
Agent IDS based on Misuse Approach
F. A. Barika1 & N. El Kadhi2 & K. Ghédira1

1: Higher Institute of Management, LI3, Tunisia
farah.barika, khaled.ghedira@isg.rnu.tn

2: LERIA, Epitech, Paris
ECCE Dept. Chairman Ahlia University Bahrein

nelkadhi@ahliauniversity.edu.bh

Abstract— Most current IDS are generally centralized and
suffer from significant limitations when used in high speed
networks, especially when they face distributed attacks. This
paper shows that the use of mobile agents has practical ad-
vantages for intrusion detection. For this purpose we carried
out a comparative experimental study of some IDS, showing
their limits and then we propose an implementation of a new
MAFIDS (Mobile Agent for Intrusion Detection System)
model focusing on misuse approach. The performance of
MAFIDS is investigated in terms of detection delay, false
alarm and detection rate by comparing it to a centralized
IDS over real traffic and a set of simulated attacks.

Index Terms— Mobile Agents, Intrusions Detection System,
Misuse Approach, Detection Delay, False Alarm, Detection
Rate.

I. I NTRODUCTION

Over the years computer systems have successfully
evolved from centralized monolithic computing devices
supporting static applications, into a distributed comput-
ing called Network. Nevertheless, as our systems are
becoming more open, and so are the associated security
threats and vulnerabilities [1]. Thus, a key challenge is
to provide the computer systems with mechanisms to
overcome this attacks and threats. Security is crucial to the
success of active networking; especially when the current
network is characterized by its dynamic nature and its
increasing distribution. Traditional network relies on the
security mechanisms and policies deployed on the under-
lying operating system. Nevertheless, these measures are
insufficient, specially, for those systems the design and
implementation of which present security vulnerabilities
[2]. Among all security issues, intrusion is the most
critical and widespread. An intrusion occurs when an
attacker takes advantage of security vulnerabilities and
thus violates the confidentiality, integrity or availability of
the objects on the network. In other words, an intrusion
is informally defined as a deliberate attempt to violate
the security policy [3]. The taxonomy of the techniques
against intrusions is as follow [4] :

• Prevention: design, implement and configure the
system as correctly as possible,

• Dissuasion: devaluate the system by camouflage or
overestimate his protection,

Manuscript received January 1, 2009; accepted March 1, 2009.

• Detection: analyze the log file searching an intrusion
signature or an abnormal behavior,

• Deflection: make the intruder believe that his intru-
sion is a success, while being diverted to a controlled
environment,

• Correction: react when the intrusion takes place.

The field of automated computer security intrusion
detection is currently some twenty years old, the result
of which lead to Intrusion Detection system (IDS). The
goal of IDS is to analyze the event stream on the network
and identify manifestations of attacks. Commercial solu-
tions are, generally centralized and suffer from significant
limitations when used in high speed networks. It is too
tedious to detect a malicious action through the network,
especially when we should consider multiple distributed
events and even simultaneous. Most of the current IDS
assume that the environment is static, whereas, in reality,
the environment is dynamic and unpredictable. So, to
detect without mistake an intrusion and to make the appro-
priate decision at a favorable time we need a cooperation
of different sensors. It is advisable to consider mobile
agents as a challenge to intrusion detection. Among the
most remarkable characteristics of the agents we find the
cooperation to carry out a global objective. So the goal
of our research work is to develop a distributed intrusion
detection system using mobile agents.

For this purpose Our paper is organized as follow. We
present in the first section a background of IDS, point out
the limitations of the centralized IDS. We select a set of
opensource commonly used IDS, investigate their features
theoretically and experimentally and we distinguish their
limits. After showing the comparison tables we argue
the usefulness of mobile agent in the detection process,
present the architecture of our IDS, its implementation
and its behavior in front of the simulated intrusions.

II. IDS BACKGROUND

IDS play an important role in achieving survivability
of information system and preserve its safety from the
attacks [5]. An IDS can be classified as network-based
(NIDS) or host-based (HIDS) [6]. The major qualitative
difference between these two categories is that NIDS
base their analysis on information obtained by monitoring
the stream of data in the network to which the hosts

JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009 495

© 2009 ACADEMY PUBLISHER

are connected, while the HIDS perform their analysis on
information collected at a single host by the audit trails.
The HIDS act above the network layer making it unable
to detect some kinds of attacks [7] while NIDS infer their
decision from low-level network packets traveling among
hosts [8].

An IDS can also be classified into two categories,
according to the approach used in analyzing network
events: those based on behavioral approach, and, those
based on misuse approach.

• Behavior approach: it relies on models of the normal
behavior of a computer system [9]. Behavior profiles
may be focused on the users, the applications or the
network. In this approach, to detect abnormal activity
patterns, the predefined profile patterns are compared
with the actual ones in use. The detected patterns will
be considered as intrusions.

• Misuse approach: relies on a set of attack descrip-
tions, also called attack signatures [10]. These de-
scriptions are matched to the stream of audit data,
attempting to verify that the defined signature is
occurring.

Both behavioral and misuse approaches present ad-
vantages and disadvantages. An IDS based on misuse
approach can detect only those attacks that have been
defined. Behavioral approach able us to detect attacks
that are unknown in advance; this advantage causes a
large number of false positives occurred when an IDS
alerts an event that is not an intrusion [5]. Commercial
IDS products such as NetRanger [11] and RealSecure [12]
work on misuse approach.

A. IDS requirements

In [13], the authors have defined a set of desirable
characteristics for an IDS along two themes : functional
and performance requirements. In the following section,
we summarize some of these characteristics.

• Functional requirements
– The IDS must continuously monitor and report

intrusion,
– The IDS should have a very low false alarm rate,
– The IDS must provide enough information to

repair the system in the case of intrusion detec-
tion,

– The IDS must detect and react to distributed
and coordinated attacks. Coordinated attacks
against a network will be able to marshal greater
forces and launch many more and varied attacks
against a single target.

– The IDS should be adaptive to network topology
and configuration changes.

• Performance requirements
– Intrusion should be detected in real-time and

reported immediately to minimize the damage
to the network,

– The IDS must be scalable to be able to handle
the additional computational and communica-
tion load.

B. IDS limitations

The most common IDS shortcomings are :
• High number of false positives,
• Lack of efficiency : usually, when an IDS is faced

to a huge number of events in the network, it slows
down a system or drop network packets that it don’t
have time to process,

• Vulnerability to be attacked : many IDS have hier-
archical structures. This gives the opportunity to the
attackers to harm the IDS by cutting off a control
branch or even tacking out the root command.

Apart from these shortcomings, we will be interested
especially in the following limitations :

• Many of the existing network- and host-based IDSs
perform data collection and analysis centrally using
a monolithic architecture [14]. Indeed, the collection
of data achieved by a single host and even the
analysis is performed by a single module. Moreover
the centralize detection scheme suffers from number
of problems :

– A central analyzer presents a favorable target
to the attackers. If an intruder manages to neu-
tralize it, the entire network becomes without
protection,

– In case of high network load leading to exces-
sive data traffic, the system suffers from scal-
ability problems. A single analyzer unit limits
the network size,

– It is difficult to make modifications to the sensor
stations,

– Given that the collection of network data is
performed in a host other than the one to which
the data is destined give the possibility to the
attackers to make insertion and evasion attacks
[15].

Notice that Intrusions can consist of several steps that
occur at different hosts, and consequently cannot be
detected by a single sensor. The cooperation of different
sensors becomes a necessity for the identification of dis-
tributed intrusions. Thus using agent technology for IDS
can potentially overcome a number of the shortcomings
mentioned above.

III. C OMPARING IDS

We establish a comparative study of four open source
IDSs (SNORT, Prelude-IDS, Tamandua, Firestorm).
These IDS are commonly used. Through a set of sim-
ulated intrusion tests, we explore their general features
and limitations, and we show their weakness to distributed
attacks.

A. SNORT Features

SNORT is an open source NIDS. It is able to perform
the analysis of network traffic in a real-time using a
rule-driven language, which combines the benefits of
signature, protocol and anomaly based inspection meth-
ods [16]. In fact, Snort is primarily a rule-based IDS,

496 JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009

© 2009 ACADEMY PUBLISHER

however input plug-ins are present to detect anomalies
in protocol headers [17]. This NIDS is usually used to
detect various attacks such as port scan, buffer overflow,
web applications attacks and virus attacks.

SNORT has three basic components :

• Packet capture: Sniff and collect network event,
• Rule matching: comparative analysis between the

collected event and the attack signature,
• Output: the generated result from the rule matching.

An example rule is :

alert tcp $EXTERNAL_NET any->$HOME_NET
21 (msg:"FTP passwd
attempt" flags:A+; content:"passwd";)

The rule header consists of the action keyword alert
and everything else before the left parenthesis, and the
parenthesized list contains the rule options. This rule
matches TCP packets from any external source IP address
and port, to port 21 on the local network, containing
the string passwd and having at least the ACK flag
set. Whenever a matching packet is found, an alert is
generated with the text ”FTP passwd attempt”.

SNORT has three different modes:

• Sniffer mode: read all network packets and display
them into its interface,

• Audit mode: save the network event on the log file,
• Detection intrusion mode: analyze the network traf-

fic, compare it with the intrusion signatures and
perform actions accordingly.

B. Prelude-IDS Features

Prelude is a hybrid IDS framework [19]. It performs
either on a host (HIDS) or on a network (NIDS). Prelude
has a modular and distributed architecture which allows
installing the needed components at a specific node of
the network, such that, no network overload is occurred.
Prelude is an IDS based on the misuse detection. It relays
on the attack signature base of SNORT to analyze the net-
work event in a real time or in a differed time, by reading
the log file. Prelude uses the regular expression language
PERL (Practical Extraction and Report Language) which
allows writing a specific rules.

C. Tamandua Features

Tamandua is an open source NIDS which is based
on the misuse approach [20]. Tamandua uses distributed
sensors and a centralized console. The sniffer deployed by
this NIDS can collect packets from different connections
and performs the defragmentation process. Tamandua can
import SNORT rule sets. In case of intrusion, the IDS
can perform a pro-active reaction such as disabling an IP
address. In fact, the code of the instructions used includes
the RFC standard in order to support various protocols (IP,
UDP, ICMP, TCP). Besides, Tamandua has other features
such as a human readable signatures and session-based
network analysis.

D. Firestorm Features

Firestorm [51] is a hierarchical NIDS based on mis-
use approach. It is fully pluggable and hence extremely
flexible.

The architecture of Firestorm is composed of four
components :

• The probe: sniff the network events, analysis them
using the SNORT signatures and save the alerts in
an extensible log format.

• The extended log: presents a new format for the alert
data transport,

• The Stormwall: supervises the alerts and performs
tasks when a new extended log appears. The probe
notifies to Stormwall the modification of the log file,

• The consol: permits to the user to search, sort, filter,
link and extract data from the probe.

Firestorm presents the following characteristics :
• Comprehensive snort rule support,
• Preprocessors to allow supplementary detection

modes (anomaly or behavior approach),
• Full IP defragmentation.

IV. I NTRUSION SIMULATIONS

After the above overview, and in order to compare the
four previously described IDS, we propose to perform a
set of intrusion tests aiming at evaluating the following
aspects :

• Design of the system architecture and the network,
• Vulnerability of components,
• Configuration of equipments,
• Administration procedures of the detection process.

We use the NMAP [18] tool to simulate intrusions and
compare the selected IDS. We perform our tests on a
network with four Linux hosts.

A. The NMAP Port Scanning

The port scanning is used in order to observe the state
of a host or a network. This kind of intrusion allows
attacker to gather information about the opened ports (lis-
tening) which are a potential transmission routes. These
information help the intruder to infiltrate the system.

The port scanning has three variants: open scan, half-
open scan and stealth scan.

• Open Scan We consider two modes :
– TCP connect :

nmap -sT target

It opens a connection in a complete, classic
and legitimate manner. If the port is opened
then it will accept the connection. Otherwise the
connection will be refused (closed port). This
technique is fast, so that many parallel scans can
be performed. Besides, it does not require a root
privilege. If the result of the connect function is
equal to 0 then the relative port is open, else it
is closed.

– Reverse ident :

JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009 497

© 2009 ACADEMY PUBLISHER

TABLE I.
HALF CONNECTION (OPENEDPORT)

attacker → SYN → target
attacker ← SYN | ACK ← target
attacker → RST → target

nmap -I target

This mode permits to identify the characteristics
and the behaviors of the process which listens
to the port of the target. The attacker can use
the identification protocol which allows him to
identify the name of the owner of any process
which uses the TCP. The daemon relative to this
protocol is called ”identd”. If the port is open,
NMAP sends an ”identd request” to the port 113
reserved to the host target.

• half-open Scan
– TCP SYN Scan:

nmap -sS target

This mode consists on sending a SYN to the
target in order to initiate a connection. Then
the target will send an ACK (a valid sequence
number) which means that the port is opened. In
this case the attacker send immediately a RST
for canceling the connection, as shown in Table
I. The half-open scan is usually used to achieve
the TCP SYN Flooding.

• Stealth Scan Using this mode may avoid certain IDS
[4]. The stealth scan, which looks like unexpected
network traffic, can pass through the firewall and
routers.
This kind of intrusion takes advantage from TCP/IP
vulnerability. In practice, a closed port which re-
ceives an IP packet, sends a RST as a response. So,
there is no response the attacker concludes that the
port is opened. It is difficult to log the stealth scan
given that there is no connection completely opened.

– Stealth FIN Scan
nmap -sF target

The attacker sends a packet with an active
FIN flag to the target. The interpretation of the
response is the same as above. Nevertheless, the
attacker can have further information like the
kind of the OS. In fact, Windows systematically
sends a RST whether the port is opened or not.

– Fragmentation
nmap -s[F|X|N] -f target

It consists on the fragmentation of the IP pack-
ets, especially when the firewall, hosts and the
network do not perform defragmentation.

• Other Scans The attacker can use the ICMP packet
to know if the host is available or not. Indeed, he
can send an ICMP ECHO request (ICMP type 8) to
the target, and then if he receives ICMP ECHO reply
(ICMP type 0), he concludes that the host is active,
in other cases the target is disposed. This technique
is calledping sweep.

TABLE II.
COMMON FEATURESIDS COMPARISON.

SNORT Prelude Tamandua Firestorm
Type N H/N H/N N
OS L L L L
UP Yes Yes Yes Yes
GUI R R R R
Doc. Yes Yes No Yes
Port. Yes Yes No Yes
Op.S Yes Yes Yes No
Instal Yes Yes Yes Yes
TS S D D S

Type : Host based Intrusion Detection System (H)/Network based
Intrusion Detection System (N)
OS : Operating system (L: Linux by default)
UP : Updating Facilities
TS : Type of signatures (Rules(R)/simples filters (SF)/simples scripts
(SS))
GUI : Graphical User Interface
Doc. : Documentation
Port. : Portability
Open.S : Open Source
Instal : Installation (Static (Monolithic) (S), Dynamic (Distributed) (D))

TABLE III.
FUNCTIONAL FEATURES IDS COMPARISON.

D. A. IP D. M. F. InA AF
SNORT M Yes R Yes IDMEF
Prelude M Yes R/D Yes IDMEF
Tamandua M Yes R Few proprietary
Firestorm M/B Yes R/D Yes extended log

D. A. : Detection approach (Behavior (B)/Misuse (M))
IP D. : IP defragmentation sensibility
M. F. : Mode of functionality (Real time (R)/Differed(D))
InA : Information about the detected attacks
AF : Alert format

– ICMP ECHO Ping Sweep:

nmap -sP -PI target

The intruder can improve his attack by sending
the ICMP ECHO to a broadcast server in order
to scan the entire network.

– UDP/ICMP Error

nmap -sU target

The aim of the attacker here is to identify the
active UDP port. If he receives an ICMP port
unreachable message then the port is closed.

B. Comparison Results and Discussion

An overall comparison of the general features of the
selected IDS is shown in Table II.

Table III and Table IV show comparison results accord-
ing to their functionality features and a set of particular
characteristics, respectively. All the selected IDS are open
source, rule-based and offering updating facilities. Only
Prelude and Tamandua offer a dynamic installation and
both host and network based intrusion detection. These
characteristics make them able to deploy new sensors
and provide flexibility to both application and network
administrators. In fact, hybrid IDS offer an extensible
toolkit which is able to adapt to the heterogeneousness

498 JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009

© 2009 ACADEMY PUBLISHER

TABLE IV.
SPECIAL FEATURESIDS COMPARISON.

A.B. D.D. C.C Interdep
SNORT No No No No
Prelude No Yes No Yes
Tamandua No Yes No Yes
Firestorm No No No No

A. B. : Autonomous Behavior
D. D. : Distributed Detection
C. C. : Cooperative Component
I. C. : Interdependent Component

and size of the network to monitor. The weakness of
Tamandua is that it has no graphical user interface and
no sufficient documentation. According to this set of
common features, Prelude is better than the other IDS.

As for the functional characteristics of the chosen IDS
(Table III), all of them perform IP defragmentation, thus
offering protection, against evasion technique [21]. Only
Firestorm offers protocol anomaly detection in addition to
the misuse approach. Snort, Prelude and Firestorm give
more information about the detected attacks than Taman-
dua. Moreover, we consider the alert format giving by
each IDS as an important criterion. Generally, there was
two specific contexts that express the needs for a standard
alert format. In the first case, many organizations use
many different IDS; and since each IDS uses its own alert
format, the administrator needs to correlate all generated
alerts. In the second case, Different sensors have been
dispatched through the network. The original data format
they process differs from one sensor to another. When a
sensor raises an alert to the global IDS, it should output
it in a standard format. The Intrusion Detection Message
Exchange Format (IDMEF) [22] is a proposal of such a
standard format. SNORT and Prelude alert into IDMEF.

We focus on a set of particular characteristics men-
tioned in Table IV. Generally, the attacker performs its
attack step by step and tries to spread through the whole
network. Consequently, it would be more advantageous to
have an IDS with distributed components on the network.
These components can be cooperative, autonomous or
interdependent. Autonomous behavior (A. B.) stipulates
that the components of the system act as independent
and fully functional detection systems, i.e. they detect
attacks independently without communication or interac-
tion between them. Autonomous behavior requires special
capabilities such as Self-Configuration and Self-healing
[23]. One of the major problem faced by the IDS is that
the attacker target it. So performing tasks autonomously
makes the IDS more robust. Only Prelude and Tamandua
has a distributed and interdependent component.

Our major interest is to compare these four IDS be-
haviors with respect to some commands performed by
NMAP we presented previously. Tests were performed
in a four host’s network, using each IDS in its default
configuration. Results are summarized in Table V. We
conclude that SNORT detect almost the intrusions at-
tempts performed by NMAP. Nevertheless, all the IDS

TABLE V.
IDS COMPARISON ACCORDING TO THESIMULATED INTRUSIONS.

SNORT Prelude Tamandua Firestorm
TCP C. 1 1 1 1
R. I. 0 0 0 0
TCP S. 1 1 1 1
S. F. 1 1 0 0
F. 0 0 0 0
P. S. 1 0 0 0
UDP/ICMP E. 1 0 0 0

TCP C. : TCP Connect
R. I. : Reverse Ident
TCP S. : TCP SYN
S. F. : Stealth FIN
F. : Fragmentation
P. S. : Ping Sweep
UDP/ICMP E. : UDP/ICMP Error
0 : Not Detected
1 : Detected

Figure 1. Comparison chart of the detection results

are enable to detect the fragmentation. Figure 1 shows
the detection rate of each IDS as a result of the simulated
intrusions. Snort captured approximately 72% of attacks.
This is the best performance in terms of detection rate in
comparison with the other IDS. However, Snort presents
the higher rate of false positive (false alerts, 33%). In
fact, this IDS processes one network packet at a time
and matches this with the premises of a set of rules.
Now, focusing on individual packets, leads to many false
alerts because it misses the broader context of the network
session of which the packet is only a small part. Tamandua
and Firestorm present the same performance. Despite the
fact that they have the lowest detection rate (29%), they
did not raise any false alarms. An IDS which generates
false positives is better than those which generate false
negatives. Thus, we consider SNORT as the best IDS
relatively to our set of IDS and to the simulated intrusions.

In addition to the fragmentation sensibility, SNORT
turns out to be less efficient when facing multi packet
attacks. Moreover, SNORT is efficient only for the attacks
limited in one packet. The situation is worse when we
consider distributed attacks such as the Man in the middle
[24] or the DDOS (Distributed Denial of Service) [25].

Indeed, we have mentioned that Prelude has a dis-
tributed architecture. However, distributed intrusion de-
tection systems are especially vulnerable to attacks since
typically, each component resides at a static location and

JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009 499

© 2009 ACADEMY PUBLISHER

components are connected together into a hierarchical
structure. An attacker can disable such a system by taking
out a node high in the hierarchy, amputating thus a portion
of the distributed system.

In this paper, we propose a solution to this problem by
using mobile agents, in order to distribute the detection
process. It is hard to locate an intruder for a mobile agent.
Moreover even if the host machine, which launched the
agent, is eliminated from the network, the agent can still
work. So as to ensure a better detection system our system
will be more robust.

V. D ISTRIBUTED INTRUSION PROCESS

Detecting intrusion in distributed network from outside
network segment as well as from inside is a difficult
problem [26]. In many cases, an intruder achieves a set
of stages to perform its attack. In each stage he can
use a different node in the network. This technique has,
especially, two consequences :

• Widening the range of the attack and controlling the
major part of the network,

• Making hard detecting the intrusion.

A. Mobile agent usefulness

Agent Systems are used in various applications such
as workflow, scheduling and optimization [27]. It is
advisable to define, firstly, an agent. We refer to [28] :

• An agent is a physical or logical entity characterized
by the following attributes :

– Autonomy : agents are independently-running
entities, they operate without the direct inter-
vention of humans or others,

– Mobility : agents are able of suspending pro-
cessing on one platform and moving to another,
where they resume execution of their code,

– Rationality : agents embody the capacity to
decompose and solve a problem in a rational
manner,

– Reactivity : agents perceive their environment
and response in a timely fashion to changes that
occur in it,

– Inferential capability : agents are able to use
prior knowledge of general goal in order to act
on tasks,

– Pro-activeness :agents can take the initiative
to act and response to their environment,

– Social ability : agents are able to meet and
interact with other agents. The interaction and
collaboration between agents is achieved by an
agent communication language and may depend
on an ontology to realize a common understand-
ing of a situation.

Accordingly to the above attributes, we will argue, in this
section, the use of mobile agent to improve the charac-
teristics of the IDS, overcome the limitations described
previously and evaluate their applicability to design an
automated intrusion detection :

• Reducing Network Load :The actual IDS are facing
one of the most pressing problems which is the
processing of a tremendous amount of data over
the network. Abstracted forms of these data are
usually sent from all locations in the network to a
central site to be processed, causing the increase of
network load. Mobile agents offer the opportunity
to overcome this problem by eliminating the need
to this data transfer. Instead, the processing program
(agent) will go to the data, given that the an agent
is smaller in size than the network information.
Furthermore, when an agent collects data related to
the host on which it is running, we avoid the risk to
be subject to the insertion and evasion attacks.

• Overcoming Network Latency :Mobile agents are
able to dispatch from a host to carry out operations
directly to the remote point of interest, thus agents
can provide an appropriate respond faster than a
hierarchical IDS that has to communicate with a
central coordinator based elsewhere on the network.

• Asynchronous Execution and Autonomy :Agents can
be stopped and started without disturbing the rest
of the IDS. Notice that the mobile agents are able
to continue to operate autonomously even if the
host platform where it was created is not available
or disconnected from the network. Mobile agent
frameworks provide IDS the possibility to continue
to work even if the failure of a central controller or
a communication link was occurred; this fact allow
mobile agents to provide Fault Tolerance character-
istics.

• Dynamic Adaption :Mobile agents can be retracted,
cloned, dispatched, killed or put to sleep as network’s
configuration, topology and traffic characteristics
change over time. As the number of the node in
the network increases, agents can be cloned and
dispatched to these new computing elements.

• Robust Behavior :Mobile agents have the ability
to react dynamically to insecurity conditions making
easier to build robust distributed systems. Even if
one of the agents fails, the other agents in the IDS
can take up the tasks of the failed agent and continue
the detection.

• Scalability : Distributed mobile agents IDS are one
of several options that allow computational load
and diagnostic tasks to be distributed throughout the
network [13]. This improves scalability and holds up
fault resistance behavior.

B. Related Work

The idea of distributing the intrusion detection system
using a software agents is not entirely new. However,
most of the related works emphasized static agents instead
of mobiles ones. Applying mobile agent technology to
IDS gives a result to only few research projects. In
1999, a project at The Information-Technology Promotion
Agency (IPA) in Japan involves an Intrusion Detection
Agent (IDA) System [29]. IDA is a classic host-based

500 JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009

© 2009 ACADEMY PUBLISHER

Figure 2. MA IDS Architecture

system which relies on mobile agents mainly to trace
intruders among the various hosts involved in an intrusion.
In the same year, Micael [30] pursues a more ambitious
aim where the entire system functionally with mobile
agents. Nevertheless, only the architecture description has
been presented and no details have followed so far.
In 2000, an IDS framework based on mobile agents has
been described in [31]. Unfortunately, the detection is
dealt with superficially. Globally, there have been some
previous attempts to take advantage of agents in the field
of intrusion detection, as for example [32]–[34]. It is
worth mentioning the mobile-agents approach [35], [36].
Besides, there are other products such as Tritheme which
is an IDS under LPG licence allowing the simultaneous
use of HIDS and NIDS approaches distributing the differ-
ent functions under agents scattered on the network under
control [37].
In 2002, Trapathi and al. describes an IDS which are
designed as mobile application that roam the network to
detect attacks and track intruders [38].
The Skyrecon’s StormShield [39] is a product comple-
mentary to firewall based on the behavior approach.
StormShield treats in a coordinated way the potentially
vulnerable aspects of a host: traffic network, operating
system, applications.
MonALISA [40] is a distributed and dynamic system able
to provide a complete control and an overall monitoring
of a complex system. The architecture of MonALISA
is based on autonomous entities capable of collecting,
analyzing and processing data in distributed network.

VI. OUR SYSTEM: ARCHITECTUREOVERVIEW

The distributed structure of our system consists of
four levels, as shown in figure 2 : the down level, the
pretreatment, the kernel and the upper level. We have
four cooperatives, communicants and collaborative enti-
ties which are able to move from one station to another:
Sniffer agent, Filter agent, Analyzer agent and Decision
agent.

Every category of agent is assigned respectively to the
levels cited previously.

A. The Sniffer agent

This kind of agent will be cloned and distributed
throughout the network. This agent patrols the network,

collects all the events occurred in the host to which it is
related and storage the collected data in a sniffing file. The
Sniffer agent can duplicate it self in order to lighten the
network charge. On the down level, we are interested to
collect all the events occurred through the network in real
time. Sniffer are what is commonly called sensor [41].

B. The Filter Agent

Detecting intrusions in a distributed system turns out
to be difficult. IDS must undertake to analyze a huge
volumes of events. This task becomes more difficult espe-
cially when the events must be collected from distributed
sources around the network. Intrusions seep in all levels of
the distributed system; each level may require monitoring.
So, to be able to determine whether an intrusion is taking
place, we have to aggregate and merge events collected
from various sources, which is among the set of tasks
allocate to the Filter agent.

This agent performs its tasks in the context of the
collected-events pretreatment phase, which precedes the
analysis phase. The Filter agent access to the sniffing file
which is modified by the Sniffer agent.

The Filter agent will treat these crude events by achiev-
ing the following tasks :

• Distinguish the various fields of the events collected
in crude such as destination address and the protocol,

• Sort the events by the category of packet (TCP, IP,
...) concerned by a specific kind of intrusion.

C. The Analyzer Agent

This kind of agent processes and analyzes the events
captured by the Sniffer agent and pre-processed by the
Filter agents. We adopt the misuse approach, as mentioned
previously. In fact, there are several techniques to perform
this approach [42]; we focus on the pattern matching
method which is used to scan for byte signatures in pack-
ets that may indicate an attack. If there are a similarity
between the filtered packets and the attacks signatures
then the Analyzer agent raises an alert to the Decision
agent.

D. The Decision Agent

The administrator, depending on his need and require-
ment, can give some parameters relative to the full detec-
tion process. This parameters are saved on a configuration
file which is consulted by the Decision agent in order to
sort them by kind of treatment. In fact, we consider sniff-
ing parameters such as the address of the monitoring hosts
and filter parameters like the target protocol. Furthermore,
the Analyzer agent report their findings to the Decision
agent which transmits them to the administrator.

VII. I MPLEMENTATION

The obvious disadvantage of using mobile agent is the
concern that they will introduce vulnerabilities into the
network and the following security problems :

JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009 501

© 2009 ACADEMY PUBLISHER

• Integrity: corruption of information,
• Denial of service: effecting availability of the host

or the agent process,
• Secrecy: disclosure of information.

That’s why our implementation is written using the IBM
Aglet [43] platform and Sun’s Java Development Kit. This
choice is not arbitrary, it is made after a comparison study
of nine agent platforms [44] during which we have been
stressed on the security mechanisms deployed by each
platforms to protect the agent and even the host.

Let us consider the most important security feature for
our MA IDS. In fact it is important to build our solution
with an opened platform that allows agent migration,
cloning agent and that support different communication
protocols. These features are common to almost all agent
platforms. What seemed to be so crucial for us is security
features. We mainly focus on the following criteria :

• Agent authentication: Trusted and Untrusted Agent
authentication systems,

• Resource Access Control: Implementing/or not a
discretionary access control,

• Supporting encryption/decryption facilities: Using
standard protocol such as SSL and supporting com-
mon used algorithm (DES, DEA, IDEA, RSA and
so on),

• Code verifier (Agent action Verifier): Including a
particular bytecode verifier or allowing a such ad on
easily. We mainly plan to develop a specific Java
bytecode analysis as in [45] for verifying applet
security properties. An other alternative is to use
a such verifier as introduced by Michiaki Tatsubori
[46].

The open-source nature of the Aglets system, which
have been made available through the SourceForge open-
source initiative [47], allowed us to intercept the adequate
security actions performed by Aglets and to log all the
useful information such as the requested operation, its
parameters, its outcome and the identity of the aglet.
Mainly, Aglets supports the specific security mechanism
that we required. The security model provided by Aglets
supports the definition of security policies and describes
how and where a secure Aglet system enforces these
policies. The aglets are authenticated identities that are
used to enforce the policies defined by authorities and to
identify the host or the developer of the program. Aglets
framework uses an asymmetric (publicprivate key pair)
cryptography system to exchange private keys between
hosts. These keys are useful to ensure agent when they
are transferred over the network. Thus, the agent code
is signed and can be authenticated before its execution,
making the host platform protected. In Aglets, permission
is defined as the capabilities of executing aglets by setting
access restrictions and limits on resources consumption.
An abstract syntax for permissions in Aglets is based on
JDK policy [48] file definition.

Figure 3. The NMAP result

VIII. T ESTS AND SIMULATION ATTACKS

We implement MAIDS using Sun’s Java Development
Kit version 1.4.1 (Sun Microsystems, 2003), the frame-
work Aglets Workbench 2.0.2., the Netbeans 3.4. and the
Jpcap 0.01.16.

All the experiments were conducted on equivalent
machines equipped with a Pentium Dual Core Processor
running at 1.66GHz and 1.99 GB of main memory.

Our MA IDS performs their tasks over any number of
hosts in the network. Each host can receive any number
of Sniffer agent that monitor all events occurring in it.

In a first phase, we test the communication model by
sending a set of messages between our four agents classes.
We also test the mobility of these agents by dispatching
them and retracting over four hosts.

In a second phase we investigate and test four types of
network attacks: Probe, R2L, U2R and DOS.

• Probe: Attacker tries to gather information on the
target host.

• R2L (Remote to Local): Attacker does not have an
account on the victim machine, hence tries to gain
local access.

• U2R (User to Root): Attacker has local access to
the victim machine and tries to gain super-user
privileges.

• DOS (Denial of Service): Attacker tries to prevent
legitimate users from using a service.

The examples of attacks of each type are SYN-scan
(NMAP), NIMDA for both R2L and U2R, and SYN flood.
In the following section we simulate these programs and
show the performance of our Agent IDS in terms of false
alarms and detection rate.

A. The NMAP Port Scanning

We have already mentioned this kind of attack in IV-A.
The execution of the NMAP tool over our network gives
us a set of useful information (figure 3) :

• 1702 filtered ports
• 139 TCP ports are opened, netbios-ssn
• 445 TCP ports are opened, microsoft-ds
• MAC Address: 00:03:0D:12:12:3C

The Sniffer agent based on the Jpcap library collects the
network events using the CaptureTool class and saves
them on a file (figure 4).

502 JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009

© 2009 ACADEMY PUBLISHER

Figure 4. The Sniffing file

public void onCreation(Object o)
{ ct=new CaptureTool();

addPersistencyListener(this);
}

The sniffer file contains various packets (TCP, UDP, ARP)
including those relative to the execution of the NMAP.
After a given number of collected event (Sniffing limit)
the Sniffer agent creates the Filter. In fact, depending
on the severity degree given by the administrator, the
Decision agent fixes the Sniffing limit transmitted to the
Sniffer agent as a parameter.

In the pretreatment phase, the Filter agent consults the
sniffing file and performs a set of tasks explained in VI-B.

We create a filtered rule according to the SNORT
signature used to detect the TCP ping NMAP presented
below :

alert tcp $EXTERNAL_NET any->$HOME_NET
any (msg:"TCP PING NMAP";
flags:A,12;ack:0;
reference:arachnids,28;
classtype:attempted-recon;
sid:628;rev:2;)

This signature means that if an external TCP packet come
in our network, from any port, with an active ACK flag,
as the two reserved bits, and the sequence number is equal
to 0, for any state of session, then it will be necessary to
generate the alert relative to the TCP scan accomplished
by NMAP.

This particular Nmap TCP Ping uses a TCP ACK with
an ACK Number = 0. That’s why we filtered this kind of
packet only. Our filtered rule correlates the following two
characteristics:

• The kind of the packet (TCP),
• An active ACK flag

The Filter agent considers only the packets which verify
these two characteristics together.

He save the filtered events in a data base of sniffed and
filtered packets (figure 5). The SNORT signature used to
detect the TCP ping NMAP may lead to false positives.
It is possible that other tools may also send a TCP ACK
with an ACK number of Zero. We tested several times
the nmap tool and we noticed a particular content in data
fields of data of the filtered packets. We consider this
content as new nmap’s signature.

Figure 5. Table of filtered packets

That means that for all packets examined, the Analyzer
agent will try to locate the pattern ”B@d02b51”.

The Analyzer agent needs two sources: the table of cur-
rent filtered events and the signature of the target intrusion
to perform the Snorts string matching algorithm, Boyer-
Moore [54]. This is widely regarded as the providing the
best average-case performance of any known algorithm
[55]. It consist of comparing character by character data
field of the event and of the signature. The algorithm scans
the characters of the pattern from right to left beginning
with the rightmost character. In case of similarity the
Analyzer agent transmits the alert message to the Decision
agent.

Thus, our agent system can detect the NMAP intrusion
as well as SNORT.

B. The SYN flooding attack

A SYN flood is a type of Denial of Service attack. To
realize this kind of intrusion the attacker tries to create a
huge amount of connections in the SYN RECEIVED state
until the backlog queue overflows. The SYN RECEIVED
state is created when the victim host receives a connection
request (a packet with SYN flag set) and allocates for
it some memory resources. A SYN flood attack creates
so many half-open connections that the system becomes
overwhelmed and cannot handle incoming requests any
more [49].

We simulate this attack using the HPING tool [50]
which is able to send custom TCP/IP packets to network
hosts. All experiments run on three machines:

• 172.16.0.41: Attack host,
• 172.16.6.220: Web client (IP address which we

usurped),
• 172.16.6.40: Web server (the victim machine).

We usurp the IP address of the web client host and
send a large number of SYN packets to the web server
via this command :

hping -S -i u10 -p 80
-a 172.16.6.220 172.16.6.40

At the same time we disconnected the web client host.
Thus we prevent the machine from answering the packets
sent by the web server. Otherwise, it would send TCP
RST packets which would stop the connection attempt.
The web server machine waits for confirmation that never
arrives. Hence the attack succeeds (figure 6).

Both agents, Sniffer and Filter, proceed in the same
way as in the case of the NMAP attack. The Analyzer
agent considers a specific rule to fulfill its processing.

JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009 503

© 2009 ACADEMY PUBLISHER

Figure 6. Result of the SYN flood attack

In fact, we borrow that of SNORT with some additions
(threshold):

Alert tcp any any -> 172.16.6.40 80
(msg: "Alerte!...There was SYN
flood attack"; flow: stateless;
flags: S; threshold: type both,
track by_dst, count 100,seconds 20;
sid: 1000001;)

When the rule is triggered it will raise an alert and
display a message. The protocol of the packets we are
detecting is TCP and destination IP addresses and port
number are defined. The source is defined on any IP
address. The aim of this rule is looking for any host which
is trying to make a SYN connection to the machine which
is defined by its IP address (172.16.6.40) on ports 80. The
threshold is a crucial parameter given that the purpose is
to detect a big influx of demand of connections. Basically,
if a machine attempts to make 100 or more connections
within 20 seconds then the rule will fire.

C. The Nimda worm

Nimda is identified as U2R or R2L. Typically, this kind
of attack exploit multiple vulnerabilities in different net-
work services. For example, Nimda used many different
propagation techniques to spread, can send it self out
by e-mail, search open network shares, attempt to copy
itself to unpatched or already vulnerable Microsoft IIS
Web Server. This worm will create the Guest account and
add this account to the ”Administer” group. This would
enable the intruder to execute the arbitrary command in
the local system. Nimda tries to propagate by looking for
local shares using the NETBIOS protocol and creates a
specially crafted riched20.dll file in any share folders that
contains .doc or .eml documents. The rule used by Snort
to describe the Nimda worm is:

alert tcp $EXTERNAL_NET any->$HOME_NET
139 (msg:"NETBIOS nimda
RICHED20.DLL";flow:to_server,established;
content:"R|00|I|00|C|00|H|00|E|00|
D|00|2|00|0"; reference:url,
www.fsecure.com/v-descs/nimda.shtml;
classtype:bad-unknown;sid:1295;rev:9;)

Thus, a signature for the Nimda worm would be the
collection of the following parameters:

TABLE VI.
RELEVANT FEATURES (U2R)

Feature Value
A23 ≤ 64
A37 ≤ 0.48
A35 ≤ 0.91
A36 ≤ 0.99
A29 > 0.32

• A packet belongs to a TCP connection from any port
to the port 139 which is the port used by NETBIOS,

• The packet belongs to a TCP connection which is
established and corresponds to a client request.

• The packet contains the sequence of bytes corre-
sponding to the string ”RICHED20”.

Restricting the signature to the parameter ”packet on port
139” is too general and the derived rule will generate a lot
of false alarms. To overcome this limit, we correlate the
rule used by Snort with the results described in [56]. The
authors use different machine-learning techniques such as
Bayesian Classifiers and Decision Trees in the training
process on the KDD (Knowledge Discovery in Databases)
Cup 1999 data set [57] to learn normal and inconsistent
patterns from the testing data and thus generate a set of
rules that are able to detect U2R attack. We select relevant
features from these rules:

• number of connections to the same host as the
current connection in the past two seconds (A23),

• % of connections to the same service coming from
different hosts (A37),

• % of different services on the current host (A35),
• % of connections to the current host having the same

src port (A36),
• % of connections to the same service (A29),

According to [56], in the case of U2R attack, the selected
features should have the values described in Table VI. The
Filter agent computes all these values and send them to
the Analyzer agent. The following query shows a function
that computes the number of http connections to a given
host during the last 2 seconds:

SELECT count(*) OVER (ORDER BY time_stamp
RANGE INTERVAL ’2’SECOND
PRECEDING) as http_count FROM
connection_event WHERE dest_host
=’ourhost’ AND service = ’http’;

Decision agent will receive an alert if the Analyzer Agent
will verify these two rules:

• A23 ≤ 64, A37≤ 0.48, A35≤ 0.91, A36≤ 0.99,
A29 > 0.32,

• The rule used by SNORT to detect the Nimda attack.

D. Performance of Agent IDS

To evaluate the detection performance of our model,
we present the false alarms and detection rates of the
simulated attack in figure 7.

504 JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009

© 2009 ACADEMY PUBLISHER

Figure 7. Agent IDS Performance

We have tested the Agent IDS system on real network
data (18.15 millions of traffic packets), intermixed with
16417 attacks (228 U2R and 16189 R2L records) from
the KDD Cup 1999.

A detection rate above 78% and a false alarm rate
below 9% are achieved. The comparison of these results
with those presented in Figure 1 shows that our system
generates a fewer false positives than SNORT in case of
probe attack. To achieve a total detection rate above 78%
of DoS attacks, we have to tolerate 9% false alarms. The
R2L attacks have the second best performance.

The implementation gives us the expected results. Our
Agent IDS prototype we are testing detects the simulated
attacks. This fact is intended as a proof of applying
practically mobile agents to intrusion detection system.
In this area, recent research works have been conducted.
Most of them focus on the anomaly detection such as
CAMNEP [52] and CIDS [34]. CAMNEP treats the
problem of false positive by classic agent techniques,
mobility is not mentioned. CAMNEP is not able to detect
attacks consist of few packets, e. g. buffer overflow
attack. CIDS has only one monitor agent responsible for
collecting information from various data sources. Some
data sources may generate a large amount of events in
a short time, especially network traffic. In 2007, Singh
and Sodhi [53] present a model based on a roaming
agent as data collector and supervisor. The idea shares
some similarities with our approach such as using Aglet
framework. But the authors do not provide details about
the implementation and attacks simulation.

IX. A GENT IDS VS A CENTRALIZED IDS

The question is : why the realization of the system with
mobile agents is advantageous?

We implement a centralized system with local sensor
that forward filtered data to a central analysis node and
compare it with Agent IDS.

Under 30 Mbps (250 packets/second), these two sys-
tems achieves almost the same performance in terms
of false alarms and detection rate. We can see that
centralized IDS cannot process all packets in rates higher
than 30 Mbps so a significant percentage of packets
is being lost (figure 8). The systems ability to process
traffic at the maximum rate offered by the network with
minimal packet loss is an important criterion for an IDS.
Significant packet loss can leave a number of attacks

Figure 8. Percentage of dropped packets as the number of packets per
second increases

Figure 9. Agent IDS vs Centralized IDS in terms of detection delay

undetected and degrades the overall effectiveness of the
system. With the recent trend of high-speed networks, the
capability of a centralized IDS can not meet the speeds
demand, resulting in rising of false negatives. Agent IDS
has proven itself to be capable of handling very high
traffic. In such a design, the incoming network traffic is
disseminated to a pool of agents, which process a fraction
of the whole traffic, reducing the possibility of packet loss
caused by overload. Agent IDS could support a load of
up to 56 Mbps (450 packets/second) with zero traffic loss.

Moreover, we focus on a second important criterion
for IDS: detection delay which is defined as the duration
from the time the attack starts to the time epoch that the
attack is detected. We generate a set of packets varied
from 2000 to 7000. For each set we simulate the syn-
scan attack and we calculate the detection delay. Figure
9 plots the measurement results. The detection delay is
significantly reduced; Agent IDS is much faster than the
centralized IDS. For example, in the case of 7000 packets,
we observe that detection delay is reduced by 59% (12
second vs 5 second). This can be explained by the fact
that mobile agents operate directly on the host, where an
action has to be taken, their response is faster than systems
where the actions are taken by central coordinator.

In fact, one of the most pressing problems facing
current IDSs is the processing of the enormous amounts
of data generated by the network traffic monitoring tools
and host-based audit logs. IDSs typically process most
of this data locally. Mobile agents offer an opportunity
to reduce the network load by eliminating the need for
this data transfer. Instead of transferring the data across
the network, mobile agents can be dispatched to the
machine on which the data resides, essentially moving the

JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009 505

© 2009 ACADEMY PUBLISHER

computation to the data, instead of moving the data to the
computation. It is obvious to see that the code-shipping
versus data-shipping argument is only valid if, the mobile
agents code and state that have to be transmitted are not
larger than the amount of data that can be saved by the
use of a mobile agent. That’s why, in our Agent IDS,
only Sniffer is not mobile. Its code is based on the Jpcap
library. Its serialization phase spends much time.

Agent IDS does not only perform better in terms of
effectiveness but also in terms of detection delay.

X. CONCLUSION AND FUTURE WORK

As network attacks are becoming more and more alarm-
ing, exploiting systems faults and performing malicious
actions the need to provide effective intrusion detection
methods increases. Network-based, distributed attacks are
especially difficult to detect and require coordination
among different intrusion detection components or sys-
tems.

In 1999, Jansen and al. have said that the idea of mobile
and autonomous components intuitively seems useful in
intrusion detection and many other applications. However,
it is difficult to realize the benefits of mobile agent
technology in practice [13]. We propose a new MAIDS
model, based on misuse approach. The experiments em-
phasize the aim of applying agent to detect some kind of
intrusions and compete others IDS. We take advantage of
the multi-agent paradigm especially concerning reducing
Network Load. Indeed, mobile agents offer the possibility
to eliminate the need of transferring a huge amount of
data to be analyzed. Hence the mobile agent will go to
the data, given that an agent is smaller in size than the
network information. In a future work, we will investigate,
the behavior approach including new concepts in order to
make our agent system more intelligent and exceed the
actual performance; a special focus will be on the false
alarms and timely identification of new attacks which
are two of the biggest challenges to the effective use of
network intrusion detection systems.

ACKNOWLEDGMENT

Thank goes to Kirmene Marzouk and Cecile Chatry.

REFERENCES

[1] L. Me, Z. Marrakchi, C. Michel, H. Debar and F. Cuppens,
La detection d’intrusion : les outils doivent cooperer, inREE
Journal, pp. 50-55, No 5, May, 2001.

[2] R. H. Campbell, Z. Liu, M. D. Mickunas, P. Naldurg
and S. Yi, Seraphim: An Active Security Architecture for
Active Network, inUIUCDCS-R-99-2167, UILU-ENG-99-
1756, Urbana, IL 61801, Nov. 1999.

[3] J. P. Anderson, Computer security threat monitoring and
surveillance,James P. Anderson Company, Fort Washington,
Pennsylvania, 1980.

[4] Dethy, Examining port scan methods - Analysing
Audible Techniques, (2001). [Online]. Available: http:
http://synnergy.net/downloads/papers/portscan.txt.

[5] G. Vigna, S. Eckmann and R. Kemmerer, Attack Languages,
in Proceedings of the IEEE Information Survivability Work-
shop, USA, pp. 163-166, 2000.

[6] B. Mukherjee, T. L. Heberlein and K. N. Levitt, Network
Intrusion Detection, inIEEE Network, June 1994.

[7] M. J. Ranum, Experiences Benchmarking Intrusion Detec-
tion Systems, inNFR Security, Dec. 2001.

[8] T. L. Heberlein, G. V. Dias, K. N. Levitt, B. Mukherjee,
J. Wood and D. Wolber, A Network Security Monitor, in
Proceedings of the Symposium on Research in Securirt and
Privacy, May 1990.

[9] D. E. Denning, An intrusion detection model, inIEEE
Transactions on software engeneering, SE-13 :222232,
1987.

[10] S. Kumar, and E. Spafford, A Software Architecture to
Support Misuse Intrusion Detection,Department of Com-
puter Sciences, Purdue University, Mar. 1995.

[11] (2008, Mar.) CISCO. [Online]. Available: http:
http://www.cisco.com.

[12] (2008, Mar.) RealSecure. [Online]. Available: http:
http://www.iss.net.

[13] W. Jansen, P. Mell, T. Karygiannis and D. Marks, Applying
mobile agents to intrusion detection and response,NIST
Interim Report - 6416, Oct. 1999.

[14] J. S. Balasubramaniyam, J. O. Garcia-Fernandez, D.
Isacoff, E. Spafford and D. Zamboni, An Architecture for
Intrusion Detection using Autonomous Agents, inProceed-
ings of the 14th Annual Computer Security Applications
Conference, Dec. 1998.

[15] T. H. Ptacek and T. N. Newsham, Insertion, evasion,
and denial of service: Eluding network intrusion detection,
Secure Network Inc., Jan. 1998.

[16] (2007, Oct.) SNORT. [Online]. Available: http:
http://www.snort.org/.

[17] R. U. Rehman,Intrusion Detection Systems with Snort
Advanced IDS Techniques Using Snort, Apache, MySQL,
PHP, and ACID, Publishing as Prentice Hall PTR Upper
Saddle River, New Jersey 07458, ISBN 0-13-140733-3,
2003.

[18] (2007, Nov.) NMAP. [Online]. Available: http:
http://www.insecure.org/nmap.

[19] (2007, Oct.) Prelude-IDS. [Online]. Available: http:
http://www.prelude-ids.org.

[20] (2007, Oct.) Tamandua. [Online]. Available: http:
http://tamandua.axur.org.

[21] F. S. Rietta, Application Layer Intrusion Detection for SQL
Injection, in ACM SE06 1012, Melbourne, Florida, USA,
Mar. 2006.

[22] D. Curry and H. Debar, Intrusion Detection Message
Exchange Format Data Model and Extensible Markup Lan-
guage (XML) Document Type Definition,Intrusion Detec-
tion Working Group, 116 pages, Jan. 2003.

[23] F. Dressler, G. Mnz and G. Carle, Attack Detection us-
ing Cooperating Autonomous Detection Systems (CATS),
Wilhelm-Schickard-Institute of Computer Science, Computer
Networks and Internet, University of Tbingen, 2004.

[24] M. Eriksson, An Example of a Man-in-the-middle Attack
Against Server Authenticated SSL-sessions, inInternational
Conference on Applied Cryptography and Network Security,
Oct. 2003.

[25] S. Specht and R. Lee, Distributed Denial of Service:
Taxonomies of Attacks, Tools, and Countermeasures, in
Proceedings of the 17th International Conference on Paral-
lel and Distributed Computing Systems, pp. 543-550, Sep.
2004.

[26] G. Hulmer, J. S. K. Wong, V. Honavar, L. Miller and
Y. Wang, Lightweight Agents for Intrusion Detection, in
Journal of Systems and Software 67 (03), pp. 109-122, 2003.

[27] K. Ghedira, MASC : une approche Multi-Agents de
probĺemes de Statisfaction de Contraintes, 1993.

[28] Palmquis, Intelligent Agents in Computer and
Network Management, 1998, (course paper).
http://www.gslis.utexas.edu/ palmquis/courses.

506 JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009

© 2009 ACADEMY PUBLISHER

[29] M. Asaka, S. Okasawa, A. Taguchi and S. Goto, A
Method of Tracing Intruders by Use of Mobile Agents, in
Proceedings of the 9th Annual Internetworking Conference
(INET‘99), San Jose, California, June 1999.

[30] J. D. De Queiroz, L. F. R. Da Costa Carmo and L. Pirmez,
Micael: An Autonomous mobile agent system to protect
new generation networked application, inin 2nd Annual
Workshop on Recent Advances in Intrsuion Detection, Sep.
1999.

[31] M. C. Bernardes and E. Dos Santos Moreira, Implemen-
tation of an Intrusion Detection System based on Mobile
Agents, in In International Symposium on Software Engi-
neering for Parallel and Distributed Systems, pp. 158-164,
June 2000.

[32] E. H. Spafford and D. Zamboni, Intrusion Detection Us-
ing Autonomous Agents, inComputer Networks: The Int.
Journal of Computer and Telecommunications Networking
34(4), pp. 547-570, 2000.

[33] I. M. Hegazy, T. Al-Arif, Z. T. Fayed and H. M. Faheem, A
Multi-agent Based System for Intrusion Detection, inIEEE
Potentials 22(4), pp. 28-31, 2003.

[34] D. Dasgupta, F. Gonzalez, K. Yallapu, J. Gomez and
R. Yarramsettii, CIDS: An agentbased intrusion detection
system, inComputers & Security 24(5), pp. 387-398, 2005.

[35] H. Q. Wang, Z. Q. Wang, Q. Zhao, G. F. Wang, R. J. Zheng
D. X. Liu, Mobile Agents for Network Intrusion Resistance,
in APWeb 2006. LNCS, vol. 3842, Springer, Heidelberg, pp.
965-970, 2006.

[36] K. Deeter, K. Singh, S. Wilson, L. Filipozzi and S. Vuong,
APHIDS: A Mobile Agent-Based Programmable Hybrid
Intrusion Detection System, inMobility Aware Technologies
and Applications. LNCS, vol. 3284, Springer, Heidelberg,
pp. 244-253, 2004.

[37] (2007, Aug.) Tritheme Distributed and Hybrid Intrusion
Detection and Response System. [Online]. Available: http:
http://sourceforge.net/projects/tritheme/, 2001.

[38] A. Trapathi, T. Ahmed, S. Pathak, A. Pathak, M. Carney,
M. Koka and P. Dokas, Active Monotoring of Network
System using Mobile Agents, University of Minnesota, May
2002.

[39] (2007, Aug.) N. Daira, Strorshield presentation. [Online].
Available: http: http://www.skyrecon.com/, 2004.

[40] (2007, Aug.) MonALISA, MONitoring Agents using a
Large Integrated Services Architecture. [Online]. Available:
http: http://monalisa.cacr.caltech.edu/, 2005.

[41] A. Cardon, A distributed multiagent system for the self-
evaluation of dialogs, inProceedings of the Joint JSAI
2001 Workshop on New Frontiers in Artificial Intelligence,
Springer-Verlag, pp. 43-50, 2001.

[42] F. A. Barika, Vers un IDS Intelligent base d’Agents
Mobiles, (Institut Suprieur de Gestion de Tunis), July 2003.

[43] D. B. Lange and M. Oshima,Programming and Deploying
Java Mobile Agents with Aglets, Seconde Edition, ISBN 0-
201-32582-9, Massachusetts, Addison Wesley, 1998, 225 p.

[44] N. EL Kadhi, F. A. Barika, E. Burstein and K. Ghedira,
Toward Agent IDS : Agents Platforms Security Features
Study, in Proceedings of CSC 2003, Computer security
Congress, Mexique, Mar. 2003.

[45] N. EL Kadhi and P. Boury, Static analysis of Java Crypto-
graphic Applets, inProceedings of ECOOP2001 Workshop
on Java Formal Verification, Budapest, June 2001.

[46] M. Tatsubori, An Extension Mechanism for the Java
Language, (Titech), 1999. [Online]. Available: http:
http://www.csg.is.titech.ac.jp/openjava/papers.

[47] The Aglets Software Development Kit. [Online]. Avail-
able: http: http://sourceforge.net/projects/aglets/, June 2002.

[48] L. Gong, Java Security Architecure, (JavaSoft), July 1997.
[49] M. Burdach, Hardening the TCP/IP stack to SYN attacks,

in SecurityFocus, Sep. 2003.

[50] (2007, Nov.) HPING. [Online]. Available: http:
http://www.hping.org.

[51] (2007, Oct.) Firestorm. [Online]. Available: http:
http://www.scaramanga.co.uk/firestorm/.

[52] M. Rehk, M. Pechoucek, P. Celeda, J. Novotn, P. Minark,
CAMNEP: agent-based network intrusion detection system.
Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems, pp. 133-136,
2008.

[53] M. Singh, S S. Sodhi, Distributed Intrusion Detection using
Aglet Mobile Agent Technology. Proceedings of National
Conference on Challenges & Opportunities in Information
Technology RIMT-IET. Gobindgarh, Mar. 2007.

[54] D. Gusfield,Algorithms on Strings, Trees, and Sequences,
ISBN 0-521-58519-8, Cambridge University Press, 1997,
554 p.

[55] M. Fisk, G. Varghese, Applying Fast String Matching
to Intrusion Detection, Los Alamos National Laboratory,
University of California San Diego, 2004.

[56] Ben Amor, N., Benferhat, S., Elouedi Z., Rseaux baysiens
nafs et arbres de dcision dans les systmes de dtection
dintrusions, RSTI, VOL 25/2, pp.167-196, (2006) KDD Cup
1999:

[57] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Farah BARIKA KTATA received the Master Degree in Com-
puter Science Applied to Management from the Higher Institute
of Management of Tunis in July 2003. Since November 2004,
her PhD thesis activities concern Multi-agent Systems and
Computer Security. Since September 2006, she is an assistant
in the department of computer science at the Higher Institute of
Science and Technology. She is a member of LI3 (Laboratory of
Intelligent Informatic science Ingineering) and the Tunisian As-
sociation of Artificial Intelligence (ATIA). Her current research
interests include: Multi-Agents Systems and Information System
Security.

Nabil EL KADHI Associate Professor, Computer Engineering
department Chairman at AHLIA University. Dr Nabil has a
PHD in computer science, Formal verification of cryptographic
protocols. Hi used to be an associate professor at EPITECH
Paris. Hi the director and creator of LERIA research lab. Dr
Nabil has more than 35 international publications in interna-
tional conferences and around 10 Journal publications. He is also
a security consultant for e-payment solution. He has also worked
for TASK euroopeen projet (VIP:Verified Internet protocol) at
INRIA-Paris.

Khaled GHEDIRA obtained his Engineer Diploma in hydraulic
from ENSEETHT (France) in 1983 and his Engineer Diploma
in Computer Science from ENSIMAG (France) in 1986. He
received the Master degree then the PHD thesis in Artificial
Intelligence from ENSAE (France) in 1993. He also obtained
the habilitation degree in Computer Science from the National
School of Computer Studies of Tunis (ENSI) in 2001. Professor
GHEDIRA was fellow research for 4 years from 1992 to 1996
at the I3A Institute in Switzerland. Director of ENSI from
2002 to 2008, he actually is the Head of LI3 (Laboratory
of Intelligent Engineering of Compuer Science) and president
of the Tunisian Association of Artificial Intelligence (ATIA).
His current research interests include: Multi-Agents Systems,
Constraint Problems Satisfaction, combinatorial optimization,
scheduling problems and transport. He is author of about two
hundred papers and member of several program committees
relative to various conferences and journals.

JOURNAL OF SOFTWARE, VOL. 4, NO. 6, AUGUST 2009 507

© 2009 ACADEMY PUBLISHER

