
Towards a Scalable Infrastructure for Semantic
Web Services Execution

Antonio J. Roa-Valverde, and José F. Aldana-Montes
Department of Computer Languages and Computing Sciences, University of Málaga, Spain

Email: {roa, jfam}@lcc.uma.es

Abstract— In this work, we propose the implementation of
an infrastructure compliant with the principles established
by the OASIS Semantic Execution Environment TC. We use
an Enterprise Service Bus (ESB) as the backbone for our
proposal.

We believe that developed approaches to model Semantic
Web Services must be put in practice. In this way it
is possible to use Semantic Web Services in conjunction
with an ESB to define a Semantic Enterprise Service Bus
(SESB). The SESB provides mechanisms to collect all these
technologies together and acts as a layer to overcome the
application integration problem.

Measurements show that our platform imposes acceptable
overheads when enforcing the described design.

Index Terms— Semantic Web, Semantic Web Services, mid-
dleware, Enterprise Service Bus, Application Integration
Patterns

I. I NTRODUCTION

Years ago researchers envisaged the future Web as a
Web populated by an enormous amount of information
shared among users, from users to applications and even
from applications to applications (the latter also known as
A2A interaction). Today it is a reality. In this context, the
Semantic Web tries to formalize the knowledge available
among the different resources in order to facilitate the
information usage. Further to the A2A interaction there
is a lot of effort focusing on a more efficient and scalable
solution which can address the drawbacks of dealing with
this amount of resources. In this way, the term resource
stands for any piece of public information available as
simple data or as a data provider implemented as a
service. OASIS [29] defines a service as “a mechanism
to enable access to one or more capabilities, where the
access is provided using a prescribed interface and is exer-
cised consistent with constraints and policies as specified
by the service description”. In other words, a Web Service
provides one way of implementing the automated aspects
of a given business or technical service.

The Semantic Web Service Initiative1 (SWSI) focuses
on improving the life-cycle of conventional Web Services
in order to extend the SOA tendencies independently of
the scalability limitations. As it is established by this

This paper is based on “Extending ESB for Semantic Web Services
Understanding,” by Antonio J. Roa-Valverde, and José F. Aldana-
Montes, which appeared in R. Meersman, Z. Tari, and P. Herrero (Eds.):
OTM 2008 Workshops, LNCS 5333, pp. 957964, 2008.c©Springer-
Verlag Berlin Heidelberg 2008.

1http://www.swsi.org/

consortium: “... to achieve the above overall mission,
a number of theoretical, methodological and empirical
issues must be addressed. These include:

• creation of language and ontological infrastructure
to support incorporation of machine understandable
semantics into Web Services;

• development of appropriate Web Services architec-
ture and applications.”

Refering to these ideas there are several proposals
that have been submitted to W3C for evaluation: OWL-
S [1], WSMO [2], WSDL-S [3], SWSF [4], but not
so many implementations applicable to real scenarios,
which means that there is still a gap among academy
and company regarding to this context. The Semantic
Annotations for WSDL and XML Schema (SAWSDL)
[5] is the exception. SAWSDL reached recommendation
status on August 28 2007, turning it into a “W3C Stan-
dard”. Nowadays, this is the most advanced way to model
Semantic Web Services following a bottom-up approach.

The use of Semantic Web Services technology in
enterprises would not be possible without the existence
of an infrastructure that allows covering the life-cycle
of Web Services using semantic annotation techniques.
The OASIS Semantic Execution Environment Technical
Commitee (SEE TC) [24] addresses this problem and tries
to provide guidelines, justifications and implementation
directions for an execution environment for Semantic Web
Services.

In this work, we propose the implementation of an
infrastructure compliant with the principles established
by the SEE TC where an Enterprise Service Bus (ESB)
[12] is the backbone. An ESB allows the cooperation and
the exchange of data between heterogeneous systems. It
is a logical architecture based on the principles of SOA,
which aims to define services explicitly and independently
of the implementation details. It also pays close attention
to securing a transparent location and excellent interop-
erability.

We believe that developed approaches to model Seman-
tic Web Services must be put in practice. In this way it
is possible to use Semantic Web Services in conjunction
with an ESB to overcome the application integration
problem [10]. The objective is to define a Semantic
Enterprise Service Bus (SESB), providing mechanisms to
collect all these technologies together and acting as a layer
to access services through the invocation paradigm based
on goals, in the same way as WSMO/X does [25].

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 821

© 2009 ACADEMY PUBLISHER
doi:10.4304/jsw.4.8.821-832

Figure 1. WSMX v.0.5 architecture overview [extracted from[18]]

This document makes reference to WSMX2 [30] as an
environment built with the aim of automating the life-
cycle of Web Service’s usage. WSMX is a testbed for
WSMO and demonstrates the viability of using WSMO
to put in practice the SWS related ideas. We provide a
description of the task carried out in order to combine the
WSMX functionality with the use of Enterprise Applica-
tion Integration patterns [23] within the ESB.

The remainder of this paper is structured as follows.
In Section II, we describe WSMX and the main concepts
around ESBs. We also discuss other related work. Sec-
tion III addresses the new approach and highlights its
importance in the Service Oriented Computing (SOC)
context. Section V shows how the platform behaves
after the execution of stress tests. Finally, in Section VI
conclusions and future work are summarized.

II. BACKGROUND AND RELATED WORK

In this section, we describe WSMX and main concepts
around ESBs to provide the context for the discussion
of our contribution in Section III. We also discuss other
related work.

A. Web Service Modelling eXecution environment

WSMX follows a staged component-based software
development [7] as can be observed in Figure 1. From
the beginning, WSMX was considered as a decoupled
and extensible framework for SWS execution. Looking at
it more closely it can be appreciated that the developed
architecture separates the different functionalities already
provided. In this way, WSMX implements three kinds
of components, i.e: components that offer the function-
ality of each phase in the SWS life-cycle, components
orchestrating other components to achieve the desired
functionality and components used to interact with the

2http://www.wsmx.org/

user. The expected functionality of WSMX can be de-
scribed in terms of the aggregated functionality of all its
components.

Components included in the first group areDiscov-
ery, Service Discovery, Invoker, Data Mediator and
Choreography. Components used to assist the func-
tionality of other components areResource Manager,
WSML2Reasoner Framework, Communication Manager
and also theWSMX Core can be classified here. Finally,
components that integrate theWeb Services Modelling
Toolkit (WSMT) are included in the group related with
the interaction with the user. The platform also provides
the capability to add new components as soon as the
requirements change. This is possible in part due to the
WSMX Core and the use of wrappers that abstract the
communication with each component.

The way how the whole platform behaves is known as
execution semantics and it is hard-coded inside theWSMX
Core [8], which is responsible for the interaction among
the different components and coordinates the messages
flow. Currently, there is a centralized version of the
WSMX Core, however the first ideas in the development of
WSMX were to offer a distributed framework in order to
configure a cluster of WSMX instances deployed across
a network. Nowadays this has not yet been implemented.

Refering to the execution semantics, the current im-
plementation requires much effort if the system needs
to add new functionality. In this way, the developer has
to understand how the whole platform behaves reading
lines and lines of code. Recent ideas in the development
of WSMX try to adapt the execution semantics to a
declarative style. Following this approach, in Section IV-
C we show an alternative, describing how to achieve in a
different and more efficient way the targets that WSMX
pursued from the beginning.

1) WSMX architecture in depth: The following de-
scriptions depict an overview of the functionality encap-
sulated inside each WSMX component. For more details
see [7].

822 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

Core: it constitutes a microkernel providing middleware
functionality such as finding and looking for components,
message handling and defining execution paths (“execu-
tion semantics”).

Choreography: defines how to interact with the Web
Service messages exchange. It also resolves process
heterogeneity (in terms of communication mismatches)
between service requester and provider.

Communication Manager: constitutes the entry point to
the WSMX system exposing the functionality of the other
components.

Data Mediator: transforms instances of the ontologies
known to one of the involved parties to instances of
the ontologies known to the respective other party, or
viceversa, based on previously created abstract mappings
between ontologies. It resolves data heterogeneity that
can appear during discovery, composition, selection or
invocation of Web Services.

Invoker: handles communication between WSMX and
external SOAP-based Web Services. It includes lift-
ing/lowering to/from WSML to XML.

Orchestration: resolves process heterogeneity in terms
of defining how the overall functionality of a service is
achieved by cooperating with other services. Currently
this functionality is not implemented in WSMX, but the
choreography component provides some interfaces that
can be used during the composition process.

Parser: performs a syntactic validity check of WSML
documents and converts it to an in-memory representa-
tion. The parser is used in the WSMX execution seman-
tics. Actually, the parser does not constitute a component
like the other modules. It represents a set of functions
implemented in the WSMO4j3 library and it is accessible
at each step of the SWS life-cycle.

Resource Manager: stores all the information that
WSMX uses, namely WSMO definitions (web ser-
vices, ontologies, goals and mediators), non-WSMO data
(events and messages) and WSDL documents used for
grounding.

Discovery: enables the discovery of Web Services by
finding Web Service descriptions that match the goal
specified by the requester.

Service Discovery:extends the functionality of the Dis-
covery component providing service contracting and QoS
discovery (service selection based on non-functional prop-
erties).

Figure 2 depicts the dependencies among the com-
ponents that will be reused and deployed on the ESB.
It should be noted that components responsible for the
communication and cooperation (WSMX Core, Commu-
nication Manager and Invoker) have been dropped from
the architecture because the ESB already provides this
functionality and can be adapted to our requirements.

2) Execution Semantics: As stated previously, the
whole system behaves are modelled through the con-

3http://wsmo4j.sourceforge.net/

Resource
Manager

Data
Mediator

Orchestration

Discovery

Service
Discovery

Choreography

Figure 2. Dependencies among WSMX components

cept of execution semantics. This behaviour includes the
interaction among the WSMX components to achieve
the user’s requirements, commonly modelled as WSMO
goals. Since WSMX is an event driven system, its be-
haviour is specified by the order of events. Event ex-
change is conducted via a Tuple Space [9], which provides
a persistent shared space enabling seamless interaction be-
tween components without direct event exchange between
them. Interactions are carried out by exploiting a publish-
subscribe mechanism. Figure 3 depicts an architectural
overview of the WSMX communication model. The com-
munication between WSMX client, WSMX and the end-
point Web Services requires all the communication parties
to be subscribed to appropriate events, for a successful
communication. The same happens with the communi-
cation among WSMX components. The current imple-
mentation is for the communication and coordination of
components internal to WSMX only. It does not include
communication between different WSMX instances. Fur-
ther details about how Tuple Spaces and the Triple Space
Computing (TSC) model are related to each other within
WSMX can be found in [19]. The event driven approach
already used allows migrating the components over an
ESB easily. This deployment provides great advantages
as will be outlined in the next section.

In the current WSMX version, there is one instance
per component and there is also one possible sequential
execution of the execution semantics at the same time,
i.e., it can not run multiple goals in parallel. Deploying
the WSMX functionality on the ESB makes it possible
to manage different execution semantics concurrently,
thereby overcoming the previous limitation of running
only one goal in a batch process style.

The execution semantics is hard-coded inside the
WSMX Core component as part of the coordination
model. Despite WSMX being an extensible infrastructure
a lot of effort is necessary if new components are to be
plugged into the system. The addition of a new component
would involve the codification of its behaviour. This can
be a problem when the new component takes part in
different execution semantics already implemented or if
it defines new functionality that involves an independent
execution semantics. In this way, adding new functionality
in the form of a new component constitutes a tedious
task. In order to clarify this issue, Figure 4 depicts an
UML diagram representing how the execution semantics

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 823

© 2009 ACADEMY PUBLISHER

WSMX

client

WSMX

TripCom WS

invocation

 WS API

Reader-Writer

TS API

Triple Space

(1)

(2) (3) (4)

(5)(6)

(7)(8)

(9)

 Callback Handler

WSMX Web

Service

TripCom WS

invocation

 WS API

Reader-Writer

TS API

Triple Space

(1)

(2) (3) (4)

(5)(6)

(7)(8)

(9)

 Callback Handler

TS API

Triple Space

 Callback HandlerReader-Writer

WSMX

comp.

WSMX

comp.

WSMX

comp.

(1)

(2) (3)

(4) (5)

(7) (8)

(9) (10)

(11) (12)

(13)

(a) (b) (c)

Figure 3. WSMX v.0.5 communication model (extracted from [31]): (a) Internal behavior of WSMX Client invoking WSMX via Triple Space. (b)
Internal behavior of WSMX Invoker invoking Web Service via Triple Space. (c) Component Management in WSMX using Triple Space

is implemented inside the WSMX Core. Each class at the
top and inheriting fromWSMXExecutionSemantic repre-
sents the entry point to the respective execution semantics.
Classes inheriting fromAchieveGoalChoreography repre-
sents existing states within that execution semantics. The
change from one state to other is controlled by theContext
class. States from an execution semantics could make
use of states from a different execution semantics. This
happens when an execution semantics requires the func-
tionality implemented in other execution semantics. For
example, in Figure 4AchieveGoalChoreography makes
use ofDiscoverWebServices through the stateDiscovery.
For more clarity, Figure 4 depicts only states belonging
to AchieveGoalChoreography.

ExecutionSemanticInterface

AbstractExecutionSemantic

WSMXExecutionSemantic

AchieveGoal
Choreography

DiscoverWeb
Services

New
Execution
Semantic

Discovery
Data

Mediation
Selection Choreography Invocation

Context

Figure 4. State design pattern used to model the execution semantics.
This pattern is used in computer programming to represent the state of
an object. It is a clean way for an object to partially change its type at
runtime

A good approach to fix the drawbacks related with
the extension of the platform would be possible with
an architecture allowing the separation of deployment
and communication processes. This is what an ESB
facilitates. On the one hand an ESB is built on top of
a layer that allows the addition of new components as if
they were plugins extending a software packet. On the
other hand, the backbone of an ESB is constituted by a
communication system that enables the interaction among

the applications deployed on top of the ESB. With these
features it makes sense to apply the ESB functionality to
extend the WSMX platform because it can be reduced
to an integration problem where the applications to be
integrated are the different WSMX components.

B. Enterprise Service Bus

From the beginning, WSMX was conceived as an
infrastructure to demonstrate the viability of WSMO. In
this way, the different tasks carried out during the devel-
opment process have focused more on implementing the
functionality related with the SWS life-cycle. Nowadays,
the necessity for a more scalable infrastructure has forced
WSMX to redefine its initial design.

The next versions of WSMX should take into account
a distributed architecture allowing the addition of new
functionality any time it is so required by the system.
The new requirements should not change the already
implemented infrastructure. In this way, it is necessary
to put in practice some principles related to application
integration techniques [10]. To do this we rely on the
ideas provided by an Enterprise Service Bus (ESB) [11].

Basically, an ESB constitutes a middleware for En-
terprise Application Integration (EAI). An ESB makes
Web Services, XML, and other integration technologies
immediately usable with the mature technology that exists
today. The core tenets of SOA are vital to the success of a
pervasive integration project, and are already implemented
quite thoroughly in the ESB. The Web Service standards
are heading in the right direction, but remain incomplete
with respect to the enterprise-grade capabilities such as
security, reliability, transaction management, and business
process orchestration. The ESB is based on established
standards in these areas, and has real implementations
that are already being deployed across a number of
industries. The ESB is capable of keeping in step with
the ongoing evolution of the Web Services equivalents
of these capabilities as they mature [12]. It would be
interesting to maintain these capabilities using Semantic
Web Services.

824 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

The ESB will replace the currentWSMX Core func-
tionality providing an abstraction layer responsible for
the communication and integration of new components
in the platform. In order to build a loosely decoupled
infrastructure we will rely on an asynchronous message
oriented middleware (MOM) namely ActiveMQ4, wich
supports the Java Message Service (JMS) specification
[13]. Tasks concerned with integration matters will be
facilitated using the Java Business Integration (JBI) spec-
ification [14].

There are several options from different organizations
and companies supporting the concept of an ESB [15].
This makes the choice of a specific implementation dif-
ficult. We have chosen Apache ServiceMix5 as the ESB
implementation. ServiceMix provides an open source ap-
proach supporting the SOA principles using specifications
such as JBI, JMS, JMX [16] and OSGi [17] among
others. In our analysis we pay special close attention to
the choice of a portable and scalable platform6. These
issues draw our attention to ESBs compliant with the JBI
specification. A plausible justification for this is that JBI
components developed for a particular solution can be
used in any other JBI compliant ESB.

C. Related Work

The main challenge among researchers in the Semantic
Web Service field lies in overcoming the technological
gap between the use of syntactic technology and semantic
technology. As we can see in [10], many R&D projects
are ongoing with the aim of bringing semantics into SOA.
During the last five years some attempts have been made
to implement platforms to achieve the Semantic Web
Services challenge7, most of this work has been part of
EU funded research.

Infrawebs8 was the first collaboration between
academia and industry addressing the search of such a
platform. In this project, the WSMX functionality was
distributed among different components and deployed
like Web Services on top of an ESB, namely, Mule ESB9.
The main target of this platform involved developing a
solution to lead the application of Semantic Web Services
to real scenarios. Nevertheless, because the system was
designed without taking into account the principles stated
in this document all the usage forecasts proved to be
wrong.

Most recent projects in this area pursue a similar
approach to our ideas. SOA4All10 is an ongoing project
that tries to develop an infrastructure compatible with the
next generation of the Web, where billions of services
will be shared and used by consumers. The envisaged

4http://activemq.apache.org/
5http://servicemix.apache.org/
6For more information about how to evaluate and choose the best solu-

tion according to the requirements the following website provides a good
guideline http://servicemix.apache.org/how-to-evaluate-an-esb.html/

7http://sws-challenge.org/
8http://www.infrawebs.org/
9http://www.mulesource.org/
10http://www.soa4all.eu/

infrastructure relies on the use of a JBI-compliant ESB
which will be extended using the TupleSpace Comput-
ing (TSC) [9] approach for the communication among
services. As was established in [21], “the outcome of
the project will be a comprehensive framework and in-
frastructure that integrates four complimentary paradigm-
shifting technical advances into a coherent and domain
independent service delivery platform: Web principles and
technology..., Web 2.0..., Semantic Web... and context
management...” Although this project defends the same
interests, the platform described in this work follows a
different approach for the communication process. While
SOA4All makes use of TSC, we opt for the use of
Enterprise Application Integration (EAI) patterns [23].
The comparison of these two approaches will be the main
focus in a future analysis.

There is another ongoing project known as Semeuse11

which is closer to our ideas. Semeuse tries to extend
the role of ESBs using semantic technologies, its main
focus being the application to service composition tasks.
Similarly to SOA4All, Semeuse relies on a JBI-compliant
ESB, namely, PEtALS ESB12. This issue makes possible
a future collaboration and reuse of the ideas presented in
these projects and our approach, since we are following
the JBI specification [14].

Current efforts show that researchers have become
aware of the actual technological transition in SOA. In
this sense, it is difficult to know when Semantic Web
Services may be used among ICT enterprises without any
limitation. For the moment, researchers should postpone
the development of new platforms that cover the SWS
life-cycle focusing their effort on obtaining a solution to
overcome the current transition problem between SOA
and Semantic SOA. This last issue has contributed to the
development of this work.

III. M OTIVATION

For several years many approaches to overcome the
application integration problem have been proposed, i.e.
CORBA [26], EAI [23], ESB [12], etc. Despite these
approaches relying on different technologies and mech-
anisms, they share a common point of view: software
engineers are responsible for understanding the different
application specifications and coordinating them to build
a more complex system. Figure 5 (a) depicts the necessary
process to deploy a solution using an ESB. This process
consists of two phases. Firstly, the software engineer
must create the configuration file used for the ESB to
initialize listeners in the startup phase. In this way, the
software engineer must know with a high level of detail
the different applications that he/she wants to integrate,
i.e. accepted inputs and outputs, listener ports, protocols,
etc. Secondly, in the execution phase the ESB is ready to
accept messages and transport them among applications
using the information stored in the configuration file. As

11http://www.semeuse.org/
12http://petals.ow2.org/

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 825

© 2009 ACADEMY PUBLISHER

Software
engineer

Parser
Configuration
Manager

Listener

Communication Layer
(HTTP, FTP, POP, JMS...)

ESB

App 1
App 2

ESB

XML

Conf.

file

S
ta
rt
u
p
 p
h
a
s
e

E
x
e
c
u
ti
o
n
 p
h
a
s
e

Software

engineer

Goal

Parser
Assistant

XML

Conf.

file

XML

Parser

Configuration

Manager
Listener

Communnication layer

(HTTP, FTP, POP, JMS...)

Repository

DL-Reasoner

SAWSDL

file

Instance

Repository

ESB's object

ontology

Domain

ontology

SESB

S
ta
rt
u
p
 p
h
a
s
e

(a) (b)

Figure 5. (a) Typical ESB usage. (b) SESB user interaction model.

we can see, the entire process relies on the configuration
file coded manually by the software engineer.

Until today, proposals have been focused on providing
a middleware to solve heterogeneity and communication
problems among applications without taking into account
information relative to the meaning of the data that
these applications can process. So, a tool capable of
processing this kind of information would be very helpful
for software engineers. Our aim relies on applying this
idea to Semantic Web Services. In this way, a tool like
this could facilitate frequent tasks in this field such as
service composition [28] and discovery [27]. This idea
tries to avoid writing the configuration file manually. We
can imagine a software engineer trying to integrate several
Semantic Web Services with the aim of building a more
complex service in a composition process. Ideally, the
software engineer could introduce the required goal13 and
the ESB would be able to create the configuration file in
an automatic or semi-automatic way using the available
semantic annotations (see Figure 5 (b)).

The SESB aims at providing developers with a middle-
ware that facilitates application integration tasks through
Semantic Web Service technology. There are two different
ways to build such infrastructure using an ESB. The first
one uses the ESB as the base layer for building the
architecture on which different components are deployed.
Those components will be responsible for the manipula-
tion of the semantic required by Semantic Web Services.
In this way, the ESB does not realize the existence
of semantic information and treats those components as
usual. The second one tries to extend the ESB adding a
new module responsible for understanding the semantic
annotations over the artifacts deployed on the ESB.

In this work, we combine both approaches. On the
first hand, we take advantage of the WSMX functionality
applying the first approach. WSMX components will
provide us with the required functionality to deal with

13Please, see [8] for more details about the relevance of goalsin
execution semantics

Semantic Web Services. However, deploying each WSMX
component within the ESB is not enough to manage the
semantic of the information that flows encapsulated within
the messages interchanged through the ESB. So, secondly,
we extend the ESB with the capability of inspecting the
semantic of the information available in the messages.

The main effort of this work has focused on developing
the tasks included in the first approach. Nevertheless, an
overview describing the functionality mentioned in the
second approach has been stated.

IV. CONTRIBUTION

In this section, we first show how our proposal can
be used by a software engineer to perform application
integration tasks. We then focus on implementation details
and describe how to combine WSMX with an ESB to
achieve the previous stated functionality.

A. Semantic ESB overview

The SESB deals with semantics relying on a couple
of assumptions: (1) it uses available information stored
as instances of an OWL-DL ontology, namely the ESB’s
object ontology, which models the objects that the SESB
can understand (filters, transports, endpoints, etc.); (2)
Web Services are annotated using SAWSDL references
that point to concepts in the ESB’s object ontology and
concepts in a domain ontology.

The startup phase begins when the user (the software
engineer) introduces the required goal. Goals represent
the user’s preferences and they will be introduced to the
system using WSML. Therefore the developed infras-
tructure will be WSMO compliant. After that, a parser
processes the goal and sends the information to the rea-
soner. This component relies on the ESB’s object ontology
and domain ontology to get information about suitable
Web Services. The system generates a first version of the
configuration file using the information provided by the
reasoner. In this way, the user does not have to know low
level details about Web Services, i.e. binding information.

826 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

The SESB will be able to check the compatibility between
different Web Services and ask the user for required
code such as the creation of adapters to overcome the
heterogeneity of inputs and outputs. The assistant is the
component responsible for providing this functionality
and completing the configuration file. This file can be
stored in a repository for later use. When the configuration
file is completed the configuration manager processes it
and prepares the system to receive messages in the exe-
cution phase. The figure 5 (b) depicts the aforementioned
functionality.

B. Deploying WSMX components on ServiceMix

At this point, we have already mentioned what should
be the purpose of a new WSMX version, namely an
architecture addressing issues such as scalability and
pluggability in a flexible way. In previous sections we
justified the use of an ESB as an appropiate infrastructure
to achieve our targets. In this section, we explain how to
deploy the WSMX components on ServiceMix. In order
to understand the deployment process the reader needs to
be familiar with the JBI specification (see [14]).

Components deployed on top of a JBI compliant ESB
communicate internally by exchanging messages through
the Normalized Message Router (NMR), which is respon-
sible for the message normalization. ServiceMix, as a
JBI compliant ESB, recognizes two kinds of components
depending on the functionality, namely,service engine
(SE) andbinding component (BC). The service engine
provides business logics to other components. On the
other hand, the binding component provides connectivity
to external services in a JBI environment.

Using the functionality provided by both types of
components, the JBI specification allows two different
ways of deploying the WSMX components:
Case A: Deploying each WSMX component as a Web
Service separately from the ESB. In this case it is neces-
sary to use an application server which is responsible for
executing the business logic offered by the Web Service.
Therefore, a Web Service environment like Apache Axis14

is required. The ESB only plays the role of a communica-
tion and orchestration manager, processing the different
messages to and from the Web Service that wraps the
WSMX component. The application server manages all
the events (exceptions, invocation methods, etc) produced
at runtime. Figure 6 (a) depicts a schema that represents
this scenario.

Case B: Deploying each WSMX component as a SE in
the ESB. In this case, the ESB provides the container
for the execution of the business logic. Communication
with an external service container is not required. The
SE provides the functionality for the deployment of the
WSMX component. Figure 6 (b) depicts a schema that
represents this scenario.

A priori, it seems that the second approach offers
better performance because it minimizes the number of

14http://ws.apache.org/axis2/

Requestor

Axis

Application

Server

IMRM
Web Service

(1)

(4)

(5)

ServiceMix

NMR

BC

BC

(2)

(3)

(6)

(7)(8)

(a)

Requestor

(1)

(6)

ServiceMix

NMR

IMRM SE

BC

(2)

(3)(4)

(5)

(b)

Figure 6. Possible deployment schemas in the JBI specification. (a)
Deployment schema for the In Memory Resource Manager (IMRM)
component wrapped as an independent Web Service using Axis2. (b)
Deployment schema for the IMRM as a Service Engine within theJBI
compliant ESB. For more details about the Normalized Message Router
(NMR), Binding Component (BC) and Service Engine (SE), please refer
to [14].

messages exchanged in the system. In order to justify
this hypothesis we provide an analysis in Section V. The
obtained results confirm that the strategy depicted in the
case B is more efficient. The explanation for this relies
on the number of transformations that the NMR needs to
process in each scenario. In this way, the analysis shows
that the number of transformations carried out by the
NMR is directly proportional to the number of hops in
the architecture. A hop is defined as a message exchange
between a service provider and a service consumer. The
case A involves 4 hops whereas the case B only 3. Note
that there are at least 2 hops in each communication
process between 2 components because the NMR always
takes part in the message exchange.

Figure 7 depicts a conceptual view of the WSMX
deployment using the ESB.

C. Routing messages with the ESB: towards a declarative
execution semantics

In the previous section we described the mechanism
used from the JBI specification to achieve the com-
munication process between two components. Despite
the message exchange relying on this functionality, a
higher level abstraction is required in order to model the
execution semantics and facilitate the development.

In Section II-A.2 we compared the deployment task
of the different WSMX components with an application
integration problem. At this point, the following question
arises, why not deploy the WSMX components inside
the ESB using application integration patterns? What we
need in our platform is an abstraction that allow us to

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 827

© 2009 ACADEMY PUBLISHER

Enterprise Service Bus

BPEL XSLT Rules

JBI Transformation, Routing and Correlation Services

Scripting

SOAP Files
JCA

Resources
Legacy
Apps

JBI Binding Components

Service
Discovery

Orchestration Choreography Data
Mediator

Resource
Manager

Discovery

WSMX functionality

Apache ServiceMix + Apache Camel

WSML Editor
Visualizer

Data Mediation
Mapping Tool

WSMX Management
Monitoring

WSML
Reasoner

WSMT - Web Services Modelling Toolkit

Figure 7. WSMX deployment on Apache ServiceMix

model the behaviour of the system without modifying the
already implemented functionality. In this way, a software
like Apache Camel15 can be useful for this scenario.
Apache Camel is an open source integration framework
that implements most of the known integration patterns
[23]. Apache Camel and Apache ServiceMix are fully
compatible solutions appropiate for integration scenarios.
The idea consists of decoupling the deployment process
from the behaviour model using the integration patterns
provided by Camel on top of ServiceMix.

Apache Camel provides a Java DSL (Domain Spe-
cific Language) that facilitates the implementation of the
execution semantics using a declarative approach. The
information codified in Java DSL is mapped to an XML
file that ServiceMix is able to process. In this way,
each Java DSL file will model an independent execution
semantic. This allows the modification and the addition
of new behaviour in the system overcoming the limitation
of the previous WSMX version: there is no necessity to
re-implement functionality already workings.

The first steps towards the migration of the current
execution semantics model analyse the current WSMX
functionality from the client point of view. The current
version of WSMX exposes all the functionality like Web
methods callable following a Web Service approach.

A common issue in the execution semantics is the
message flow. There is no execution semantics without
message exchange. Usually, when the messages flow
in the system the coordinator component takes some
information available in the message into account to
send it to the destination. In the current WSMX version
this functionality is hard-coded independently of any

15http://camel.apache.org/

execution semantic model. Each time when an event
comes up a state transition takes place in the system.
As mentioned in section II-A.2, WSMX models the
execution semantics using a state pattern [20]. States
are implemented like independent objects and transitions
among two states produce the change of context from
the first object (previous state) to the second object
(current state). These transitions are carried out through
the dynamic binding mechanism implemented by object-
oriented programming languages. Dynamic binding is
a consequence of polymorphism. Polymorphism is the
ability of one type A to appear as and be used like
another type B. The main use of polymorphism is the
ability of objects belonging to different types to respond
to method, field, or property calls of the same name, each
one according to an appropriate type-specific behavior. It
is not necessary to know the exact type of the object in
advance, and so the exact behavior is determined at run
time (this is called dynamic binding).

Taking advantage of the information available in the
messages it is possible to apply the content-based router
pattern to this scenario. Basically, what this pattern can
do is sending the messages to different destinations de-
pending on the content (in the same way than a postman
puts the letters in the mailbox). Figure 8 depicts the path
followed by each WSMX execution semantics. In this
sequence diagram, message number three is the message
responsible for the initiation of the specific execution
semantics by calling the first state in each specific model.
Figure 9 summarizes this behaviour.

Figure 10 depicts a possible message flow implemen-
tation using EAI patterns. When the user introduces the
goal a new message comes to the system through a queue

828 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

Service
Requestor

Adapter WSMX Entry
Point

Execution
Manager

1: MakeWSML(anyMsg)
2: SendMsg(WSML)

3: ChooseExecSemant()

4: Service_result6: Service_result 5: Service_result

Figure 8. General entry point selection path (extracted from [8])

Discovery

Service
Discovery

Choreography

Orchestration

Mediation

Resource
Manager

WSMX
EntryPoint

WSMT WSMX instance

Requestor

(1)
Enter goal request

(4)
Goal response

(2)
Send goal request

(3)
Get goal response

Figure 9. Global message flow overview interacting with WSMX

(Goal.in in Figure 10). Once the message is dispatched a
correlation ID is added to it. This ID allows the identifica-
tion of messages concerning a same goal. In this way, the
messages exchanged by the different WSMX components,
to achieve the requested goal, have the same ID during the
whole execution. This mechanism allows the existence of
several goals within the system in a concurrent way. The
content-based router allows to consume messages from
an input, evaluate some predicates and then choose the
right output destination. When a message reaches its des-
tination, i.e. the requested WSMX component, required
operations are performed on it. During the execution of
the operations the component can require the functionality
of a different WSMX component. If this happens new
messages with information about the next destination are
delivered. A pipeline is needed to transform the received
in-only message to anin-out message. These new mes-
sages are queued while the system is able to process them
(ES.queue in Figure 10). The same process is repeated
until the execution of the goal is done. At this point, the
content-based router sends a message with the results to a
queue (theGoal.out in Figure 10) where the requester will
take it. Execution semantics is defined by the described
message exchange. Predicates codified within the content-
based router and the routing information generated by
different WSMX components establish the message flow,
i.e. the execution semantics. Note that details about syn-
chronization regarding to the behaviour of the individual
components are not discussed here, however, they need to
be considered. Component behaviour and interfaces are
described in WSMX architecture document [18].

The use of enterprise integration patterns allows us to
replace the previous hard-coded approach of the execution
semantics with a declarative approach relying on rules.
This new way provides a more efficient and scalable
solution that improves the previous version in the search
for an appropiate environment for Semantic Web Services.

Figure 10. Message flow implementation using EAI patterns

V. PERFORMANCETESTS

This analysis shows the results obtained with the test
executed on the architecture in construction. The target
of these tests is to weigh up the differences between the
two possible approaches of deployment, namely, as an SE
within the ESB (see Figure 6 (b)) or as a Web Service
running in an independent application server (see Figure
6 (a)).

We have used JMeter16 to perform the analysis. JMeter
is an open source tool developed in Java that allows us to
execute stress tests simulating a heavy concurrent load on
a server, network or object to measure its strength or to
analyze overall performance under different load types.

For our analysis we have configured a workbench using
a group of 10 threads which simulates the number of users
or connections to our server. The test has been executed
100 times, so in total we can study how the server behaves
over a set of 1000 samples. A sample is defined as a
request to the server, in our case a SOAP request. The time
that JMeter requires to get all threads running is known
as ramp-up period. For example, if there are 10 threads
and a ramp-up period of 60 seconds, then each successive
thread will be delayed by 6 seconds. In 60 seconds, all
threads would be up and running. In our experiment the
ramp-up period has been established at 1 second. With
this test we will measure the number of requests per time
(throughput) that the server is able to handle in order
to achieve the invoked operation. In this way, a higher
throughput means that the server requires less time to
perform the request. This calculation includes any delays

16http://jakarta.apache.org/jmeter/

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 829

© 2009 ACADEMY PUBLISHER

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

#samples

m
s

tomcat deployment

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2
x 104

#samples

m
s

outside deployment

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

#samples

m
s

inside deployment

data
average
deviation
median

Figure 11. Test results over the different deployment strategies. From the top to the bottom: (a) deployment as an external Web Service using
Apache Axis 2 and Apache Tomcat. (b) deployment on ServiceMix using a Binding Component to communicate with an external Web Service
running on Apache Axis 2 and Apache Tomcat. (c) deployment asa Service Engine within Apache ServiceMix.

added to the test and JMeter’s own internal processing
time. The advantage of doing the calculation like this is
that the result represents something real - the server in fact
handled that many requests per minute, and the number
of threads can be increased and/or the delays can be
decreased to discover the server’s maximum throughput.
Whereas if calculations were made that factored out
delays and JMeter’s processing, it would be unclear what
could be concluded from that number.

All tests have been executed in the same machine. In
this way, the obtained results are independent of network
issues. The machine used is a 2.2 GHz Intel Core 2 Duo
with 1GB 667 MHz DDR2 SDRAM and Mac OS X
v.10.5.2.

Figure 11 depicts the different scenarios. For all of
them, we have performed the test against the WSMX
In Memory Resource Manager (IMRM) deployed as a
Web Service. From the top to the bottom: (a) deployment
as an external Web Service using Apache Axis 2 and
Apache Tomcat; (b) deployment on ServiceMix using
a Binding Component to communicate with an external
Web Service running on Apache Axis 2 and Apache
Tomcat; and (c) deployment as a Service Engine within
Apache ServiceMix. For each case, this figure shows how
much time it takes the server to handle each request. The
x-axis depicts the samples and the y-axis depicts the time
in milliseconds that each sample needs to be executed.
Furthermore, information about the average, median and
deviation are depicted. The data legend shows us the
widely dispersed data, representing the large value of

the deviation across all samples for this test. In the case
where the results are highly skewed or not symmetrical
using “mean” would result in inaccurate representation of
response time. The median value would closely approxi-
mate the response time. Comparing the three graphs, the
case (a) offers the best result, while using the case (b)
the worst performance is obtained. The case (c) offers
an intermediate result. Note that the case (a) emulates a
direct communication with the IMRM component, so it
is normal that it gets the best result. The important thing
here is what we can conclude from the use of an ESB
regarding to graphs (b) and (c). Using an ESB increases
the time of response. This fact affects the case (b) in major
grade than the case (c). The explanation for this relies on
the amount of messages required by each case (see Figure
6).

One more detail on these graphs can be appreciated at
the beginning of each test. In case (a) the time of response
increases during the first 100 samples. At this point of
the execution the time of response reaches the stability.
This behaviour is consequence of the stated ramp-up
period which indicates that at this point all connections
are sending requests to the server. On the other hand, in
cases (b) and (c) the time of response decreases during
the beginning of the test. This does not mean that using
an ESB the system is independent of the amount of
connections, but the ESB consumes more resources and
it needs more time during the initialization. This time is
higher in case (b) than in case (c) as can be observed in
Figure 11.

830 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

3500

#samples

re
qu

es
ts

/m
in

ut
e

inside ESB deployment
tomcat deployment
outside ESB deployment

Figure 12. Throughput for each deployment strategy.

Figure 12 depicts the throughput for each scenario
obtained after the execution of this test. The throughput
is defined by

throughput =
60 ∗ 103

average
requests/min

The results for each deployment strategy show that the
throughput depends on the number of messages inter-
changed to handle a user request. In this way, the test
demonstrates that deploying components within the ESB
using a Service Engine results in a higher performance
than using a Binding Component that communicates with
an external application server. Our work relies on the
former, while other related works as Infrawebs makes use
of the latter (see Section II-C for more details related to
Infrawebs).

Finally, if we compare the throughput of the latter sce-
narios with the throughput obtained using Apache Tomcat
directly it is possible to measure the overload introduced
by the ESB. As was stated previously, this overload is
consequence of (1) a higher amount of message exchanges
and (2) a major requirement of resources in terms of
memory.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we describe how to build a Semantic
Enterprise Service Bus combining several technologies
such as OWL, SAWSDL and SOA. This kind of tool
allows software engineers to apply a bottom-up design
to deploy a solution that relying on the Semantic Web
Services approach. The aim is to develop a platform to
overcome the problems of current SOA, i.e. finding the
most suitable service for a certain requirement among

thousands of different services or building a complex ser-
vice from other simple services. We have also described
some ideas in order to improve the current WSMX version
towards a more adaptive infrastructure for the envisaged
Web of Services17.

All the necessary WSMX components have been de-
ployed as SEs within the ESB. Currently, we are im-
proving the communication system using EAI patterns
implemented by Apache Camel. In this way, our ongoing
work focusses on extending the language provided by
Camel with the aim of facilitating the adaptation of the
platform to future changes. This issue is compatible with
the idea of implementing a declarative approach for the
design of the execution semantics.

As future work we plan to validate the platform using a
real use case. We propose the development of adapters or
wrappers over existing SOA applications as an extension
to the described work. These adapters will allow the
application of a semantic layer over implemented Web
Services which will be reusable in the proposed SESB.
In this way, we are implementing a semi-automatic tool
to annotate Web Services using SAWSDL over concepts
in a domain ontology. This tool will be incorporated into
the SESB to facilitate the deployment of non-annotated
Web Services. Preliminary results have been published in
[22].

Future works will also address the extension of the
functionality provided by the choreography and orches-
tration modules in WSMO and the implementation of ses-
sions to facilitate government tasks during the execution
stage.

17Visit http://www.serviceweb30.eu for more information about a
future service world

JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009 831

© 2009 ACADEMY PUBLISHER

ACKNOWLEDGMENT

This work is supported by grants P07-TIC-02978
(Andalusian Government), TIN2008-04844 and HA2008-
0013 (Spanish Ministry of Education and Science).

We thank Srdjan Komazec of STI Innsbruck for numer-
ous discussions concerning this work and the reviewers
for their detailed comments.

REFERENCES

[1] The OWL Services Coalition. OWL-S 1.1 Release (2004).
http://www.w3.org/Submission/2004/SUBM-OWL-S-
20041122/.

[2] Fensel, D., Lausen, H., Polleres, A., Bruijn, J. de, Stoll-
berg, M., Roman, D., Domingue, J.: Enabling Seman-
tic Web Services. The Web Service Modeling Ontology.
Springer, 2006.

[3] WSDL-S. http://www.w3.org/Submission/WSDL-S/.
[4] SWSF. http://www.w3.org/Submission/2005/07/.
[5] Farrell, J., Lausen, H. (eds.): Semantic Annotations for

WSDL and XML Schema. W3C Recommendation (August
2007). http://www.w3.org/2002/ws/sawsdl/.

[6] OWL Web Ontology Language Overview. W3C Recom-
mendation 10 February 2004. http://www.w3.org/TR/owl-
features/.

[7] Emilia Cimpian, Matthew Moran, Eyal Oren, Tomas
Vitvar and Michal Zaremba. D13.0. Overview and
scope of WSMX. Technical report, February 2005.
http://www.wsmo.org/TR/d13/d13.0/v0.3/.

[8] Maciej Zaremba and Eyal Oren. D13.2v0.2 WSMX Ex-
ecution Semantics. Technical Report, February 2005.
http://www.wsmo.org/2005/d13/d13.2/v0.2/.

[9] Lyndon J. B. Nixon, Elena Simperl, Reto Krummenacher
and Francisco Martı́n-Recuerda. Tuplespace-based com-
puting for the Semantic Web: a survey of the state-of-the-
art. The Knowledge Engineering Review (2008), 23:181-
212 Cambridge University Press.

[10] Antonio J. Roa-Valverde, Ismael Navas-Delgado, JoséF.
Aldana-Montes. Semantic Web Services: towards an ap-
propriate solution to application integration. Handbook of
Research on Social Dimensions of Semantic Technologies
and Web Services. A book edited by M. Manuela Cunha,
Eva F. Oliveira, Antonio J. Tavares and Luis G. Ferreira.
2008.

[11] Antonio J. Roa-Valverde and José F. Aldana-Montes. Ex-
tending ESB for Semantic Web Services Understanding.
On the Move to Meaningful Internet Systems: OTM 2008
Workshops en Robert Meersman and Zahir Tari and Pi-
lar Herrero. LNCS 5333. Pp 957-964. ISBN 978-3-540-
88874-1.

[12] David Chappell. Enterprise Service Bus. O’Reilly (2004).
[13] Java Message Service (JMS).

http://java.sun.com/products/jms/.
[14] JSR 208: Java Business Integration (JBI).

http://jcp.org/en/jsr/detail?id=208/.
[15] Tijs Rademakers and Jos Dirksen. Open-Source ESBs in

Action. Manning Publications. September 2008.
[16] JSR 003: Java Management Extensions (JMX).

http://jcp.org/aboutJava/communityprocess/final/jsr003/
index3.html/.

[17] OSGi Alliance. http://www.osgi.org/.
[18] Michal Zaremba, Matthew Moran and Thomas Hasel-

wanter. D13.4.v0.2. WSMX architecture. Technical report,
June 2005. http://www.wsmo.org/TR/d13/d13.4/v0.2/

[19] Shafiq, O., Krummenacher, R., Martin-Recuerda, F., Ying
Ding and Fensel, D. Triple Space Computing Middleware
for Semantic Web Services. Proceedings of the 10th IEEE
on International Enterprise Distributed Object Computing
Conference Workshops, 2006.

[20] Erich Gamma, Richard Helm, Ralph Johnson and John M.
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. ISBN 0-201-63361-2.

[21] John Domingue, Dieter Fensel and Rafael González-
Cabero. SOA4All, Enabling the SOA Revolution on a
Word Wide Scale. Proceeding of the 2nd IEEE Interna-
tional Conference on Semantic Computing, August 2008.

[22] Antonio J. Roa-Valverde, Jorge Martinez-Gil and José
F. Aldana-Montes. Boosting Annotated Web Services in
SAWSDL. International Symposium on Distributed Com-
puting and Artificial Intelligence 2009. To appear.

[23] Gregor Hohpe and Bobby Woolf. Enterprise Integration
Patterns : Designing, Building, and Deploying Messaging
Solutions. ISBN 0321200683. Addison-Wesley, 2004.

[24] The OASIS Semantic Execution Environment
Technical Commitee. Available at http://www.oasis-
open.org/committees/tchome.php?wgabbrev=semantic-
ex/.

[25] Michael Stollberg and Barry Norton. A Refined Goal
Model for Semantic Web Services. Second International
Conference on Internet and Web Applications and Services
(ICIW’07), pp.17.

[26] The OMG’s CORBA website. Available at
http://www.corba.org/.

[27] Ulrich Kster, Holger Lausen and Birgitta Knig-Ries. Eval-
uation of Semantic Service Discovery - A Survey and Di-
rections for Future Research. Proceedings of the 2nd Work-
shop on Emerging Web Services Technology (WEWST07)
in conjunction with the 5th IEEE European Conference
on Web Services (ECOWS07), Halle (Saale), Germany ,
November 2007.

[28] Jinghai Rao and Xiaomeng Su. A Survey of Automated
Web Service Composition Methods. Semantic Web Ser-
vices and Web Process Composition. In LNCS, Vol.
3387/2005 (2005), pp. 43-54.

[29] OASIS Reference Model for Service Oriented Archi-
tecture 1.0. Available at http://docs.oasis-open.org/soa-
rm/v1.0/soa-rm.pdf.

[30] T. Hasselwanter, P. Kotinurmi, M. Moran, T. Vitvar and
M. Zaremba. WSMX: a Semantic Service Oriented Mid-
dleware for B2B Integration , In Proceedings of the 4th
International Conference on Service Oriented Computing
, Springer-Verlag LNCS series, December, 2006, Chicago,
USA.

[31] Brahmananda Sapkota, Zhangbing Zhou, Omair Shafiq
and Daniel Wutke. D4.5 Triple Space Integration with
respect to WSMX. Technical Report, April 2009.
http://www.tripcom.org/docs/del/D4.5.pdf

Antonio J. Roa-Valverde.This author became a member of the
University of Málaga in 2007. He was born in 28st April 1984 in
Puente Genil, Córdoba (Spain), studied Computer Science at the
University of Málaga and is member of this University sincethe
end of his degree. He is currently a Phd student and his research
interests include SOA, EAI and Semantic Web Services.

Jośe F. Aldana-Montes.This author became a member of the
University of Málaga in 1990, and is full time professor since
1994. He was born in 20st November 1965 in Málaga, studied
Computer Science at the University of Málaga. This author has
published a lot of papers in the field of Data Bases, reasoners
and Semantic Web.

832 JOURNAL OF SOFTWARE, VOL. 4, NO. 8, OCTOBER 2009

© 2009 ACADEMY PUBLISHER

