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Abstract— Knowledge-based networking involves the 

forwarding of messages across a network based on 

semantics of the data and associated metadata of the 

message content. However such systems typically assume a 

common semantic model underpinning the routing which 

limits their ability to cope with heterogeneity. In contrast, 

the authors have developed a semantic-based 

publish/subscribe system that is unique in allowing several 

semantic models to support routing. This paper examines 

the content heterogeneity problem in a Knowledge-based 

Network (KBN) implementation and evaluates a mechanism 

for efficiently and dynamically loading ontological 

mappings for use with distributed and heterogeneous 

knowledge-based applications. It compares a number of 

strategies that use pre-existing semantic mapping 

information stored in KBN routers. Evaluation results show 

that this mechanism can effectively solve the heterogeneity 

problem. 

I.  INTRODUCTION 

Given the rapid evolution and dynamism of 

networking, there is increasingly a desire to allow 

applications which were designed independently and 

using different information structures to communicate 

that information without the necessity of custom building 

gateways. Traditional Publish/Subscribe (Pub/Sub) 

systems [1][2] provides decoupling of identify between 

producers and consumers of transmitted information, but 

requires messages to be categorised into predefined types. 

In response, Content-Based Networks (CBN) have been 

developed [3][4][5]. These match messages to consuming 

client interests by specifying a filter on the messages’ 

attribute values. Several CBN solutions and prototypes 

exist, e.g. [3][4][5][6][7]. However, widespread CBN 

deployments have been slow to emerge. This is partly due 

to the difficulty in reaching a general compromise 

between the expressiveness of event types and 

subscription filters and the need both to match these 

efficiently at CBN nodes. The limitation of current CBNs 

is that they only support a very limited range of datatypes 

and operators for use in matching consumer subscriptions 

to message attributes, typically: Strings, Integers, 

Booleans, and associated equality, greater than, less than, 

and regular expression matches on strings. For a CBN to 

work on a large scale it needs to support a richer 

expressiveness that can cope with the widely 

heterogeneous and frequently changing range of message 

content and consumer subscriptions.  

Increasingly, researchers are turning to the use of 

ontology-based semantics to address this issue. Over the 

years, a number of ontology languages have been 

developed, focusing on different aspects of ontology 

modelling. For example, traditional ontology language 

(e.g., Ontolongua, F-logic) are only focusing on 

modelling ontology in a formal way, while the 

standardisation of ontology languages by the Semantic 

Web initiative at the World Wide Web Consortium 

(W3C) [8], e.g., the Web Ontology Language (OWL) [9], 

are more concerned with expressing and annotating 

metadata of information and data published by the web. 

The formal and decidable semantics of OWL ontologies 

support more expressivity than other languages such as 

XML and RDF, while automated reasoning allows the 

correctness of such ontologies to be checked 

automatically.  

These advances have spurred an increasing number of 

researchers to use ontology-based semantics to support 

interoperability in heterogeneous and evolving systems 

[10][11][12]. A CBN based on messages containing 

semantic mark-up and queries is potentially far more 

flexible, open and reusable to new applications. We call 

such a semantic-based CBN a Knowledge-Based 

Network (KBN).  

In this paper we focus on the problem where 

semantically enhanced messages may have been created 

with different ontologies describing those semantics. We 

first provide more background on knowledge based 

networking and then outline a number of strategies to 

deal with this semantic interoperability issue. We then 

identify and evaluate the semantic characteristics and 

semantic reasoning requirements that influence the 

selection of one of these strategies. We also introduce the 

use of a Bayesian Network (BN) mechanism to 

dynamically and efficiently select the appropriate 

semantic interoperability strategy in a manner that is 

cognisant of the important factors that influence strategy 

selection. We then present a design, implementation and 

evaluation of KBN that implements and adaptively 

selects these strategies.  

II.  KNOWLEDGE-BASED NETWORKING 

Knowledge-based networking involves the forwarding 

of messages across a network based on semantics of the 

data and associated meta data of the message content. In 

previous papers [13][14][15][16] we have presented 

Knowledge Based Network (KBN) implementations. In a 

KBN, producers of knowledge express the semantics of 

their available information based on an ontological 
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representation of that information. Consumers express 

subscriptions upon that information as simple semantic 

queries. The KBN broker network is then responsible for 

routing publication messages from producers (publishers) 

to interested consumers (subscribers). This approach 

provides loose semantic coupling between applications, 

which is vital as new waves of applications increasingly 

rely on using the application information, context and 

services offered by existing heterogeneous distributed 

applications. The particular flavour of KBN [16] which is 

investigated in this paper is an extension of the Siena 

CBN middleware [3] to incorporate ontological datatypes 

and ontological subscription operators.  

The use of an ontology is the key factor for enabling 

the semantic description of knowledge provided, queried 

and being routed around the network in KBN. It allows 

communication and knowledge sharing among distributed 

applications, by providing a semantically rich description 

and a common understanding of a domain of interest.  

Producers and consumers express the semantics of 

their publications and subscriptions according to a shared 

ontology. This same ontology is then used by the KBN 

routers to efficiently route publications towards 

subscribers that have lodged subscriptions that match 

those publications.  

As described in [13] and [17] the authors explore a set 

of applications to motivate the use of knowledge-based 

networking. In particular knowledge-based networking is 

best suited to applications where producers of 

semantically enhanced information are not bound to 

subscribers and so cannot pre-agree on subject 

classifications or types to label or tag messages. This 

approach is also ideal where subscribers require a rich 

and expressive subscription mechanism, above that 

provided by content-based networking approaches. 

Motivating examples of the use of knowledge-based 

networking, described in [13] [17], include: 

• Decentralised semantic service discovery, whereby 

semantic web services can be composed based on 

expressive KBN subscriptions. [18] 

• Semantic sensor readings in a multi-domain 

heterogeneous ubiquitous computing application 

[16][19] 

• News distribution, whereby RSS feeds can be easily 

extended with semantic mark-up in Web 2.0 / 

Semantic Web [20] 

• Semantically rich notifications from heterogeneous 

network elements to support multi-protocol 

Operational Support Systems [21] 

• Distributed fault correlation, where the causal 

relationships between network faults can be encoded 

semantically rich notifications, thereby supporting 

automated fault correlation by way of semantic 

subscriptions [22]  

However, given the rapid evolution and dynamism of 

many distributed applications, there is increasingly a 

desire to allow applications which were designed 

independently and using different information structures 

to communicate that information without the necessity of 

building custom semantic interoperability gateways or 

proxies. Therefore, in some cases it is unreasonable to 

expect that all of the knowledge producers, knowledge 

consumers and knowledge routers have previously agreed 

on a single semantic model. 

III.  RELATED WORK 

Currently, a number of solutions utilise ontology 

technology in Pub/Sub systems. A comprehensive review 

of such systems is presented in [17], however the most 

influential systems are briefly described here. S-ToPSS 

[23] is a semantic-aware content based network, it 

proposed three approaches to enhance subscriptions and 

events semantically, in order to make the existing 

centralised syntactic matching algorithm semantic-aware 

while keeping the efficiency of current event matching 

technique. Another system called Ontology-based 

Pub/Sub system is developed by [10]. Aiming to improve 

expressiveness of events and subscriptions, it uses RDF 

and DAML+OIL techniques to describe events and 

subscriptions, where events and subscriptions are 

represented as RDF graphs and graph patterns 

respectively. However, this RDF graph-matching 

mechanism results in a system that can no longer perform 

simple (non-semantic) subscription matching. Another 

system described in [24] embeds ontological topic 

information with tagged/named values in XML-based 

messages. Subscribers can then subscribe to semantic 

topics using the SPARQL query language. Here all 

processing is performed at the client node, and again like 

the previous system does not support simpler non-

semantic subscriptions. Reference [25] presents an 

independent concept-based layer which is built between 

the notification service and the Pub/Sub application to 

provide a high level interaction among applications, in 

order to tackle the problem of event interaction among 

heterogeneous applications. There the semantic extension 

is performed at the edge of the network rather than deep 

in the network as demonstrated in this paper. 

Furthermore, our previous work [21] demonstrated how 

through the use of ontology and ontology mapping 

techniques applications built according to different 

standards (CIM and SMI were used) could interchange 

fault alarms over a Content Based Network (Elvin) [4] 

using an ontology based approach. Again, this system 

added semantics only at the edge of the network. 

However all ontological Pub/Sub Systems introduced 

above use a single common ontology to provide a 

semantically rich description and a common 

understanding of a domain among their applications in 

comparison to the extended KBN which supports 

multiple diverse ontologies. 

IV.  SEMANTIC MAPPINGS 

A Semantic Mapping is defined as the establishment of 

correspondences between a set of source ontologies. In 

our work we assume that the ontologies are expressed in 

the web ontology language (OWL) [9]. There is still no 

common way to specify the mappings using one 

particular language. In this work OWL itself is also used 
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to describe the mappings of the ontologies. OWL’s 

standardisation and direct support for semantic relations 

(i.e., equivalence, subclassof etc) made it the ideal choice 

for use here. In particular, with OWL, we use 

equivalence, subsumes and subsumed by relationships to 

express the mappings. (The subsumes relationship 

describes the super-class and super-property 

relationships. Subsumed by captures the sub-class and 

sub-property relationships. Equivalence can be used with 

classes, properties and individuals.) If more complex 

mapping types are required, another mapping language 

might be chosen, but the choice of mapping languages 

must be considered carefully in order to maximise 

interoperability and mapping reusability.  

In order to illustrate this approach we give a concrete 

mapping example, however, the approaches discussed in 

this paper are independent of the actual contents of the 

ontologies. Fig. 1 describes a selection of mapping 

relations between classes and properties from two 

ontologies. The ontologies xgpl-regn1 and xgpl-regn2 are 

region description ontologies, made by the authors. To 

make a mapping between these two ontologies we first 

need to import both into a new mapping ontology so that 

the rest of ontology description will be able to refer to the 

existing elements that are previously defined in an 

involved ontology. Second, we establish mappings 

between elements of the involved ontologies. For 

instance, one class of an ontology may be considered as a 

subclass of another class of another ontology (xgpl-

regn1:Village is a subclass of xgpl-regn2:RuralUnit in 

Fig. 1). Finally, two relations (subsumption and 

equivalence) between properties from the involved 

ontologies can be determined by comparing their 

members (xgpl-regn1:ishouseof is a subProperty of xgpl-

regn2:isbuildingof in Fig. 1).  

Now, let us assume that xgpl-regn1 is the main 

application and routing ontology distributed among some 

KBN routers. If there is a service provider interested in 

event about the xgpl-regn1:City concept, it subscribes a 

query expressed by concept xgpl-regn1:City to its closest 

KBN router. If this router receives a notification that has 

the same attribute name as used in the subscription filter, 

with a value that is an ontological concept, but the 

concept is xgpl-regn2:EuroCity (“EuroCity” is not 

defined in xgpl-regn1 but rather in xgpl-regn2), this KBN 

router needs to explore the mappings to find mapping 

relations containing “EuroCity” and “City” to resolve this 

unknown concept. In this case, the mapping ontology is 

explored, where the concept “City” is identified as 

superclass of the concept “EuroCity”. 

V.  SEMANTIC MAPPINGS IN A KBN ROUTER 

Before discussing how our KBN router model was 

extended to support semantic interoperability, the original 

KBN router model must be briefly discussed. Our KBN 

router is an extension of the Siena content-based router 

[3]. A Siena notification is a set of typed attributes. Each 

attribute is comprised of a name, a type and a value. 

Siena supports the following attribute types: string, long, 

integer, double and boolean. A Siena subscription is a 

conjunction of filtering attribute constraints. A constraint 

is comprised of the attribute name, a comparison 

operator, and a value. A subscription covers a notification 

if the event satisfies all filtering constraints of a filter. A 

notification is delivered to a client if the client has 

submitted a subscription filter satisfied by that 

notification. Siena also discovers aggregations between 

filters to optimise the subscription tree (subtree) at each 

router. As new subscriptions arrive at a router the 

subscription tree is searched to find the appropriate 

position to insert the new subscription. 

As mentioned the KBN implementation upon which 

this work is based extends Siena. In particular it was 

extended with three new ontological datatypes: Class / 

Concept, Individual / Instance, and Property; and three 

new ontological subscription operators: More-specific 

(sub-class / sub-property), Less-specific (super-class, 

super-property), and Equivalent (equivalent-class, 

equivalent-property, same-as-individual). To achieve this, 

each KBN router holds a copy of an ontology, within 

which each ontological class, property and individual is 

described. A more detailed discussion of the KBN router 

model, and how it is extended from the Siena CBN 

router, is presented in [15]. 

The KBN router design was then further extended to 

support heterogeneous ontologies in the network. Each 

extended KBN router is implemented with two ontology 

repositories: the main application ontology store provides 

the ontology for the KBN operation, whereas the 

mappings in the mapping ontology store are used for 

Figure 1: Semantic Mappings 
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helping the KBN router achieve semantic interoperability. 

In the original KBN router, every router had a copy of the 

same main application ontology, however in this 

extension each router can have a different local main 

application ontology, and a different set of mapping 

ontologies to support interoperability between application 

ontologies. All ontologies and mappings are provided by 

the administrators of the network. The ontology 

registration interface allows administrators to register 

both application ontologies and mappings with KBN 

routers. Both publishers and subscribers register with 

KBN router via a client registration interface, and they 

need to provide their own ontology that defines the 

knowledge bases used by the clients in their subscriptions 

and notifications.  

Subscriptions can arrive at the KBN router either 

directly from a client or forwarded from another node in 

the KBN network. The query subscription, using terms 

from the subscriber’s local ontology, is passed to the 

subscription tree (subtree) searching engine, which 

searches the subtree and inserts the subscription in the 

appropriate position. However, the subscription may use 

ontological terms that are not contained in the router’s 

local ontology, so the position to insert the subscription 

into the subtree cannot be immediately resolved.  

Similarly, when a publication arrives at a KBN router, 

either directly from a client or from another KBN node, 

the subtree searching engine walks the subtree to find 

appropriate matching subscriptions to find the set of 

subscribers (clients and other KBN nodes) that should be 

notified with the publication. Again, the publication may 

use ontological terms that are not contained in the 

router’s local ontology, so the set of matching 

subscriptions cannot be immediately resolved. 

If the subtree searching engine receives a subscription 

or publication with ontological terms which are not 

expressed by terms from the application ontology, the 

mapping management interface is called to explore the 

mapping store where the mappings were previously 

injected (see Fig. 2).  

VI.  SEMANTIC INTEROPERABILITY STRATEGIES  

If subscriptions or publications contain heterogeneous 

semantic content then an individual KBN router will 

occasionally encounter an unknown concept (or 

individual or property) that is not described in its own 

routing ontology. When a KBN router (Fig. 2) encounters 

an unknown ontological concept it should browse its set 

of semantic mappings to determine if it is able to handle 

that unknown concept. Since this operation may need to 

be performed on-the-fly, and may be a potentially 

expensive operation, there exists a number of different 

strategies to perform this searching and merging of 

mappings in an efficient manner. Currently there are three 

strategies available to incorporate semantic mapping 

information into the KBN router’s routing ontology as 

follows:  

• The “Every mapping file” Strategy (Every): forces the 

router to load all available mappings and imported 

ontologies (referenced in the mappings) into its 

routing ontology at once. This strategy maximises the 

exploration of mappings to tackle the unknown data 

problem.  

• The “Appropriate mapping file” Strategy 

(ApproOnly): the KBN router checks available 

mapping files for mappings that contain at least one 

concept used by the conflicting subscription or 

notification. It then merges the appropriate mappings 

and their referenced (imported) ontologies. 

• The “Appropriate individual mapping” Strategy 

(ApproInd): checks the mappings and merges only the 

appropriate individual mappings into the router’s 

routing ontology rather than the whole mapping file as 

in the second strategy. It does not include any 

referenced imported ontologies, just the individual 

mapping.  

VII.  FACTORS AFFECTING STRATEGY SELECTION 

Different KBN routers could store different routing 

ontologies along with different numbers of mapping 

ontologies. This can cause significantly different 

repercussions on the reasoning, matching and routing 

performance of a KBN broker executing a specific 

strategy to deal with unknown data. For instance, the 

“Every mapping file” strategy is well-suited for the 

routers which store a small number of mapping 

ontologies, whereas strategies that do not import some of 

the ontologies referenced by mappings are well suited for 

the routers with large number of ontologies. Furthermore, 

the strategies that import referenced ontologies are 

preferable to the large-scale environment where the 

occurrence of unknown data is high. It is noticed that in a 

small scale scenario, it may be possible to examine the 

application running over the KBN to statically determine 

which strategy is most appropriate. However, in a large 

scale deployment, or where the ontologies stored in KBN 

and applications using the KBN may change, then it is 

necessary to dynamically manage and adapt which 

strategy is most appropriate. Hence, different mapping 

strategies can be configured in different KBN routers 

depending on a number of factors, come of which may be 

A Notification containing a 

named attribute

Search the subscription tree for subscriptions 

referring to that named attribute

Forward 
message to those 

subscribers

Apply operators to in the subscriptions to find: 

1: The insertion point for the new subscription
2: The set of subscriptions that cover the new notification

Select mapping 
integration strategy

1. Discard 

2. Send to oracle master 
3. Send to subnode anyway, but not to subscriber

List of 
subscriptions 
that cover 
notification

Ordered list of 
subscriptions into 
which to merge 

new sub

Yes

Merge 
subscription

Update 
neighbours if 
necessary

Still Unknown?

Uses an unknown concept, 
property or individual.

List of related subscriptions

A Subscription with a filter 

over a named attribute

NoNo

Every: Load all mappings and referenced ontologies

ApproOnly: Check mappings and merge appropriate mapping onts

ApproInd: Check mappings and merge appropriate mappings only 

Figure 2: Semantic Interoperability in a KBN router 
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changing dynamically. We categorised the 

possible trigger factors into three main sets: 

characteristics of the ontologies; 

application characteristics; and 

environmental and networking 

characteristics. Given different possible 

mapping strategies, our recent research has 

focused on identifying which of the 

ontology, application and environmental 

characteristics will be important in 

influencing strategy selection and what that 

influence might be with a view to building 

a decision making component to support 

strategy selection. 

A.  Ontology Characteristics 

Firstly, ontology characteristics that may 

impact strategy selection at an individual 

router are: the current size of the routing 

ontology, the size of the mapping 

ontologies, the current complexity (DL 

expressivity) of the routing ontology, complexity (DL 

expressivity) of the mapping ontologies and their 

associated referenced imported ontologies. This set of 

factors was chosen from a large set of possible factors, as 

described in a previous publication [19], which concluded 

that this combination of number, size and expressivity of 

the ontologies are the most important ontology 

characteristics to influence the strategy selection 

component. These factors are important as indicators of 

the potential memory, time and processing overhead 

involved in merging and reasoning mappings and 

referenced ontologies into the broker’s own routing 

ontology, and the later overhead of querying these 

ontologies once loaded [26]. 

B.  Application Characteristics 

Secondly, the application characteristics that may 

impact strategy selection at an individual router are: the 

rate of publications and subscriptions arriving at the 

broker; the tolerance capability of KBN applications to 

respond gracefully to a false-positive/-negative match 

between a subscriptions and publication that may be due 

to a mapping being missed; the observed occurrence rates 

of unknown (not expressed by the routing ontology) 

ontological classes (and properties and individuals) in 

publications or subscriptions. Since the KBN network is 

essentially a middleware, built to facilitate the 

applications that operate above it, these factors are 

particularly important in allowing some of the 

characteristics of the application to inform the semantic 

interoperability strategy of the brokers/routers in the 

KBN network.  

C.  Environmental Characteristics 

Finally, the environmental states that may impact 

strategy selection at an individual router are: the network 

scale, where a KBN deployment can range from 

enterprise scale to internet-scale; memory resources at the 

individual router; and the number of mapping ontologies 

stored in the KBN router, and the number of ontologies 

imported or referenced by the mappings. It is important to 

note that each router/broker independently determines the 

appropriate strategy to use, yet individual (and possibly 

heterogeneous) brokers operate together as part of a 

cooperating network of brokers to achieve a decentralised 

knowledge distribution network. Therefore these network 

and environmental factors are required so brokers are 

cognisant of their resources and the topology in which 

they operate.  

VIII.  A BAYESIAN NETWORK TO SELECT THE 

APPROPRIATE STRATEGY 

Table 1 summarises the possible combinations of states 

of 11 of the most influential aggregated trigger factors 

that have significant impact on selecting mapping 

strategies. Therefore, based on this table, the human 

administrator could select the proper mapping strategy for 

an individual router through the observation of the 

combinations of the states of trigger factors. However, 

selecting mapping strategies purely based on Table 1 

proves to be a complicated and difficult task due to the 

following reasons: 

• As stated there are 15 individual trigger factors 
identified and each factor can have two or three 

states resulting in up to 315 combinations of factors. 

• Not all of the trigger factors have a direct 

independent impact on the decision making process, 

instead, some of the factors are interdependent and 

cumulative. For example, the network scale, 

message rate and observed unknown data rate 

together determine the rate of unknown data 

occurrences, which then has significant impact on 

selecting mapping strategies.  

• Table 1 is overly simplistic since there exists no 

determining factor to drive strategy selection. 

Instead, a mechanism to weigh the benefits and 

deficiencies of each strategy for a given observation 

of the factors is required.  

Figure 3: How the factors affecting strategy selection influence each other 
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• In a large scale deployment, as the factors 

influencing strategy selection change dynamically at 

each broker, it is infeasible to require a human 

administrator to manually select the appropriate 

strategy. 

It is worthwhile to explicitly express the relations 

between trigger factors and the selection/prediction of 

mapping strategies as shown in Fig. 3 as an influence 

diagram [27], a compact graphical representation of a 

decision situation for linking trigger factors and mapping 

strategies selection. The leaf nodes represent the 15 

application-, environment-, and semantic-level identified 

strategy selection factors. Intermediate/internal nodes 

represent combinations and interdependencies in the 

factors, while the root node represents the combination of 

factors to influence strategy selection.  

While the influence diagram in Fig. 3 shows the 

dependency grouping between factors it does not show 

the degree to which individual factors, and combinations 

of factors, should influence strategy selection. For this a 

probabilistic/weighting-based approach is required. A 

Bayesian Belief Network [28] was chosen as the most 

appropriate approach to achieve this. A Bayesian 

Network represents the probabilistic relationships 

between variables and allow predictions based on expert 

knowledge, historical data, and causal/correlation 

relationships. Each variable, represented as a node in an 

acyclic graph, can have a number of states and weighting 

for each state representing the probability that the 

variable will have that state/value. The state value for leaf 

variables is given or observed, and the weightings for 

each state of the internal variables is derived from a 

weighted combination of its input child variables’ states. 

This can proceed through a number of levels until a root 

variable’s state/value weightings represent the 

aggregation of all of the variables’ states in the graph.  

A Bayesian Belief Network was constructed based on 

the causality/influence hierarchy, shown in Fig. 4. The 

leaf nodes represent the observed variables, and the root 

node’s possible states represent the selection of one of the 

three semantic interoperability strategies. Therefore, the 

root node’s output state with the highest 

probability/weighting is therefore the appropriate strategy 

to use.  

In order to develop a credible and validated model for 

modelling mapping strategy selection decision-making, 

the author followed the guidelines proposed by [29][30] 

to develop, test and revise our Bayesian Network (BN) 

model to avoid potentially spurious or unreliable 

probability models. First of all, we developed an initial 

parameterised BN model. We then iteratively tested the 

BN model by using various combinations of input values 

and sensitivity analysis to readjust the network structure 

and state occurrence probabilities/weighting until it 

responded reasonably. We then tested the BN model with 

a series of case data to test the accuracy of model for the 

purpose of handling missing data on some nodes or 

states, after which the eventual model is produced, as 

shown in Fig. 4. Due to space constraints the rigorous and 

time-consuming process of finalising the belief network 

and the factor weighting are omitted from this paper.  

The final model, as shown in Fig. 4 consists of the 14 

leaf variables or inputs (measured or observed), 7 internal 

nodes whose derived state probabilities are based on 

weighted combinations of their children’s state values, 

and a single root node whose weightings indicate which 

strategy is most appropriate for a given set of values for 

the input variables. It should be noted that although the 

authors have painstakingly calculated default weightings, 

rankings, influence paths, and boundary values for each 

of the variables, these configurations are all dynamically 

customisable for different KBN deployments. (Note, in 

Fig. 4, the occurrence probabilities for each of the states 

at the leaf nodes are equal and so insignificant since the 

given state for these nodes is actually observed or given 

rather than calculated so the weightings are ignored).  

Table 1: Which strategy is appropriate for some factors  
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A.  Ontology-based Nodes 

“RouteOnt_size” refers to the current size, measured as 

the number of statements, of the current routing ontology. 

This is input variable is automatically measured and 

maintained by the KBN router. Ontology models with 

less than 1000 statements are regarded as small, 1000 to 

5000 statements are medium, and models with greater 

than 5000 are regarded as large. These boundary values 

are based on previous experiments by the authors 

[19][26]. 

“MappingOnt_size” refers to the size of mapping 

ontologies stored at the router, again measured as the 

number of statements, ranging in size from small 

(<1000), medium (≥1000, <5000), and large (≥5000). 

“Required_ReferOnt” refers to the size of the 

ontologies referenced by the mapping ontologies, again 

measured as the number of statements, ranging in size 

from small (<1000), medium (≥1000, <5000), and large 

(≥5000). 

“MergedOnt_size” is the probability that a newly 

merged routing ontology incorporating mappings will be 

small (<1000), medium (≥1000, <5000), or large (≥5000). 

This is conditional on the “RouteOnt_size”, 

“Required_ReferOnt”, “MappingOnt_size” nodes. 

“RouteOnt_express” refers to the reasoning complexity 

or DL expressiveness
1
 of the routing ontology. 

                                                           
1  Depending on the expressiveness of an ontology some of the 

following letters can be used to denote the presence of description logic 

features in the ontology, thereby capturing its reasoning complexity:  

AL - Attribute Logic: Conjunction, Universal Value Restriction, Limited 

Existential Quantification; C - Complement (together with AL allows 

Disjunction, Full Existential Quantification, i.e. ALC); R - Role 

Transitivity; H - Role Hierarchy; I - Role Inverse; O - Nominal; N - 

unqualified number restrictions; Q – qualified number restrictions; F - 

only functional number restrictions; SH denote the extension of ALC 

with transitive and hierarchical roles (ALCHR+); (D) – Datatypes.  

Ontologies with an expressivity of ALC or less are 

regarded a low expressivity, with ontologies ranging from 

ALC up to SHOIN being regarded as medium 

expressivity, with SHOIN and SHOIQ ontologies being 

considered highly expressive. These boundary values are 

based on previous experiments by the authors [19][26]. 

Like size, the expressivity of an ontology can be found by 

loading the ontology and then querying the ontology 

reasoner, however, with the aim of minimising the 

loading of ontologies these values can also be found from 

lookup tables. 

“Required_ReferOnt_express” refers to the DL 

expressivity of the ontologies referenced by the 

mappings, again ranging between low (<ALC), medium 

(≥ALC, <SHOIN), and high (SHOIN & SHOIQ). 

“Express_union” is the probability that the expressivity 

of a newly merged routing ontology incorporating 

mappings will be low (<ALC), medium (≥ALC, 

<SHOIN), and high (SHOIN & SHOIQ). This is 

conditional on the “Required_ReferOnt_express” and 

“RouteOnt_express” nodes. The DL expressivity of a 

merged ontology is the union of the expressivity of its 

constituent ontologies. 

B.  Environment-based Nodes 

“NumberofMappingOnts” refers to the number of 

mapping ontologies stored at a router. Less than 5 

mapping ontologies is considered small, 5 to 10 mapping 

ontologies is medium, with more than 10 being 

considered high. These boundary values are based on the 

authors’ empirical analysis. 

“NumberofReferOnts” refers to the number of 

ontologies referenced by the mapping ontologies, again 

ranging between small (<5), medium (≥5, <10) and large 

(≥10). 

Figure 4: The Bayesian Belief Network for selecting the appropriate semantic interoperability strategy 
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“NumOfStoredOnts” is the number of ontologies 

available on a KBN router, ranging between small (<5), 

medium (≥5, <10) and large (≥10). It is derived from the 

“NumberofMappingOnts” and “NumberofReferOnts” 

nodes.  

“AvailableMemory” refers to the memory allocation 

given to the KBN router application. An allocation of 

64MB or less is considered small, 64MB to 120MB is 

considered medium, with greater than 120MB being 

considered high. These boundary values are based on our 

knowledge of the implementation of the KBN router 

application, our experience with different reasoning and 

load configurations, and the availability of memory 

resources on mid-range developer workstations. The 

value for available memory can be detected from the 

runtime environment within which the KBN router 

application runs 

“MemoryResources” is the probability that the amount 

of memory resources available to the KBN router once 

mappings are loaded will be small (<64MB), medium 

(≥64MB, <120MB), or large (≥120MB). This is 

conditional on the “AvailableMemory”, 

“MergedOnt_size” nodes. 

“LoadtimeOverhead” is the probability that the amount 

of loadtime initialisation and reasoning of a merged 

ontology will be low, medium or high. This is conditional 

on the “MemoryResources”, “Express_union”, 

“NumOfStoredOnts” nodes. The weightings and rankings 

of input nodes to produce probability weighting for this 

node is derived from our previous work in determining 

the main factors that influence reasoning overhead 

[19][26][31] 

C.  Application-based Nodes 

“PubRate” refers to the average rate at which 

publications arrive at router/broker. A rate of 10 or less 

publications per minute is considered low, 10 to 20 is 

considered medium, while more than 20 is considered 

high. This is a subjective ranging of boundary values, 

cognisant of the authors’ observations of normal 

operation and loading capability of a KBN router, 

especially when combined with normal simultaneous 

loadings from subscription and unsubscription requests. 

The observed input value for this variable is calculated 

and maintained automatically by the KBN router 

application. 

“SubRate” refers to the average rate at which 

subscription requests arrive at the router, ranging between 

low (<10/min), medium (≥10/min, <20/min) and high 

(≥20/min). 

“UnsubRate” refers to the average rate at which 

unsubscription requests arrive at the router, ranging 

between low (<10/ min), medium (≥10/min, <20/min) 

and high (≥20/min). 

“MatchMsgRate” is the probability that the rate of 

publication to subscription matching rates will be low, 

medium or high. This is conditional on the “PubRate”, 

“SubRate”, and “UnsubRate” nodes. 

“ObservedUnknownDataRate” refers to the average 

rate per minute at which an unrecognised ontological 

concept (or individual, or property) is detected at a KBN 

broker. Where unknown data can occur in a publication, 

subscription or unsubscription we estimate that 3 

occurrences per minute is low, 3-7/minute is medium, 

and more than 7/minute is high. 

“NetworkScale” refers to the number of brokers 

comprising a KBN network. It is impossible to define 

concrete boundary values for this variable since it is 

inherently subjective. We estimate that a deployment 

with less than 5 brokers is small, 5 to 15 brokers is 

medium, and 15 or more is large. However, since this 

refers to just the number of brokers, not the number of 

clients attached to any broker, 15 brokers have the 

potential to support several thousand clients in a scalable 

manner. 

“UnknownData” is the probability that the aggregate 

rate of unknown data occurrences will be low, medium or 

high. This is conditional on the “MatchMsgRate”, 

“NetworkScale”, and “ObservedUnknownDataRate” 

nodes. 

“ToleranceCapability” refers to the tolerance the KBN 

clients may have when dealing with false-positive or 

false-negative subscription matches due to potentially 

missed semantic relationships due to the overly 

conservative loading of mappings. This variable is purely 

subjective, and we have not attempted to define boundary 

values to the low, medium and high states. We delegate 

the encoding of this variable to an administrator. It is 

envisioned that all brokers in a KBN might have the same 

value for this variable. 

D.  Final Strategy Selection Node 

The “Strategy_selection” node then provides a set of 

weightings ranking the three semantic interoperability 

strategies, thereby deciding the appropriate mapping 

strategy. This conditional on available memory resources 

(“MemoryResources”), ontology loadtime initialisation 

overhead (“LoadtimeOverhead”), mismatch tolerance 

(“ToleranceCapability”), and the unknown data 

occurrence rate at the router (“UnknownData”), each of 

which continuously change. The rankings between inputs 

and the probability weighting for this node is also based 

on our previous work [19][26][31]. 

IX.  EVALUATING THE AUTOMATIC SELECTION OF KBN 

SEMANTIC INTEROPERABILITY STRATEGIES 

As described above, based on a KBN implementation 

[15] derived from the Siena CBN system, an extension to 

support different semantic interoperability strategies was 

designed and built. This was then further extended into a 

system called KBNMap to support the dynamic and 

adaptive selection of appropriate semantic 

interoperability strategies as suggested by a Bayesian 

Belief Network presented in the previous section. The 

adaptive semantic mapping service provides a mechanism 

for the KBN brokers to self-select the mapping strategies 

at runtime to adapt to the changes of ontology, 

application and environment relevant key factors. This 

section presents a subset of the evaluation experiments 

carried out to verify the correct operation of KBNMap. 

The adaptability of the mapping service was also 
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considered in order to evaluate KBNMap’s support for 

adaptive semantic interoperability through the use of 

ontology mappings and probabilistic modelling 

techniques. The second evaluation goal was to assess the 

applicability of this mechanism for adaptively selecting 

mapping strategies, by evaluating the correct strategy 

weightings inferred and calculated from the probabilistic 

combination of factor weightings, given different 

combinations of observed values/inputs/evidence for key 

factors.  

However, since the Bayesian Network has 14 input 

variables, most with 3 possible states each, investigating 

the performance of KBNmap under such huge number 

combinations seems to be impractical. Indeed should 

such a scheme be applied to other semantic pub/sub 

systems then there may exist even more influential 

factors, with different numbers of states for each. 

Therefore, it is worthwhile to identify the key factors 

having the most significant impact on selecting mapping 

strategies, so that the KBNmap routers could be evaluated 

far fewer combinations of varying evidence. In addition, 

as KBNMap is mainly targeting at resolving 

heterogeneous information, the evidence of selected 

trigger factors need to be grouped into sets on the basis of 

combining the unknown data factor with other important 

factors. The method in evaluating the introduced 

mechanisms was divided into a number of stages. The 

first stage was based on our previous work [19][26][31] 

to define and categorise the set of the most important 

trigger factors to build a smaller set of test-cases. The 

next stage was to provide a routing ontology, a number of 

mapping files, and referenced ontologies with varying 

ontology characteristics for use by the applications and 

routers. The following stage was to design the general 

network setup, which includes a hierarchical topology of 

brokers and a mechanism to synthetically generate a 

configurable test-set of publications and subscriptions to 

inject into the KBNMap deployment. The final stage was 

to define a set of measurable performance key metrics.  

The selection of the most important factors was in 

accordance with the ranking of direct parent nodes of BN 

model described in the previous section. The selected 

factors (in order of importance) are:  

• “Observed unknown data rate” this factor is selected 
as the one that has the most significant influence on 

selecting mapping strategies since it mainly 

determines the rate of unknown data that actually 

received by the broker. For example the “Every 

mapping file” Strategy (Every) is well-suited for the 

environment where the unknown data is large, while 

the “Appropriate individual mapping” Strategy 

(ApproInd) is best where the unknown data 

occurrence is small. The “Appropriate mapping file” 

Strategy (ApproOnly) is a moderate trade-off in 

between.  

•  “Subscription and Publication rate”: these two 
factors are summarised as the message rate. The rate 

of messages determines the rate of message 

matching executed by the KBN broker where the 

unknown data are identified. When taken together 

with the “unknown data rate” the occurrence rate of 

subscriptions and publications with ontological 

terms not expressed by the routing ontology can be 

determined.  

•  “Tolerance capability”: this factor is selected since 
a low tolerance of missed mappings, resulting in 

false-positive of false-negative subscription 

matches, is a strong indicator that the ApproOnly 

and especially the ApproInd strategies may be 

inappropriate unless other factors outweigh this 

factor’s influence.  

•  “Available memory resources” is the last major 

influencing factor due to the differing resource 

consumptions of the mapping strategies. The Every 

strategy is preferable when the available resource 

are sufficiently large, while the ApproInd strategy is 

best-suited when memory is limited since only very 

targeted individual mappings are loaded.  

Of the four main factors, the “Observed unknown data 

rate” factor is the most influential, so we created 3 test 

cases where each of the other 3 factors were considered 

in terms of their effect in combination with the “Observed 

unknown data rate” factor. 

For the ontologies, it was decided to choose a set of 

real-world ontologies rather than creating ontologies 

ourselves. Our motivation for this is that they should be 

widely used data sets for evaluating current ontology 

matching systems, of relatively high quality, that they 

should be created by different people with diverse 

technical backgrounds and that the ontologies should 

range from small to large and from simple expressivity to 

complex expressivity. For this reason, we selected 

existing ontologies and their existing mapping files from 

Conference Track in the OAEI website [32], which is a 

well-known coordinated international contest to evaluate 

state of the art ontology matching systems. This test set 

introduces fourteen ontologies collected to benchmark 

semantic interoperability tools. In addition to the 

ontologies the dataset also contained a large set of 

semantic mappings between the ontologies. These 

mappings were then transformed into a format suitable 

for use by KBNMap and divided into smaller sets of 

ontological mapping ontologies. Since many of the 

mappings used the ekaw ontology (from [32]) as their 

canonical ontology, this ontology was chosen as the main 

routing ontology.  

As a research goal of this work is to distribute 

heterogeneous information in a large-scale networking 

environment, the topology adopted in this evaluation 

concentrates on a simple large hierarchical topology, 

which consists of 15 nodes (large-scale) running as 

dedicated KBN routing brokers. This hierarchical 

topology, shown in Fig. 5 arranged the brokers as deep as 

possible, with a publishing client on one side and a 

subscribing client on the other side, thereby artificially 

simulating a long route between clients to stress the 

KBNMap deployment. Each broker was pre-loaded with 

the ekaw ontology as their routing ontology and the large 

set of mappings and referenced ontologies pre-loaded into 

their mapping stores. Both of the clients were pre-loaded 
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with the ekaw ontology, and 13 other ontologies that were 

mapped to the ekaw ontology. The clients then inject 

synthesised semantic publications, subscriptions and un-

subscriptions drawn from these 14 ontologies into the 

network. 

A.  Comparing the Strategies 

Prior to evaluating the effect of introduced adaptive 

mapping service on the performance of KBNMap routers 

it is worthwhile to comprehensively understand the extra 

overhead introduced by each particular individual 

mapping strategy. KBNMap was first initialised to 

employ statically encoded (hard-wired) strategy selection 

for each of the 3 strategies. We then tested the 

performance of each individual strategy with respect to 

different levels of unknown data. 1) where the rate of 

messages across the network is high while the proportion 

of unknown data contained in messages is relatively 

small; 2) where the rate of messages across the network is 

high while the proportion of unknown data contained in 

messages is raised to a medium level; and 3) where the 

rate of messages across the network is high while the 

proportion of unknown data contained in messages is 

raised to a high level. Table 2 represents the 

configuration of the parameters in detail. For the purpose 

of evaluating networks in high load configurations, the 

message rates are specified as large (30 messages/min), 

while the observed unknown data rate ranges from small 

(2 messages/min) to large (12 messages/min) in different 

cases. In addition, the memory resources allocated to 

each router (40 Mb) and tolerance capability of end 

applications are specified as small, so each mapping 

strategy works in a worst-case deployment configuration.  

 
Variable Name 

 PubRate 

( /min) 

SubRate 

( /min) 

Unknown 

Data Rate 

( /min) 

Memory 

(MB) 
Tolerance 

small 

unknown 

data 

30 30 2 40 small 

medium 

unknown 

data 

30 30 5 40 small 

large 

unknown 

data 

30 30 12 40 small 

 

The first graph of Fig. 6, which shows the time taken 

to execute each strategy once, confirms our observations 

the ApproInd strategy is efficient for a single execution 

and is well-suited for the situation where the unknown 

data is rare, while the Every strategy is well suited for the 

situation where the unknown data occurrence is very 

large since its high “once-off” cost enables all potential 

unknown data to become known in one operation. 

Furthermore, considering the combination of 

characteristics and performance of the ApproOnly 

strategy it is well-suited for the situation where the 

unknown data occurs at intermediate rate.  

The second graph in Fig. 6, shows the sum of all 

strategy execution times across the entire network over a 

period of just over 1 hour. Here the Every strategy runs 

just once on each broker with a high once-off cost on 

each, while the other strategies must run repeatedly but 

with relatively low cost for each execution.  

These findings only discuss the impact of the high or 

low occurrence of unknown data on the selection of an 

appropriate semantic interoperability strategy. It should 

Table 2: Factor configurations to compare semantic interoperability strategies 

Figure 6: Comparing the semantic interoperability strategies 

Figure 5: An Experimental Hierarchical KBN topology for

evaluation 
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be noted that the other factors, such as network size have 

a major effect on strategy selection, thereby affirming our 

assertion that a more intelligent mechanism, such as our 

Bayesian Belief Network, is required for appropriate 

strategy selection.  

B.  Case 1: High Unknown Data Rate with High Message 

Rate 

In this experiment we evaluate the combination of two 

factors: the message arrival rate and the unknown data 

rate. While all combinations of these factors were tested, 

here we present a scenario where the unknown data rate 

was high (12 occurrences/minute) and the message rate 

was also high (publication rate and subscription rate were 

both set to 30/minute). All other factors were set to 

default high-load settings, for example, the large network 

deployment/topology shown in Fig. 5, memory resources 

were restricted to low (40MB), mismatch tolerance was 

set to low, with a large set of mappings and referenced 

ontologies available at each router. With these inputs the 

Bayesian Network produced a weighting of 42% for the 

Every strategy, 57% for the ApproOnly strategy, and 1% 

for the ApproInd strategy. The adaptive KBNMap 

implementation, incorporating a dynamically updated 

Bayesian Network, was then compared to an 

implementation where the semantic interoperability 

strategy was selected randomly from the set of 3 

strategies (KBNRan).  

As the experiment ran for over 1 hour, once for each 

KBN implementation, it is clear from Fig. 7 that the 

KBNRan deployment incorrectly executed the Every 

strategy early on, resulting in very high end-to-end 

publication matching times. However, once the mappings 

were loaded in most of the brokers the KBNRan 

deployment performed well. In contrast, the KBNMap 

deployment chose the ApproOnly strategy which resulted 

in lower publication matching times. In addition, at 

approx. 800 seconds into the experiment, most of the 

KBNMap routers adaptively switched to the ApproInd 

strategy. This was due to diminishing memory resources 

as the routers continuously loaded mappings and merged 

referenced ontologies, where the ApproInd strategy 

consumes less memory.  

For this experiment we also measured the end-to-end 

delay of the subset of the publications that matched a 

subscription and so were routed across the entire network 

over 15 hops. From Fig. 8 it is clear that KBNMAP 

performed better than KBNRan. 

C.  Case 2: Small Unknown Data Rate with Medium 

Mismatch Tolerance 

In this experiment we also evaluate the combination of 

two factors: the mismatch tolerance and the unknown 

data rate. While all combinations of these factors were 

tested, here we present a scenario where the unknown 

data rate was small (2 occurrences/minute) and the 

mismatch tolerance was medium. Again all other factors 

were set to default high-load settings as before. With 

these inputs the Bayesian Network produced a weighting 

of 1% for the Every strategy, 19% for the ApproOnly 

strategy, and 80% for the ApproInd strategy. As before, 

we compared the adaptive KBNMap implementation 

against the KBNRan implementation.  

Again, as shown in Fig. 9 the KBNRan 

implementation executed the Every strategy early on in 

several routers, and continued to poor performance at 

random intervals during the experiment as the remaining 

brokers also executed the Every strategy. By comparison 

the KBNMap implementation selected the ApproInd 

strategy, which resulted in the strategy being executed 

more often, but with predictably low overhead for each 

execution.  

As before we also measured the end-to-end delay of 

the subset of the publications that matched a subscription 

and so were routed across the entire network over 15 

hops. From Fig. 10 it is again clear that KBNMAP 

performed better than KBNRan.  

Figure 7: Pub Matching Time: High Unknown Data Rate with 

High Message Rate 

Figure 8: End-to-end time: High Unknown Data Rate with 

High Message Rate 

Figure 9: Pub Matching Time: Small Unknown Data Rate with 

Medium Mismatch Tolerance 
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D.  Case 3: Small Unknown Data Rate with High 

Memory Resources Available 

As with the previous experiments we also evaluate the 

combination of two factors: the memory resources 

available and the unknown data rate. Again all 

combinations of these factors were tested, but here we 

present a scenario where the unknown data rate was small 

(2 occurrences/minute) and the available memory as set 

to high (120MB). Again all other factors were set to 

default high-load settings as before. With these inputs the 

Bayesian Network produced a weighting of 2% for the 

Every strategy, 23% for the ApproOnly strategy, and 75% 

for the ApproInd strategy. As before, we compared the 

adaptive KBNMap implementation against the KBNRan 

implementation. 

Again, as shown in Fig. 11 the KBNRan 

implementation exhibited unpredictably high overhead 

early on in the experiment and then settled down to 

perform in a manner similar to KBNMap. Meanwhile 

KBNMap implementation again selected the ApproInd 

strategy, mainly due to the low number of occurrences of 

unknown data despite the availability of enough memory 

to execute the Every strategy. Again this resulted in the 

strategy being executed more often, but again with 

predictably low overhead for each execution.  

As before we also measured the end-to-end delay of 

the subset of the publications that matched a subscription 

and so were routed across the entire network over 15 

hops. From Fig. 12 it is again clear that KBNMAP 

performed better than KBNRan. 

X.  CONCLUSIONS & FURTHER WORK 

This paper presented a design, implementation and 

evaluation of a Knowledge-based Network extended to 

support semantic interoperability between multiple 

ontological knowledge-bases according to three 

alternative strategies. It is the first known such system to 

support multiple ontologies in this manner. We also 

identified the set of factors that influence strategy 

selection and when combined with a Bayesian Belief 

Network the KBNMap brokers adaptively and efficiently 

provides semantic interoperability services for resolving 

ontological heterogeneous data in a large scale network 

environment.  

The experiments shown, and others omitted for space 

reasons, show that the adaptive and self-configuring 

mapping strategy management mechanisms are clearly 

superior to the randomly disordered mapping strategy 

mechanisms. Both the publication matching times and 

end-to-end publication latencies when handling unknown 

data are significantly reduced by implementing the 

adaptive strategy selection engine in the KBN broker. 

This also verifies our claim that the default weighting 

calculated for the combination of ontology, application, 

and environment level factors are adequate, however, we 

are confident that with the reconfigurable nature of the 

Bayesian Network, the factor nodes, states, and weighting 

support finer tuning for specific KBNMap deployments. 

Figure 10: End-to-end Time: Small Unknown Data Rate with 

Medium Mismatch Tolerance 

Figure 11: Pub Matching Time: Small Unknown Data Rate with Large 

Available Memory Resources 

Figure 12: End-to-end Time: Small Unknown Data Rate with Large 

Available Memory Resources 
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Further work can build upon these results, e.g., by 

considering other and also more general scenarios. It is 

also hoped that the semantic interoperability mechanisms 

and evaluation metrics can be directly embedded in other 

KBN implementations, thereby allowing direct 

comparison with the system presented here. 
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