
Model-driven Connector Development for
Service-based Information System Architectures

Claus Pahl

Dublin City University, School of Computing, Dublin 9, Ireland
Email: claus.pahl@dcu.ie

Yaoling Zhu

Dublin City University, School of Computing, Dublin 9, Ireland
Email: yao.zhu3@mail.dcu.ie

Abstract—The question whether services can provide a
solution for software integration and interoperability
problems has been debated. Service-oriented architecture
(SOA) now seems to become the most widely used software
integration framework. Web services provide the
predominant platform for the integration of information
systems. A model-driven solution for the development of
connectors for information system architectures shall be
presented. While most model-driven approaches focus on
software components, we investigate system integration
through a model-driven connector development approach
for the context of service-oriented architectures.
Maintainability and automation requirements are discussed
in relation to integration and architecture aspects.

Index Terms—service-oriented architecture, information
integration, model-driven development, software
architecture, semantic data modelling, connectors, mediated
architecture, declarative data transformation.

I. INTRODUCTION

Whether services can provide the solution for software
integration problems is a question that has been debated
for a while. Service-oriented architecture (SOA) seems to
become the most widely used software integration
framework [1]. Web services provide the predominant
platform for SOA [2]. SOA as an integration solution
supports a number of application scenarios ranging from
XML data integration to specific context such as
application service providers to recent advances in
platform applications such as service-based data grids.
SOA and services can provide technologies to improve
information integration.

While the feasibility of a service-based solution for
information systems integration has been widely
addressed [3,4,5], the focus needs to shift towards quality
in order to provide cost-effective and reliable solutions
for organisation. Services provide the necessary
interoperability needed for integration problems, but
quality aspects such as maintainability, cost-

effectiveness, or consistency require advanced solutions
to be used as part of a SOA integration methodology. Our
aim here is to discuss integration techniques based on
connectors as mediators between providers and
consumers of information. We aim to demonstrate that
progress beyond standard solutions and technologies with
their limitations in terms of automation and
maintainability – and resulting cost and reliability
problems – is possible [6].

Model-driven development (MDD), promoted by
industry bodies such as the OMG, proposes an approach
that, although not specific to the information systems and
services context, can provide a framework for our
investigation [7,8]. MDD focuses on maintainability
through model-centricity and on automation of
programming activities through code generation. MDA
emphases automation and encourages model reuse.

Architectural approaches are often based on a
component-and-connector view of systems. Connectors
are the key elements of integration architectures. The idea
of model-driven development for integration is to use a
semantics-driven approach to define integration rules that
act as models of connectors for service integration.
Declarative rules shall be used as models of connectors.
The latter are derived from the models and will actually
implement information integration. Abstraction is the
core principle of modelling and generating connectors
through abstract integration rules. The main distinction of
our approach compared to other model-driven
development is our focus on connectors, not components.
Thus, integration models in the form of transformation
rules (rather than the usual UML-based class and
component diagrams) are the basis of this investigation.

This investigation starts by motivating the problem
from the specific perspective of an application service
provider scenario in Section II. Then, the information
integration problem and its link to SOA in the context of
related work is defined in Section III. Section IV presents
a model-driven integration solution in terms of three
components: data integration, mediated architecture, and
a process model. Semantically enhanced mediation is
considered as an approach to further enhance the solution
in Section V. This solution is evaluated in the context of

Manuscript received August 11, 2008; revised December 2, 2008;
accepted January 10, 2009.

Corresponding author: Claus Pahl (claus.pahl@dcu.ie).

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 199

© 2009 ACADEMY PUBLISHER

maintainability requirements in Section VI. We end with
a discussion of related work and some conclusions.

II. INFORMATION INTEGRATION IN SOA
ENVIRONMENTS – PRINCIPLES AND REQUIREMENTS

Information integration is the problem of combining
heterogeneous data residing at different sources in order
to provide the user with a unified view [9,10].
Information integration is central to meaningfully and
consistently adapt services and the underlying data
sources to specific client and provider needs. A common
understanding through agreed and formalised semantics
and mappings between different syntactical and structural
representations is essential. The aim of information
integration is to define mappings between the individual
data sources and a unified view of these data sources.

These definitions of mappings and views are
formulated in terms of query and transformation
languages [5] Transformation languages provide the
solution to the first component of our solution –
information integration [4,11]. In order to find a solution
that meets the quality criteria, here in particular
maintainability as a consequence of expected high
degrees of change and evolution, a model-driven
approach shall be considered.

A. Information Integration for ASPs
The Application Service Provider (ASP) business

model promotes the use of software as a service [12]. An
example of this model is information systems
outsourcing, i.e. the handing over management of an
enterprise’s information infrastructure to a third party.
The ASP takes responsibility for managing the software
application on its own infrastructure. The ASP maintains
the application and ensures that system functionality and
data are available when requested. The ASP context is the
environment in which a solution is developed and
evaluated its characteristics.

Recently, service-based platforms are used to provide
integration solutions for ASP applications. SOA-benefits
for ASPs are interoperability and dynamic
configurability. Specifically, change and evolution
problems are omnipresent in these information systems
due to a large number ASP clients, services offered by an
ASP and data associated to services. Information
architectures create specific needs in terms of schema
evolution, business processes changes, and participant
(provider, client etc.) changes. Changes in data
representations and consequently in integration rules can
be expected frequently. Maintainability is therefore a
particular focus of this investigation.

At the core of service-based integration architecture is
an information integration problem. Provider and
consumer in an ASP context might internally use
different data schemas, as the example of a customer
representation in Fig. 1 demonstrates. The ASP defines
the central model, onto which customer models are
mapped. Transformations can still occur in both
directions. A transformation approach is therefore a core
element of an integration solution. Information

integration needs to be mediated in service architectures
using connectors, which is the second problem in this
context. Data schema integration cannot be fully
automated – the syntactic representation of data schemas
does not completely convey semantics. Consistency can
only be achieved manually, which leads to semantically
enhanced information architectures as the third problem
that we investigate.

In summary, the information integration requirements
in service-based architectures entails a number of specific
needs: automation and dynamic integration to increase
flexibility and maintainability of integration and
mediation in large-scale applications. The model-driven
development of integration in the form of transformations
can address these requirements.

B. Transformation Principles and Requirements
Transformation is at the core of an integration solution.

Two types of transformation languages exist – procedural
ones, which are mainly used today, and declarative ones,
which promise better quality through abstraction. XSLT
is the predominant representative of procedural
languages, but suffers from a number of drawbacks:
- procedural XSLT transformations are difficult write

and read due to an interleaved specification of query
and construction elements,

- XSLT transformations are difficult to reuse as a
consequence of a lack of clear structure and limited
intuitivity,

- the syntactical integration of query and construction
part often prevents easy changes and consequently
hampers maintainability for large-scale information
integration.
The benefits that apply to declarative query languages

(for instance, consider the success of SQL as a
declarative query language) also apply to transformation
languages, which are part query, and part information
construction language. A variety of declarative
transformation languages – such as ATL, QVT, or Xcerpt
– can alleviate this problem. Declarativity enables a
higher degree of abstraction – a central feature of MDD.
A selection of procedural and declarative languages is
compared later on, after determining the SOA-specific
requirements for such a language in this context.

The requirements for an information integration
solution for SOA-based information systems can based
on [13] be summarised as follows:
- declarative transformation achieves a higher level of

abstraction resulting in improved reusability and
maintainability through abstraction from operational
aspects and easier understandability,

- modular transformation specification (beyond the
separation of query and construction part) is needed to
achieve a higher degree of maintainability,

- orchestration of the transformation process –
embedding of transformations into a mediator
workflow specification – is necessary in order to
enhance maintainability through separation of concerns
and loose coupling.
Executable models of these transformations will

actually be the central solution of our integration solution.

200 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

Fig.1. Data Integration and Transformation Problem.

transformation
between different
local schemas

transformation
between different
local schemas

C. Query and Transformation Languages
A number of transformation languages [9,11,14]

including XSLT, XML-QL, Xquery and Xcerpt shall be
surveyed to determine their suitability to provide a
maintainable model-driven integration solution. The
following criteria are applied [13] and form the basis of
the comparison in Table 1:
- general aspects: data model, language, application

domain (i.e. whether data structures can be defined,
which data representation languages are supported, and
in which context is the transformation to be applied)

- structure: query/construct separation, answer as query
(i.e. whether query and construction elements are
separated and queries can be returned as results)

- expressiveness of query language: join, incomplete
queries, new elements, tag variables, nesting, grouping,
pattern matching (i.e. support of a range of query and
transformation language-specific features)

- analyses: cyclic terms, query reduction (i.e. whether
specific analyses and optimisations take place);

- usability: ease of use, modifiability effort, tool support
(i.e. criteria relating to practical considerations
regarding the use of the tool).
These criteria address the necessary abstraction

mechanisms and analysis techniques to improve
maintainability, but which also affect automation and
performance. Pragmatic concerns such as tool support are
considered as well. The result of this survey of six
languages – three procedural and three declarative – is
shown in Table 1.

The shortcomings of the widely used procedural
languages in the context of the given requirements and
the language comparisons have led us to choose a
declarative language. All declarative languages score
well. Xcerpt [15] satisfies the major criteria. Xcerpt is

chosen as it provides stable, open-source based tools
support for efficient and modular transformations. It is
specifically suited for Web-based information systems
through its support of not only XML, but also specifically
Semantic Web languages such as RDF and OWL.

While Xcerpt is an ideal candidate, other recently
developed and well-supported transformation languages
such as ATL and QVT are similarly suitable candidates.
While e.g. QVT satisfies the criteria, it is currently not as
well supported through tools and accessible tutorial
material as Xcerpt. Xcerpt extends the pattern-based
approach, which is used in other query and
transformation languages, in following aspects:
- Firstly, query patterns can be formulated as incomplete

specifications in three dimensions. Incomplete query
specifications can be represented in depth (which
allows XML data to be selected at any arbitrary depth),
in breadth (which allows querying neighbouring nodes
by using wildcards) and in order. Incomplete query
specifications allow patterns to be specified in a more
flexible manner, but without losing accuracy.

- Secondly, the simulation unification computes answer
substitutions for the variables in the query pattern
against underlying XML terms – similar to language
UnQL, but only strict unification is used in UnQL.
Xcerpt provides a runtime environment with an

execution engine at its core [16]. The central problem that
we discuss here is how to embed this type of
environment, which can also be found for other query and
transformation languages, into a dynamic, mediated
service setting.

III. RULE-BASED CONNECTOR GENERATION

Equipped with the central requirements and Xcerpt as
the choice as the transformation language, our model-

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 201

© 2009 ACADEMY PUBLISHER

driven technique for service-based information systems
integration shall now be presented. The two solution
components – integration models and mediated
architecture – are presented in the following subsections.
The conceptual overview in Fig. 2 illustrates the solution
principles. A semantically enhanced information
architecture (which will be addressed in Section IV)
defines the information model. Declarative
transformation rules, consistent with the information
model, are abstract models of integration between local
data schemas. From these, executable connectors can be
generated. These connectors perform mediation in the
service-based architecture. This framework bears
similarity to the OMG-supported Model-Driven
Architecture (MDA). The information architecture is a
computation-independent model, whereas the integration
model is platform- and execution-independent. Only the
connectors are platform-specific executable models.

Note, that we can distinguish two types of
transformations in our discussion:
- data integration, i.e. data transformation using Xcerpt,

is integration-oriented transformation,
- rule to connector generation, i.e. the model-driven

development activities, is generation-oriented
transformation in the MDD sense.
Transformations for data integration are here the

subject of model-driven transformations.

A. Declarative Transformation Rules as Integration
Models

Xcerpt [15] is designed for querying and transforming
standard Web data (XML, HTML) and Semantic Web
data (RDF, OWL). The following design principles can
be distinguished: declarative transformation rules, the
separation of matching and construction part, and goal-

based query programs and transformation rules [16]. Fig.
3 illustrates a goal-based query program for the customer
example from Fig. 1 that shows the separation of query
and construction part. In addition to these query
programs, which include references to input and output
data, Xcerpt distinguishes transformation rules (without
references) from goal-based queries.

TABLE 1. Transformation Languages for Model-driven Information Integration for SOA.

Criteria XML-QL XSLT XQuery Xcerpt ATL QVT

Specific data model Yes Yes Yes Yes Yes Yes
Result language XML XML XML XML XML XML

Application domain Web Data
Integration

Generic
Transform.

(Web) Data
Integration

Web or
Semantic Web

Model
Transform.

Model Transform.

Query/construct
separation

No No No Yes Yes Yes

Answer as query No No No Yes Yes Yes
Joins No No Yes Yes Yes Yes

Incomplete query
specification

Yes Yes Yes Yes Yes Yes

Construction of new elements Yes Yes Yes Yes Yes Yes

Tag variables Yes No No Yes Yes Yes
Nested queries Yes Yes Yes Yes Yes Yes

Grouping Yes No Yes Yes Yes Yes
Pattern-based queries Partly No No Yes Yes Yes

Halt on cyclic query terms N/A N/A N/A Yes Yes Yes
Query reduction No No No Yes No Yes

Ease of use Yes No No Yes Yes Yes
Modifiability effort Low High High Low Low Low

Tool support Little Sufficient Sufficient Sufficient Sufficient Little

Each rule is a declarative, abstract model of an
integration-oriented transformation. In order to enhance
the solution, we aim to define focussed, modular rules. A
layered approach to transformation rule specification
achieves compositionality of rules and consequently the
required modularity of rule definition:
- ground rules are responsible for populating XML data

in form of Xcerpt data terms – these are tightly
coupled to data Web services,

- intermediate composite rules consume the Xcerpt data
terms – these integrate ground rules to provide global
schema data types,

- goal-level composite rules provide data objects for
mediator services based on customer requests.
Based on a user query, a composed connector based on

several individual rules can then be generated from
individual rules (stored in a rule repository) and executed
automatically.

B. Model-based Connector Generation
Connectors are the integration facilitators. They

mediate between customer queries/updates and the
information provider. They can be generated
automatically from the rule models, determined by
schema definitions and the user query. A customer query
could be the following:

select Customer

202 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

from CustomerArray
where Service = ”...”

A connector is based on a goal (essentially the query),

which would involve two rules that Rule 1 in Fig. 4 refers
to – Customer and Service. This results in an
instruction to get the corresponding data elements from
the resources for customers and services. We illustrate
this using an operational pseudo-code formulation. Two
stages – connector preparation and connector execution –
can be distinguished.

A first stage is a connector preparation based on
references Ref_C and Ref_S to resources for customers
and services:

Rule_C :=
retrieveRule (translRule (Customer)),

Rule_S :=
retrieveRule (translRule (Service)),

Con :=
connectorGenerate (C, S, Ref_C, Ref_S,
 Rule_C, Rule_S)

At the second stage, a connector based on previously

generated connector Con and retrieved data Data_C and
Data_S corresponding to the reference is executed:

Res := connectorExe (Con, Data_C, Data_S)

The repository contains the connector models in the

form of abstract rules – without the concrete resources
identifiers as in Fig. 3. The connector generator replaces
these by concrete references Ref_C and Ref_S.
Connectors consist of configured (instantiated) rules
needed for the transformation. The second stage of the
generation process combines the rules through chaining
during the connector execution. It accesses the previously
retrieved data from the resources and applies the
transformation to it. The generated orchestrated process
that invokes the connector generation and execution is
discussed further below. Res is the result, which is
returned to the user. Note, that the final executable
connectors are only generated internally by the Xcerpt
engine and executed on the fly. The connector generation
here (a wrapper) is a pre-generation and pre-execution
configuration of the connector. The two stages reflect two
separate invocations by the coordinating integration
process. The second connector generation stage shall be
detailed now.

Backward goal-based rule chaining is applied to
compose rules, which means that variable bindings of
constituent rules are chained to the query program itself,
i.e. that data is constructed bottom-up through recursive
rule application. Fig. 4 presents an example of four
layered rules where rule 1 is refined by rules 2a and 2b
and rule 2b in turn is based on rule 3. Using this modular
approach to rule definition, any potential change to rules
to a specific element of the original data models is local.

The transformation rules are stored in a repository.
Rules are retrieved from the repository, combined and
backward chaining is applied to retrieve, combine and
assemble data for specific transformation requests. A

connector – an executable transformation that translates
between data source and a customer query – is then
generated based on a top-level transformation goal.
Connectors can be generated on the fly based on layered
rules stored in the repository and input data services that
provide the required data. The bottom-level rules contain
logical references to data sources, which are translated
into data service calls during the connector generation.
For mediator architectures, rules need to be decoupled
from the data resources. In this way, a separation of the
application logic, represented in the rules, and the
implementation-specific locations of data services is
achieved. This separation improves maintainability.

Connector generation means to generate an
orchestrated transformation flow by composing a query
with the corresponding transformation rules and
associated data service calls. The Xcerpt runtime engine
reads XML data from data servers and populates them
into data terms before processing the transformations[16].
Our wrapper mechanism in the preparation replaces
logical identifiers by service calls. The runtime engine is
a Web services and is called by the wrapper, which is part
of an integration process that controls the mediation.

Two executables are generated from the models:
- A composite goal-based transformation rule for the

transformation engine is prepared by the connector
generator, as already discussed. The wrapper prepares
a customised transformation for the Xcerpt engine,
which takes chained rules as input. The actual
combined rule is created within the transformation
engine. The connector has been described in Section
III.B.

- Additionally, an integration process to coordinate the
mediation is generated by a query component for the
integration process. The activation of the
transformation engine is part of this integration
process. The integration flow shall later be
implemented as a Web services process. A pseudo-
code representation for the integration flow is:

receive (ResourceIDs, Query)
 concurrently
 Con := activate connectorGenerate

 Data := retrieve (ResourceID)
 Res := activate (
 connectorExe (Con, Data)
 return Res

While the application rules need to be kept in a

changeable format, we have implemented these system-
level transformations using Java XML-processing APIs
for performance reasons.

C. Connector-based Mediated Integration Architecture
The model-driven generation of automated data

transformation needs to be implemented adequately in the
context of the service platform [17,18]. Different
architectural approaches for a target platform for model-
driven information integration exist:
- Data warehousing: an in-advance approach that

gathers data from the appropriate data sources to
populate entities in the global view of the data

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 203

© 2009 ACADEMY PUBLISHER

warehouse. Data, its aggregations and analytic data is
stored. Wrappers translate between user and warehouse
data formats.

- Federated schema systems: also an in-advance
approach based on the early agreement on common
schemas and data population. These systems aim to
deal with data integration in distributed, autonomous
systems. A federated schema defines the integrated
view of individual export data schemas provided by
the participants.

- Mediated approach: extracts only meta-data from
export schemas in advance. View-specific wrappers
provide access dynamically. A data merge engine
handle updates and ensure consistency according to a
global schema.
Flexibility requirements relating to change and

maintenance make the mediated approach ideal for
service-based information systems [5,19,20] argue that in
particular the heterogeneity of data formats in service-
based environments make mediated architectures more
suitable than data warehouses or federated schema
systems. The mediation process itself can here be
dynamically generated and customised from the
integration models.

The mediated integration architecture shall consists of
the following components (Fig. 5):
- data sources provided as XML data services,
- a integration engine that implements the generated

orchestrated mediation process,
- a transformation engine consisting of a connector

generator that composes executable transformations
from queries and stored transformation rules and an
Xcerpt transformation engine that carries out the
transformation by executing the connector,

- repositories for schemas and transformation rules.
Model-based generated connectors are variable,

dynamic elements of the architecture located in the
transformation engine, but as we already said, the

integration flow for the integration engine is also
dynamically generated. The query component configures
the integration process, e.g. determines the data servers to
be included in the process. The architecture components
and their connectivity and interactions are presented in
Fig. 4. Three sample services of a typical ASP scenario,
part of a customer management facility, are include for
illustration.

The runtime behaviour of the architecture is
summarised in nine steps (annotated in Fig. 4) that
describe the interaction between client, mediator and data
servers, but also internal interactions within the layered
mediator. The interactions subsume data aggregation
(lower mediator layers) and higher-level information
processing.

Customer Data
Service

Customer Data
Service

Service Requests
Analysis Service

Service Requests
Analysis Service

E-business
Systems Service

E-business
Systems ServiceClient

Application

Client
Application Query

Service

Query
Service

Integration Engine
(WS-BPEL Mediator)

Integration Engine
(WS-BPEL Mediator)

Transformation Engine
(Connector Generator

& Xcerpt Engine)

Transformation Engine
(Connector Generator

& Xcerpt Engine)

Transformation Rule
Repository

Transformation Rule
RepositorySchema

Repository

Schema
Repository

1: Query

9b: Result

Mediator Service

4: Invocation

5: Result

2: Generate + Activate
BPEL Process

3: Conversion Request

7: Xcerpt Query Rules

8: Executed
Query Program

6: Transformation
Generation

9a: Result

Customer Data
Service

Customer Data
Service

Service Requests
Analysis Service

Service Requests
Analysis Service

E-business
Systems Service

E-business
Systems ServiceClient

Application

Client
Application Query

Service

Query
Service

Integration Engine
(WS-BPEL Mediator)

Integration Engine
(WS-BPEL Mediator)

Transformation Engine
(Connector Generator

& Xcerpt Engine)

Transformation Engine
(Connector Generator

& Xcerpt Engine)

Transformation Rule
Repository

Transformation Rule
RepositorySchema

Repository

Schema
Repository

1: Query

9b: Result

Mediator Service

4: Invocation

5: Result

2: Generate + Activate
BPEL Process

3: Conversion Request

7: Xcerpt Query Rules

8: Executed
Query Program

6: Transformation
Generation

9a: Result

Fig. 5. Mediator Architecture for Service-based Information System Integration.

1. Client Application invokes the Query Service.
2. The Query Service generates and activates a WS-

BPEL Mediation Process in the Integration Engine.
3. The Mediation Process calls the Connector Generator

(Transformation Engine) to construct the connector
based on rule and schema models in the repositories.

4. Data Service providers are called by the Mediation
Process in the Integration Engine.

5. The data is assembled by the Mediation Process.
6. The data is passed to the Transformation Engine.
7. The data is composed with the connector and

executed by the Xcerpt engine.
8. Transformation results are transferred back to the

Mediation Process.
9. Results are transferred back to the Client via the

Query Interface.
The data aggregation process, i.e. the execution of

complex queries in the integration service with connector
generator and Xcerpt engine in the lower part of the
mediator diagram is separated from the higher-level
information processing through the BPEL transformation
engine. This results, together with the modular and
declarative transformation specification, in improved

204 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

maintainability and also scalability of the architecture.
We discuss the benefits, but also potentially negative
implications, in the evaluation (Section V).

IV. TRANSFORMATION RULE GENERATION

Automation of model-based generation and
consistency between abstract and concrete models are
two central aspects of model-driven development. A
semantic model of the information architecture is the
solution to enhance the two aspects further [21,22]. The
use of domain ontologies shall be suggested to define a
knowledge-based information model to constrain the
integration model and make the transformation rules
consistent with the data models. These aims at enhancing
the representation of schema-based information
architecture to an ontology-based model [3,23]. The
benefits of semantically defined information models
include:
- a higher degree of semantic integration and

consistency through abstract semantic models,
- a higher degree of automation and reliability through

formal definitions and automated generation.

A. Ontology-based Semantic Information Model
Ontologies are knowledge representation frameworks

about a domain in terms of concepts and properties of
these concepts [24]. Ontologies are often defined as
conceptualisations of a domain. The Web Ontology
Language OWL [25], the main Semantic Web ontology
language, is the ideal candidate for semantic annotation in
Web-enabled information systems. In order to avoid the

verbosity of the XML-based OWL in this investigation,
however, an ontology-based representation akin to the
proposed Manchester syntax for OWL is used. The
Customer data type can be semantically defined:

Customer
supportID (Identifier)
custName (Name)
usedServices (multiple Service)

Service
custID (Identifier)
servSystem (System)

…

<!ELEMENT Customer (Service, System) >
<!ATTLIST Customer

supportID ID
custName Name >

…

<!ELEMENT CustomerArray (Customer*) >
<!ATTLIST CustomerArray … >

<!ELEMENT …

<!ELEMENT ArrayOfCustomer (Customer*) >
<!ATTLIST ArrayOfCustomer … >

<!ELEMENT …

construct

map

Domain
Ontology

Global
XML Schema

Local XML Schemas

map

Customer
supportID (Identifier)
custName (Name)
usedServices (multiple Service)

Service
custID (Identifier)
servSystem (System)

…

Customer
supportID (Identifier)
custName (Name)
usedServices (multiple Service)

Service
custID (Identifier)
servSystem (System)

…

<!ELEMENT Customer (Service, System) >
<!ATTLIST Customer

supportID ID
custName Name >

…

<!ELEMENT CustomerArray (Customer*) >
<!ATTLIST CustomerArray … >

<!ELEMENT …

<!ELEMENT ArrayOfCustomer (Customer*) >
<!ATTLIST ArrayOfCustomer … >

<!ELEMENT …

construct

map

Domain
Ontology

Global
XML Schema

Local XML Schemas

map

Fig. 6. A Semantic Information Model for the Customer Example.

Customer =
 exists supportID . Identification and
 exists custName . Name and
 exists usedServices . Service

Service =
 exists custID . ID and
 exists servSystem . System

System =
 exists hasPart . Machine

Each concept, like Customer, is defined in terms of

its properties, such as supportID. These properties
associate information of a specific type or another
concept to a given concept – supportID assigns an
Identification, usedServices another concept
called Service. This description defines a semantic
information model, represented graphically in Fig. 6.

B. Model-based Transformation Rule Generation
This ontology model opens the opportunity to

automatically generate further integration components,
i.e. data schemas and transformation rules. Both are
central ingredients for the connector generation, Fig.5. A
canonical XML schema can be automatically derived
from this model, as the following example for
Customer demonstrates:

<!ELEMENT Customer (Service, System) >

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 205

© 2009 ACADEMY PUBLISHER

<!ATTLIST Customer
 supported Identification
 custName Name >

The global integration schema is now defined as an

abstract and interchangeable domain model. Any local
schemas are defined by mappings into either a global
XML schema or directly into the ontology model.

In addition to the canonical XML schemas, more
importantly also transformations between local schemas
can be derived automatically from the ontology model
and the schema mappings. A prerequisite is that each of
the local schemas is mapped to the domain ontology. A
notion of consistency needs to be defined to express
semantics preservation.

While a basic solution for this transformation can
easily be generated based on the semantic integration of
all data aspects, an adequate transformation generation
that meets the quality requirements needs to consider the
previous transformation requirements (see Section 2.2)
such as modularity. A rule construction algorithm from
the information model to the integration mode layer is
proposed that creates modular rules, similar to those
previously discussed. For each concept in order to
localise change impact the following is done:
1. define one construction rule per concept of the target

schema (based on the concepts from the overarching
ontology),

2. identify semantically equivalent concepts in the
source schema based on the ontology (local elements
map to the same ontology concept),

3. for each concept, determine attributes and copy their
counterparts from the source schema (preserves
concept properties).

This defines consistent, i.e. semantics-preserving
transformations due to the semantic and not only
syntactic integration of data. Applied to the structural
formulation of the customer schemas in Fig.1, this means
that for example the CustomerArray and Customer
rule in Fig. 4 can be automatically generated.

V. EVALUATION

The model-driven connector solution has emerged
from a number of projects we have been involved in:
- migration projects and new developments in banking

and insurance domains, based on activities of a
solution provider that uses an in-house architectural
integration framework,

- large-scale internal integration projects based on SOA
technologies in the mining sector, here human resource
and project management applications have been
integrated across heterogeneous locations,

- an integration project across enterprise boundaries for
an application service provider, involving client
information access and customer data services.
These projects, which illustrate the scope of the

solution, have also provided us with an evaluation context
and evidence about the feasibility of the approach. We
evaluate our approach in the context of the third project
for which we developed a software prototype.

A. Prototype Implementation and Case Study Evaluation
The overall evaluation is based on a prototype of the

architecture that has been implemented as part of a case
study. Besides the Xcerpt runtime engine – an open
source application – Oracle’s BPEL Process Manager and
an Oracle database server have been used to implement
the service architecture. Although ontology technology in
general is less mature than transformation and integration
technology, ontology representation and rule construction
can be implemented based on two platform techniques
and tools. Ontology representation can be addressed with
OWL as the language. Protégé tool is a suitable ontology
editor (protege.stanford.edu) that can build, populate,
translate and export ontologies. The rule construction can
be based on the Jena ontology processing API
(jena.sourceforge.net), which works on RDF graphs and
allows us to process attributes and properties by
traversing the ontology.

The case study is part of the ASP’s Customer
Intelligence Framework (CIF). CIF provides portal-based
access for customers and managers to a reporting system
for the ASPs on-demand services. The reporting system
consists of analyser objects that access content in the
form of requests logs, outage tracking data and customer
life cycle information. The aim is to support ad-hoc,
cross-content adaptable user queries.

The ASP case study application, which was
implemented using the model-driven connector
development technique based on the prototype, has
focussed on the customer lifecycle management system
(CIF) with services such as customer data services and
service request tracking and analysis (see Fig. 5, right-
hand side), made available by an application service
provider. This case study has been supported the
feasibility investigation and has been used to evaluate the
maintainability benefits of the MDD approach – see [13].

B. Maintainability Evaluation – Connector Generation
The presented model-driven integration technique is

tailored towards improved modifiability and
maintainability. The effectiveness of the proposed
technique in terms of these aims shall now be evaluated.
The Architecture-Level Modifiability Analysis (ALMA)
provides a framework to evaluate the proposed
architecture and its development [26]. Change scenarios
are used to elicit and evaluate the modifiability goal. Our
technique has been evaluated after the release of a first
prototype and has been compared with a traditional
XSLT-based integration solution. An architecture-level
impact analysis identifies if an architectural elements is
affected by a change scenario directly or indirectly. The
three scenarios relate to changes in business rules (clients
change the services requested from ASP), data source
providers (structural changes in the data provider service
architecture), and integration rules (caused by data model
changes), respectively:
- Scenario 1 (business rules): changes affect composite

rules in the proposed architecture, whereas the entire
XSLT transformation would be affected in the
traditional architecture. The improvement is achieved

206 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

through automation. Automatic connector construction
at runtime reduces human intervention.

- Scenario 2 (data source provider): changes affect
ground rules and maybe some intermediate rules.
Again, the entire XSLT transformation file would have
to be changed in the traditional set-up. The benefits are
achieved through modularity. Query part and
construction part of an integration rule are separated.

- Scenario 3 (integration rules): changes affect the new
version of composite rules, or reuse or addition of
ground/immediate rules. In the traditional architecture,
the entire XSLT transformation needs changing. The
integration rule repository and independent data
services are the success factors. The connector
generator injects no code into the integration flow.
The impact resulting from each change scenario is

local in the proposed solution, whereas in traditional
solutions, the entire transformation can be affected. The
declarativity and modularity of the transformation rules
and the separation of connector generation and execution
(which is Xcerpt-specific) from the mediation process as
such (which is Xcerpt-independent) are the contributors
to a maintainable solution in this case.

C. Consistency and Automation Evaluation – Rule
Generation

The semantic enhancement clearly improves the
degree of automation – a key aim of model-driven
development – through in particular automated rule
generation and the resulting benefits of only having to
modify modular models if changes are required. Semantic
enhancements also improve consistency through explicit
semantic specification and the fact that consistent, i.e.
semantics-preserving transformations are generated
automatically.

The trade-off for automation is mostly visible in terms
of a preparation overhead for the models. The following
models need to be defined in advance: the domain
ontology (by all participants) and the mappings from
local schemas to the ontology (by the owner of the
schema). Although this requires the involvement domain
experts and knowledge engineers and creates some initial
start-up costs, this is usually a once-off activity and can
be expected to be amortised soon. The benefits and
drawbacks can therefore be summarised as follows. An
in-advance preparation enhances the effectiveness of
solutions in general. The transformation generation
enhances flexibility, but also decreases efficiency if
performed dynamically.

D. Discussion
The previous subsections have demonstrated the

benefits – both connector and rule generation – in terms
of maintainability, consistency and automation. However,
the effects on performance and development costs might
be detrimental. There is often a trade-off between
maintainability and performance in software. Two factors
decrease performance in our solution:
- levels of indirection caused by the architectural

separation of mediation, connector generation and
transformation,

- dynamic connector generation based on rules and
schemas stored in the respective repositories.
Our prototype has, however, demonstrated that these

two factors together in general do not exceed 15-20% of
the overall transformation time compared to the
traditional architecture, which is acceptable in most ASP
situations. The platform we are using – our system is
based on Oracle‘s BPEL Process Manager – is
comparatively efficient and does not cause additional
negative effects.

Another issue are the development costs. We can
estimate the costs for a long-term solution based on the
costs of the prototype and the development of the rule
repository. This can be addressed through an incremental
process, which makes the development systematic and
predictable.

VI. RELATED WORK

A number of related approaches exist, in particular in
the context of model-driven middleware [27,28,29], but
no specific model-driven integration solution based on a
layered model-driven generation approach (as outlined in
Fig. 2) has been presented. A number of technical
solutions for rule-based integration and mediation exist,
though. Many data mediation systems adopt logic rules to
express the correspondences between the schemas. In
general, logic rules elicit schema information such as
element names, schema structures and integrity
constraints. The rule-based approach provides the
following advantages compared to other approaches.
Firstly, declarative rules tend to be generic. Secondly,
these rules are intuitive to learn for users and inexpensive
to use for data integration systems. Thirdly, declarative
rules are also useful to derive new rules to create new
elements in the integrated schema in an automatic
manner.

MSL (Mediator Specification Language) introduced in
the MedMaker framework is a declarative rule-based
language to generate the mediators based on the
declarative specifications. The rules or specifications can
be queried by MSL (Mediator Specification Language).
MSL is powerful enough to carry on operations such as
grouping from one source object, removing redundancies
and removing inconsistencies. These rules are
declarative, rather easy to understand and provide a high
level of abstraction. These rules are mainly deduction
rules. If the query pattern in the rule body is satisfied,
then the construct pattern in the rule head is assumed to
hold. Usually, the construction pattern uses data selected
in the query pattern. While similar in terms of its
capabilities, MSL is not focussed on dynamic generation
and is not supported by a semantic information
architecture. Ref. [3] provides the latter, but is not
specifically maintainability-optimised.

A declarative, rule-based approach has also been
applied to the data transformation problem by [4] and
[11]. The problem is its integration into a service-based
composition. In [4], the data integration engine is built in
WS-BPEL, the composition schema are in activity
diagram as its business logic and the components

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 207

© 2009 ACADEMY PUBLISHER

invocation orders are predefined in the composition
schema, orchestrations are defined by specifying which
operations to invoke from the beginning of the execution
to the end. The business logic in our approach is defined
as business rules that govern the data integration process.
The data integration rules are generally elicited from the
business logic. The common information model governs
what types of services and components are involved in
the composition. Ref. [30] presents an approach for
automated connector generation. However, their approach
is based on state machines, which we feel does not
provide the right level of abstraction in order to be
suitable in a collaborative development context for
enterprise-oriented information systems, as we envisage.

Compared to these, and others such as [3], our
technique demonstrates the maintainability of a layered,
i.e. modular and loosely coupled integration architecture.
The composability of modular rules enhances their
reusability. Our model-driven architecture technique
decouples mediation from integrations, which makes not
only data services, but also the transformation engine
replaceable.

VII. CONCLUSIONS

Many information systems are now modified in their
often complex infrastructures to manage and integrate
information using services, which illustrates the
importance of quality in integration solutions. Service-
oriented architecture is a promising approach to the
integration problem, but the complexity of information
architectures combined with the constant change and
evolution in this context requires SOA and service
platform technologies to be tailored to deliver cost-
effective and reliable solutions. A model-driven
development approach can deliver this quality-enhanced
solution.

MDD succeeds here in providing a maintainable
integration solution as only the information and
transformation models are changed and the executable
integration components can be generated automatically.
This confirms the reputation of MDD benefits, including
improved maintainability. The presented model-driven
integration technique utilises semantic information
integration models in SOAs. A declarative style of
transformation, in an extension based on an ontology-
based information model, with automated, dynamic
transformation creation is a central solution component.
The model-driven development of a flexible mediator
process and connectors is crucial for consistency,
automation and maintenance.

Integration efforts are part of a wider re-engineering
and migration strategy. Problems of re-engineering and
the integration of legacy systems are aspects that have not
been addressed here specifically. The ASP example is a
typical example of legacy systems integration into
service-based architectures. The introduction of data
transformation techniques for re-engineering activities
can improve the process of re-engineering legacy systems
and adopting SOA to manage the information technology
services. This, however, is an aspect that remains to be

investigated in detail. Nonetheless, in the context of
mostly component-focussed MDD approaches, model-
driven integration and connector generation complements
these efforts.

REFERENCES

[1] M. Stal, “Web Services: Beyond Component-based
Computing”, Communications of the ACM, vol. 45 (10),
pp. 71-76, 2002.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web
Services – Concepts, Architectures and Applications.
Berlin: Springer Verlag, 2004.

[3] A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler,
“WSMX - a semantic service-oriented architecture”, in
Proceedings Intl. Conference on Web Services ICWS 2005.
2005.

[4] B. Orriens, J. Yang, and M. Papazoglou, “A Framework
for Business Rule Driven Web Service Composition”, in
Proceedings ER’2003 Workshops, LNCS 2814, pp. 52-64.
Springer-Verlag, 2003.

[5] F. Zhu, M. Turner, I. Kotsiopoulos, K. Bennett, M.
Russell, D. Budgen, P. Brereton, J. Keane, P. Layzell, M.
Rigby, and J. Xu, “Dynamic Data Integration Using Web
Services”, in Proceedings 2nd International Conference on
Web Services ICWS’2004. 2004.

[6] Z. Zhang and H. Yang, “Incubating Services in Legacy
Systems for Architectural Migration”. in Proceedings 11th
Asia-Pacific Software Engineering Conference APSEC'04,
pp. 196-203. 2004.

[7] Object Management Group, Model-Driven Architecture
MDA Guide V1.0.1, OMG, 2003.

[8] B. Selic, “The Pragmatics of Model-Driven Development”.
IEEE Software, vol. 20(5), pp. 19-25, 2003.

[9] M. Lenzerini, “Data integration: A theoretical
perspective”. in Proceedings Principles of Database
Systems Conference PODS'02, pp. 233-246. ACM, 2002.

[10] G. Wiederhold, “Mediators in the architecture of future
information systems”. IEEE Computer, vol. 25, pp. 38-49,
March 1992.

[11] M. Peltier, J. Bezivin, and G. Guillaume, „MTRANS: A
general framework, based on XSLT, for model
transformations”, in Proceedings of the Workshop on
Transformations in UML WTUML’01. 2001.

[12] P. Seltsikas, and W.L. Currie, “Evaluating the application
service provider (ASP) business model: the challenge of
integration”, in Proceedings 35th Annual Hawaii
International Conference 2002, pp. 2801 – 2809. 2002.

[13] Y. Zhu, Declarative Rule-based Integration and Mediation
for XML Data in Web Service-based Software
Architectures. M.Sc. Thesis, Dublin City University, 2007.

[14] A.D Jhingran,.D. Mattos, and N.H. Pirahesh, “Information
Integration: A research agenda”, IBM System Journal, vol.
41(4), 2002.

[15] F. Bry and S. Schaffert, “Towards a Declarative Query and
Transformation Language for XML and Semistructured
Data: Simulation Unification”, in Proceedings Intl.
Conference on Logic Programming, LNCS 2401, Springer-
Verlag, 2002.

[16] S. Schaffert, Xcerpt: A Rule-Based Query and
Transformation Language for the Web. PhD Thesis,
University of Munich, 2004.

[17] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.
Rajaraman, Y. Sagiv, Y.D. Ullman, V. Vassalos, and J.
Widom, “The TSIMMIS approach to mediation: Data

208 JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009

© 2009 ACADEMY PUBLISHER

models and languages”, Journal of Intelligent Information
Systems, vol. 8(2), pp. 117-132, 1997.

[29] F. Oquendo, “π-Method: a model-driven formal method for
architecture-centric software engineering”, SIGSOFT
Software Engineering Notes, vol. 31(3), pp. 1-13, 2006. [18] F. Rosenberg and S. Dustdar, “Business Rules Integration

in BPEL - A Service-Oriented Approach”, in Proceedings
7th International IEEE Conference on E-Commerce
Technology, 2005.

[19] A. Stern and J. Davis, “Extending the Web services model
to IT services”, in Proceedings IEEE International
Conference on Web Services, pp. 824 – 825, 2004.

[20] J. Widom, “Research problems in data warehousing”, in
Proceedings of 4th International Conference on
Information and Knowledge Management, 1995.

[21] I. Rouvellou, L. Degenaro, K. Rasmus, D. Ehnebuske, and
B. McKee, “Extending business objects with business
rules”, in Proceedings 33rd Intl. Conference on
Technology of Object-Oriented Languages, pp. 238-
249.,2000.

[22] D. Djuric, “MDA-based Ontology Infrastructure”,
Computer Science and Information Systems, vol. 1(1), pp.
91–116, 2004.

[23] C. Reynaud, J.P. Sirot, and D. Vodislav, “Semantic
Integration of XML Heterogeneous Data Sources”, in
Proceedings IDEAS Conference 2001, pp. 199–208, 2001.

[24] M.C. Daconta, L.J. Obrst, and K.T. Smith, The Semantic
Web – a Guide to the Future of XML, Web Services, and
Knowledge Management. Indianapolis, USA: Wiley &
Sons, 2003.

[25] W3C – the World Wide Web Consortium, The Semantic
Web Initiative, retrieved April 21, 2008 from
http://www.w3.org/2001/sw, 2001.

[26] P. Bengtsson, N. Lassing, J. Bosch, and H. Vliet,
“Architecture-Level Modifiability Analysis (ALMA)”,
Journal of Systems and Software, vol. 69(1), pp. 129-147,
2004.

[27] Q.H. Mahmoud, Middleware for Communications:
Concepts, Designs and Case Studies. John Wiley and Sons,
2004.

[28] Q. Bing Y. Hongji, W.C. Chu, and B. Xu, “Bridging
legacy systems to model driven architecture”, in
Proceedings 27th Annual International Computer Software
and Applications Conference COMPSAC 2003, pp. 304-
309, 2003

[30] Y. Yang, X. Peng, and W. Zhao, “An Automatic
Connector Generation Method for Dynamic Architecture”,
in Proceedings International Computer Software and
Applications Conference COMPSAC 2007, pp. 409-414,
2007.

Dr. Claus Pahl is a Senior Lecturer at Dublin City
University’s School of Computing, where he is the leader of the
Web and Software Engineering group. He has graduated from
the Technical University of Braunschweig and has obtained a
PhD from the University of Dortmund. He has published more
than 160 papers in various journals, books, conference, and
workshop proceedings. He is on the editorial board of four
journals and is a regular reviewer for journals and conferences
in the area of Web and Software technologies and their
applications. He is the principal investigator of several basic and
applied research projects in Web software engineering. His
research interests cover a broad spectrum from service- and
component technologies in software engineering to
infrastructure and development technologies for Web
applications such as e-learning.

Yaoling Zhu has recently finished his postgraduate research

at the School of Computing at Dublin City University with an
M.Sc. by Research. Yaoling is a graduate in Computer Science
from the Zhengzhou Institute of Engineering, China. He has
extensive experience in the software sector, working for several
years as a senior software engineer for multinational companies
such as Oracle, where he has been working on e-business
outsourcing and Web service technologies in Oracle’s European
Development and Technology Centre. His research focuses on
data integration problems in Web-based software systems.

JOURNAL OF SOFTWARE, VOL. 4, NO. 3, MAY 2009 209

© 2009 ACADEMY PUBLISHER

