (readers==0)
notifyAll()

notifyAll() –

3 startWrite while (readers>0 ||
writing) wait()

while (writing)
wait()

Assertion
(RW.4)

4 endWrite notifyAll() notify() Invalid End
State

5 startRead while (writing ||
(writersWaiting >
0))

if (writing ||
(writersWaiting >
0))

Assertion
(RW.2)

6 startRead while (writing ||
(writersWaiting >
0))

while (writing &&
(writersWaiting > 0))

Assertion
(RW.2)

7 startWrite while (writing
||(readers != 0)

if (writing ||
(readers != 0))

Assertion
(RW.3)

8 startWrite while (writing ||
(readers != 0))

while (writing &&
(readers != 0))

Assertion
(RW.4)

9 startRead public synchronized
void startRead()

public void
startRead()

Assertion
(JM.2)

10 startWrite public synchronized
void startWrite()

public void
startWrite()

Assertion
(RW.2)

11 startRead while (writing ||
(writersWaiting >
0))

while (writing ||
(writersWaiting > 0)
|| readers != 0)

–

12 endRead --readers is
synchronised

--readers is not synchro-
nised

Assertion
(JM.4)

13 startWrite ++writersWaiting is
synchronised

++writersWaiting is not
synchronised

Assertion
(RW.2)

14 endWrite writing = false is
synchronised

writing = false is not
synchronised

–

15 endRead public synchronized
void endRead()

public void endRead() Assertion
(JM.4)

16 endWrite public synchronized
void endWrite()

public void
endWrite()

Assertion
(JM.4)

17 startRead ++readers while (true)
++readers

Search Error

18 endRead notifyAll notify Invalid End
State

TABLE I.
READERS-WRITERS MUTANTS

V. DETECTING FAILURES IN MUTANT MONITORS

This section describes the results of using the Promela
models to kill a number of mutant implementations of the
readers-writers monitor. This demonstrates the effective-
ness and applicability of SPIN, however, it is recognised
that this is only a start to more work on applying and
evaluating SPIN on a range of components including
more realistic industrial components. The mutants were
created by modifying the correct implementation with
programming faults. They originated from a number of
different sources: some were created to model typical
source-code faults that programmers make, some were
created to exercise specific concurrency runtime failures,
and others were obtained from exam questions from a
course on concurrency.

Model checking using SPIN was applied to each mutant
implementation in turn. Table I presents the mutant com-
ponents verified by SPIN. The components are mutations
of the readers-writers monitor detailed in Section IV. The
table provides enough information to be able to construct
each mutant from the modified code detailed in the table
and the original example. Table I lists the following

information:

• Mutant: an identifier for the mutant.
• Method: the name of the component method that was

changed.
• Original Code: the original component code.
• Mutant Code: the modified code.
• Killed By: how the mutant was detected.

Table I details the results of verifying the Promela
models of the mutant monitors with SPIN. The assertions
that detected each mutant are referenced in the ‘Killed
By’ column.

Mutant 2 has been changed, but it is not in error. It is
a valid implementation of the monitor. Verifying mutant
4 results in an ‘Invalid End State’. This means execution
of the component may result in permanently suspended
(or dormant) threads. In this case, the SPIN verification
trace shows that a certain execution sequence may result
in two readers and one writer suspended in the wait set.

No problem is detected with mutant 11 although it is
an erroneous implementation. Mutant 11 only allows one
reader to enter the critical section at a time. The original
requirement of the readers-writers monitor is to allow

872 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

many readers to access the critical section at the same
time.

Mutant 14 is not detected. On close inspection it is
noted that it will not produce a failure, hence, this is a
correct, albeit confusing, implementation of the readers-
writers monitor.

Verifying mutant 17 causes the model checker to run
out of space with a ‘max search depth too small’ error.
Gradually increasing the search depth space does not
eliminate the error. On inspection it is obvious that the
endless loop in the monitor is causing this problem.

Like mutant 4, the verification of mutant 18 results in
an ‘Invalid End State’. The SPIN verification trace shows
that some execution sequence could result in the perma-
nent suspension of one reader and two writer processes.
Details of assertion failures of all other components are
detailed in Table I.

VI. CONCLUSION

Model checking has been used in research and in-
dustry to successfully verify Java programs including
concurrent programs. In particular, SPIN has a good
track record for detecting concurrent programming bugs,
and has been incorporated into sophisticated automated
verification tools, such as Bandera and early versions of
JPF. Clearly, this paper does not extend such tools. This
paper illustrates the simplicity of building a simple, yet
powerful framework for model checking concurrent Java
components that almost any programmer could implement
with little training.

Initially, the framework or base model of some Java
concurrency primitives is created. The framework is used
when building the model of a component under veri-
fication. SPIN then verifies the model for absence of
interference, deadlock and other liveness failures. For
simplicity, two frameworks were created: 1) for single
lock programs, and 2) for programs that use multiple
locks. The framework was used to construct a model of
the readers-writers monitor and 18 mutants. Verification
of the models detected 15 failures. On closer inspection it
was discovered that there were in fact two benign mutants,
meaning that all but one failure was detected.

It is hoped that this paper goes some way to encourag-
ing further research in the area, and in particular the use
of model checking techniques on commercial applications
that use Java concurrency. The technique scales well since
individual components are tested, not an entire system.
For ease of demonstration this paper has focused on a
simple Java monitor, but there is no reason to be so
restrictive, since our model handles multiple locks it can
be applied to a variety of concurrent Java components.

Future work consists of: 1) identifying additional cor-
rectness properties including the use of invariants and
temporal assertions, 2) using the technique on a range
of concurrent Java components, 3) building base models
for additional Java primitives and concurrency packages
(such asjava.util.concurrent), and 4) conduct-
ing case studies on verifying a range of components from
commercial applications.

APPENDIX A. PROMELA MODEL OF JAVA

CONCURRENCYPRIMITIVES

short locked[NUM_LOCKS] = -1;
chan WAIT[NUM_LOCKS] = [0] of {bit};
short waiting[NUM_LOCKS] = 0;
short lockDepth[NUM_LOCKS] = 0;

inline _synchronized(obj) {
_getLock(obj);
lockDepth[obj] = lockDepth[obj] + 1;

}

inline _exit_synchronized(obj) {
lockDepth[obj] = lockDepth[obj] - 1;
if
:: (lockDepth[obj] == 0)

-> _releaseLock(obj);
:: else

-> skip;
fi;

}

inline _getLock(obj) {
atomic {

if
:: (locked[obj] == _pid)

-> skip;
:: (locked[obj] == -1)

-> locked[obj] = _pid;
fi;

}
}

inline _releaseLock(obj) {
assert(locked[obj] == _pid);
locked[obj] = -1;

}

inline _wait(obj) {
assert(locked[obj] == _pid);
atomic {

_releaseLock(obj);
waiting[obj] = waiting[obj] + 1;
WAIT[obj]?0;

};
_getLock(obj);

}

inline _notify(obj) {
assert(locked[obj] == _pid);
if
:: (waiting[obj] > 0)

-> WAIT[obj]!0;
waiting[obj] = waiting[obj] - 1;

:: else -> skip;
fi;

}

inline _notifyAll(obj) {
assert(locked[obj] == _pid);
do
:: (waiting[obj] > 0)

-> WAIT[obj]!0;
waiting[obj] = waiting[obj] - 1;

:: else -> break;
od;

}

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 873

© 2009 ACADEMY PUBLISHER

APPENDIX B. SINGLE LOCK MODEL

#define NUM_LOCKS 1

#include "java.model"

inline synchronized() {
_synchronized(0);

}

inline exit_synchronized() {
_exit_synchronized(0);

}

inline wait() {
_wait(0);

}

inline notify() {
_notify(0);

}

inline notifyAll() {
_notifyAll(0);

}

APPENDIX C. MULTI -LOCK MODEL

/***********************************
* define NUM_LOCKS in *
* component-under-test model file */

#include "java.model"

inline synchronized(obj) {
_synchronized(obj);

}

inline exit_synchronized(obj) {
_exit_synchronized(obj);

}

inline wait(obj) {
_wait(obj);

}

inline notify(obj) {
_notify(obj);

}

inline notifyAll(obj) {
_notifyAll(obj);

}

REFERENCES

[1] G. Andrews, Concurrent Programming: Principles and
Practice. Addison Wesley, 1991.

[2] E. Clarke, E. Emerson, and A. Sistla, “Automatic veri-
fication of finite-state concurrent systems using temporal
logic specifications,”ACM Transactions on Programming
Languages and Systems, vol. 8, no. 2, pp. 244–263, Apr.
1986.

[3] M. McMillan, “Symbolic model checking,” Ph.D. disser-
tation, Carnegie Mellon University, 1992.

[4] K. Havelund, “Java PathFinder, a translator from Java to
Promela,” inProceedings of the 5th and 6th International
SPIN Workshops on Theoretical and Practical Aspects of
SPIN Model Checking. Springer-Verlag, 1999.

[5] W. Visser, K. Havelund, G. Brat, and S. Park, “Model
checking programs,” inProceedings of the 15th Inter-
national Conference on Automated Software Engineering.
IEEE Computer Society, 2000, pp. 3–12.

[6] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson, “Eraser: A dynamic data race detector for
multithreaded programs,”ACM Transactions on Computer
Systems, vol. 15, no. 4, pp. 391–411, Nov. 1997.

[7] K. Havelund, “Using runtime analysis to guide model
checking of Java programs,” inProceedings of the 7th
SPIN Workshop. Springer-Verlag, 2000, pp. 245–264.

[8] Stanford University, “Stanford validity checker,” 2004,
http://verify.stanford.edu/SVC/.

[9] G. Holzmann, “The model checker SPIN,”IEEE Transac-
tions on Software Engineering, vol. 23, no. 5, pp. 279–295,
1997.

[10] ——, The SPIN Model Checker. Addison Wesley, 2004.
[11] K. Havelund and T. Pressburger, “Model checking Java

programs using Java PathFinder,”International Journal on
Software Tools for Technology Transfer, vol. 2, no. 4, pp.
366–381, 2000.

[12] H. K. and J. Skakkebæk, “Applying model checking in
Java verification,” inProceedings of the 7th SPIN Work-
shop. Springer-Verlag, 1999, pp. 216–231.

[13] B. Long, R. Duke, D. Goldson, P. Strooper, and L. Wild-
man, “Mutation-based exploration of a method for ver-
ifying concurrent Java components,” inProceedings of
the 18th International Parallel and Distributed Processing
Symposium (IPDPS 2004) – 2nd International Workshop
on Parallel and Distributed Systems: Testing and Debug-
ging (PADTAD 2004). IEEE Computer Society, 2004.

[14] B. Long, “Testing concurrent Java components,” Ph.D.
dissertation, The University of Queensland, 2005.

[15] B. Long, P. Strooper, and L. Wildman, “A method for
verifying concurrent Java components based on an analysis
of concurrency failures,”Concurrency and Computation:
Practice and Experience, vol. 19, no. 3, pp. 281–294, 2007.

[16] P. Strooper and M. Wojcicki, “Selecting V&V technology
combinations: How to pick a winner?” inProceedings
of the 12th International Conference on Engineering of
Complex Computer Systems (ICECCS 2007). IEEE
Computer Society, 2007, pp. 87–96.

[17] W. Pugh, “The Java memory model is fatally flawed,”
Concurrency: Practice and Experience, vol. 12, no. 6, pp.
445–455, 2000.

[18] J. Gosling and K. Arnold,The Java Programming Lan-
guage, 2nd ed. Addison Wesley, 1998.

[19] J. Gosling, B. Joy, G. Steele, and G. Bracha,The Java
Language Specification, 2nd ed. Addison Wesley, 2000,
http://java.sun.com/docs/books/jls/index.html.

[20] J. Magee and J. Kramer,Concurrency: State Models and
Java Programs. John Wiley & Sons, 1999.

Brad Long received the B.Sc. and Ph.D. degrees in computer
science from the University of Queensland in 1988 and 2005
respectively. In 2000, he received the M.B.A. degree from the
University of Southern Queensland.

From 1988, he has worked as a software engineer and man-
ager for a number of national and international firms including
Mincom Pty Ltd, Fujitsu Ltd, and Oracle Corporation.

He is currently a lecturer at James Cook University (Brisbane
Campus) and is a director of Touchstone Consulting Pty Ltd.
His research interests include software engineering, especially
software verification and testing, and concurrent and distributed
systems. He is a member of the IEEE and the IEEE Computer
Society.

874 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

