
Reasoning with Semantic Web Technologies in
Ubiquitous Computing Environment

WenYing Guo
ZheJiang GongShang University, Hangzhou, China

gwy@mail.zjgsu.edu.cn

Abstract —The vast amounts of data about people, things

and the environment will require new ways of handling,

searching and presenting information. New applications will

increasingly be able to respond to data coming from the real

world and take appropriate action without human

intervention. Ubiquitous computing technologies are

believed to be the third wave in computing by building a

global computing environment where seamless and invisible

access to computing resources. The Semantic Web is

specially a web of machinereadable information whose

meaning is well defined by standards so that both people

and computers can understand. This paper has present a

attempt to apply Semantic Web technologies to ubiquitous

computing, It takes family ontology as an example to show

how Semantic Reasoning System (SRS) can make the system

automatic by improving the interoperability between

systems, applications, and information, It uses OWL for

defining a domain family ontology, then set up rules in JESS

engine, finally run reasoning by Racer.

Index Terms—Ubiquitous computing, Semantic Web,

ontology, reasoning,

I. INTRODUCTION

The real world network of data will allow humans to
be better informed and make better decisions, it will also
mean that machines can make better decisions too.
However, with the rapid development of the Internet and
web technologies, the power of the network increases
exponentially by the number of computers connected to it.

Every computer added to the network both uses it as a
resource while adding resources in a spiral of increasing
value and choice. The vast amounts of data about people,
things and the environment will require new ways of
handling, searching and presenting information. New
applications will increasingly be able to respond to data
coming from the real world and take appropriate action
without human intervention. Increasingly computers will
be making decisions on our behalf.

Ubiquitous computing technologies are believed will
become more useful if they could undertake tasks on
behalf of the user, rather than forcing the user to do
essentially everything himself. It is about a shift to human
centered computing, where technology is no longer a
barrier, but works for us, adapting to our needs and
preferences and remaining in the background until
required. This implies a change in our daily life to a much
more natural way of interacting and using the power of
networked computing systems which will be connected
not just to the Internet or other computers, but to places,
people, everyday objects and things in the world around
us.

Shareing information is key to enabling the ubiquitous
computing. The development of a semantic web is one
solution. The semantic web makes communication
between machines possible that means machines and
systems are able to interrogate other machines and
systems. It uses ontologies and schemas to separate data
from how it is presented and give it a structure that
enables information on the web to be retrieved,
interpreted and shared by machines intelligent agents
rather than just humans.

JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008 27

© 2008 ACADEMY PUBLISHER

mailto:gwy@mail.zjgsu.edu.cn

This paper discusses the possible application of
Semantic Web technologies to ubiquitous computing. It is
motivated by the need for better automation of user's
tasks, In particular, It demonstrates that Semantic Web
technologies are particularly well suited to rich, flexible
representation of various policies. The paper is organized
as follows. Section 2 describes the motivation and
focuses on related works. Section 3 describes our
Semantic Reasoning System (SRS) framework. Section 4
shows the implementation of SRS. Section 5 concludes
the paper.

II. MOTIVATION AND RELATED WORKS

Existing methodologies for implementing a Ubiquitous
computing environment is by using smart devices, which
have some processing power and are specialized in a set
of specific tasks. The advantage of this is their ability to
communicate with each other by building and storing
contextual information used by the Pervasive
environment to offer services based on the stored
information. However, current devices are costly and thus
it is difficult to replace all current devices with smart
devices to implement pervasive computing environments.
Also, smart devices need to have functionality beyond
what they are expected to do because they are integral to
the environment.

Our solution eliminates the need for smart devices is
by using the Semantic Web to build dynamic context
models and reasoning models, as a user moves from one
environment to another. He/She can achieve dynamic
building of contexts by sharing knowledge and context
information between local Pervasive environments
through the Semantic Web. The user also can get the
implicit information by the reasoning modules. This
approach will be helpful to quickly implement
Ubiquitous computing since the user can use currently
available resources and do not need specialized devices.

The vision of Semantic Web proposed by Tim
Berners-Lee et al. (2001) is "The Semantic Web is an
extension of the current Web in which information is
given well-defined meaning, better enabling computers
and people to work in cooperation". The Semantic Web
can be seen as a huge repository of Web data, like
database as a repository of structured data. The Semantic

Web techniques have proven useful in providing richer
descriptions for Web resources, and consequently they
can also applied to describing functionality: Semantic
Web Services appear to be an appropriate paradigm to be
applied in representing the functionality of ubiquitous
computing devices. Virtual and physical functions can be
abstracted as services, providing a uniform view of all
different kinds of functionality. Realization of this is
contingent on the continuing emergence of suitable
ontologies for modeling ubiquitous computing
environments.

Semantic Web technologies represent a potential for
this qualitatively stronger interoperability as compared to
the traditional standards-based approach. With the
Semantic Web approach, it is possible for agents to
“learn” new vocabularies and via reasoning make
meaningful use of them. Furthermore, in addition to
current notions of device and application interoperability,
the Semantic Web represents interoperability at the level
of the information itself.

Ontologies usually are used as a formalism to describe
knowledge and information in a way that can be shared
on the web is becoming common. Adoption of the
standard for the ontology web language (OWL) is
propelling this trend toward large scale application in
different domains. However, the utility of the ontologies
is limited by the processing mechanisms that are
smoothly integrated with this form of representation.
Therefore there is an effort on the way to formalize the
logic layer for ontologies. The semantic web rule
language (SWRL) is proposed as an important step in this
direction, building on the experience of the previous work
on RuleML. Eventually the availability of standardized
rule language for the semantic web will make it possible
to use both ontologies and rules as a basis for innovative
applications that are connected to the semantic web. The
understanding of capabilities and implications of this
combination will be essential for successful deployment
and adoption of these technologies.

III. SRS FRAMEWORK

Our Semantic Reasoning System (SRS) consists of the
following four parts:

28 JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

[1] ontologies architecture: representing OWL
concepts as Jess Knowledge,

[2] SWRL rule: establishing the rules to represent
the dependencies between the relationships

[3] Jess Engine: Importing the SWRL rules into
Jess engine and executing Jess Rules and
Updating an OWL Knowledge Base

[4] reasoning module implement

A. Ontology Architecture

A vocabulary of concepts for an information system
described in the scenario requires definitions about the
relationships between objects of discourse and their
attributes. The W3C defines two standards that can be
used to design an ontology:

RDF Schema: RDF Schema (RDFS) allows the
engineer of an ontology to create hierarchies of concepts
(classes) and also hierarchies of attributes which specify a
class.

Web Ontology Language (OWL): Because of the
upward compatability of the Semantic Web Architecture,
all constructs of RDFS can also be used in an OWL
Ontology.

The W3C divides OWL into three syntax classes:
OWL Lite, OWL DL and OWL Full. OWL DL is suited
to be read by description logic reasoner.

Because of the larger complexity of constructs, We
choose OWL to implement the needed ontologies. OWL
allows to set property restrictions and to indicate whether
a property is transitive, symmetric, functional or inverse
to another property. Contrary to RDFS, the value of a
property can be allocated with an instance. This is a
benefit in terms of defining properties that describe
relationships between classes.

The family ontology (FO) in our SRS is based on the
standard conceptual reference model developed by
Christine Golbrelch[11]. It provides definitions and a
formal structure for describing the implicit and explicit
concepts and relationships used in family heritage
documentation. We draw out some classification and
relevant properties from its models, then re-establish
some core concepts, instances and relationship, set up our
own family ontology FO，In our FO, We include an
OWL ontology representing the family usual

relationships and a SWRL rule base representing the
dependencies between those relationships.

We choose Protege as our pntology editor, which
supports knowledge acquisition and knowledge base
development. It is a powerful development and
knowledge-modeling tool with an open architecture.

The FO architecture is shown in Fig. 1.

Figure 1. FO describs the core concepts and attributes in the family

heritage documents

In FO, We have following definitions:
Core concepts ＝ {Thing, Person, Gender, Parent,

Sibling, Woman, Child, Man, Relative, Mother, Father,
Sister, Brother, Daughter, Aunt, Niece, Son, Uncle,
Nephew}。

Attributes＝{hasAunt, hasChild{hasSon,hasDaughter},
hasConsort, hasNephew, hasNiece,
hasParent{hasMother,hasFather}, hasSex,
hasSibling{hasBrother,hasSister}, hasUncle}

Members ＝{Smith, Alice, Betty, Charles, Doris, Eve,
Anna, George, Michael}

OWL for representing the family ontology object is
shown below:
…
<owl：Class rdf：about="#Relative">
 <rdfs：subClassOf rdf：resource="#Person"/>
 <owl：equivalentClass>
 <owl：Class>
 <owl：unionOf rdf：parseType="Collection">
 <owl：Class rdf：ID="Child"/>
 <owl：Class rdf：about="#Parent"/>
 <owl：Class rdf：about="#Aunt"/>
 <owl：Class rdf：ID="Nephew"/>
 <owl：Class rdf：ID="Niece"/>
 <owl：Class rdf：about="#Uncle"/>
 <owl：Class rdf：ID="Sibling"/>
 </owl：unionOf>
 </owl：Class>
 </owl：equivalentClass>
 </owl：Class>

B. Semantic Web Rule Language

Being a combination of OWL and Horn Logic, SWRL
can be used to define rules. We choose SWRL as our rule

JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008 29

© 2008 ACADEMY PUBLISHER

language of our Semantic Web and write rules expressed
in terms of OWL concepts to reason about OWL
individuals. The rules can be used to infer new
knowledge from existing OWL knowledge bases.

SWRL extends OWL DL abstract syntax by a further
axiom:

“axiom ::= rule where:
rule::=‘Implies(‘[URIreference]{annotation}

antecedent consequent ‘)’
antecedent ::=’Antecedent(‘ { atom}’)’
consequent ::=’Consequent(’{atom}’)’
atom ::= description ‘(’ i-object ‘)’
 |dataRange ‘(’ d-object i-object ‘)’
 |individualvaluedPropertyID‘(’i-object i-object ‘)’
 |sameAs ‘(’ i-object i-object ‘)’
 |differentFrom ‘(’ i-object i-object ‘)’
 |builtIn‘(’ builtIn builtinID{ d-object} ‘)’
builtinID ::=URIreference
A rule is a combination of an antecedent and a

consequent. A rule typically claims that if the antecedent
is true then the consequent has to be true. An
antecedent/consequent is an assertion e.g. parent(x,y)
which means x is a parent of y.

(Antecedent(parent(x,y)),Consequent(older(x,y)))
means, if x is a parent of y, then x is older than y. The
combination of the hasSon and hasSister properties
implies the hasDaugher property.

In SWRL the rule would be written like:
Implies
(Antecedent(hasSon(I-variable(x1) I-variable(x2))
 hasSister(I-variable(x2) I-variable(x3)))

Consequent(hasDaughter(I-variable(x1)
I-variable(x3))))

Fig. 2 shows the Jess representation of SWRL rules in
the Protege SWRL Editor.

Figure 2. Jess Rules Tab in the Protege SWRL Editor.

 C. Abox and Tbox

Knowledge base declarations include concept axioms
and role declarations for the TBox and the assertions for
the ABox. The TBox object and the ABox object must
exist before the functions for knowledge base
declarations can be used. A knowledge base is just a tuple
consisting of a TBox and an associated ABox.

The Tbox in our SRS Framework is shown in Fig. 3.

Figure 3. Family T-box

TBOX coding:
;;; initialize the T-box "family"
(signature:atomic-concepts (person human female

male woman man parent mother father grandmother aunt
uncle sister brother)

(signature
：atomic-concepts (person human female male woman

man parent mother father grandmother aunt uncle sister
brother)

：roles ((has-child ：parent has-descendant)
(has-descendant ：transitive t)

(has-sibling)

(has-sister ：parent has-sibling)

(has-brother ：parent has-sibling)

(has-gender ：feature t)))

;;; Domain & range restrictions for roles
(implies *top* (all has-child person))

(implies (some has-child *top*) parent)

(implies (some has-sibling *top*) (or sister brother))

(implies *top* (all has-sibling (or sister brother)))

(implies *top* (all has-sister (some has-gender female)))

(implies *top* (all has-brother (some has-gender male)))

;;; Axioms for relating concept names
(implies person (and human (some has-gender (or female

male))))

(disjoint female male)

(implies woman (and person (some has-gender female)))

30 JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

(implies man (and person (some has-gender male)))

(equivalent parent (and person (some has-child person)))

(equivalent mother (and woman parent))

(equivalent father (and man parent))

(equivalent grandmother (and mother (some has-child (some

has- child person))))

(equivalent aunt (and woman (some has-sibling parent)))

(equivalent uncle (and man (some has-sibling parent)))

(equivalent brother (and man (some has-sibling person)))

(equivalent sister (and woman (some has-sibling person)))

In the Abox. We have two family: (Alice's family and
Charles's family) shown in Fig. 4 and Fig. 5 respectively.

Figure 4. Alice’s Family

Figure 5. Charles’s Family

D. Integrating SWRL Editor and the Jess Rule Engine

Integration with external systems, such as problem
solvers, is becoming increasingly important for ontology
development and knowledge-modeling tools. We manage
our FO Protege ontologies and knowledge by Integrating
SWRL Editor and the Jess Rule Engine. The Jess engine
running inside the Protégé framework is the basis for the
JessTab integration model. Because Protégé and Jess are
implemented in Java, we can run them together in a
single Java virtual machine. This approach lets us use
Jess as an interactive tool for manipulating Protégé

ontologies and knowledge bases. Furthermore, we can
propagate changes in Protégé to Jess.

A core component of Protégé integration is the
mapping mechanism. In the Protégé frame model, classes,
slots, and facets are themselves instances. So, it is
sufficient to map Protégé instances to facts. This mapping
approach fits well with both the Protégé and Jess models.
This approach makes it possible to mark classes in the
ontology for mapping to Jess facts. By using the
expression (mapclass <class-name>), we can map all
instances of the specified class to Jess facts.

Jess is a reimplementation of a subset of Clips in Java.
Jess implements some additional functionality not
provided by Clips. Like Clips, reasoning in Jess is based
on a list of known facts and a set of rules that try to match
on these facts in its fact base.

Interaction between the SWRL Editor and the Jess rule
engine is user-driven. The user controls when OWL
knowledge and SWRL rules are transferred to Jess, when
inference is performed using those knowledge and rules,
and when the resulting Jess facts are transferred back to
the OWL Plugin as OWL knowledge.

E. Executing Jess Rules and Updating OWL
Knowledge Base

Once the relevant OWL concepts and SWRL rules
have been represented in Jess, the Jess execution engine
can perform inference. As rules fire, new Jess facts are
inserted into the fact base. Those facts can be used in
further inference. When the inference process completes,
these facts must be transformed into OWL knowledge,

The Jess system consists of a rule base, a fact base, and
an execution engine. The execution engine matches facts
in the fact base with rules in the rule base. Fig. 6 shows
that the rules can assert new facts and put them in the fact
base.

JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008 31

© 2008 ACADEMY PUBLISHER

Figure 6. Run JESS engine

F. Reasoning Engine

The order of axioms and assertions does not matter
because forward references can be handled by RACER.

The macros for knowledge base declarations add the
concept axioms and role declarations to the (current-tbox)
and the assertions to the (current-abox).

A major task of SRS Reasoner is discovering the
implicit information that OWL may not define. Each web
resource contains metadata which describes the content of
the web resource and which is noted in RDF. The
Reasoner has to send queries to web resources to detect
whether the content is suitable to a given interest or not.

We choose Racer as our reasoning engine. After
running Racer, we can discover the implicit relationship
between the family members. (shown in Fig. 7).

Figure 7. Mapping between two Families

IV. PERFORMANCE

The reasoning module is fully implemented with all
features described in the previous section and shown in
Fig. 8 below.

Figure 8. Performance

V. CONCLUSION AND FUTURE WORK

This paper takes family ontology as an example to
show how the SRS can help to discover the implicit
relationship between the family members by reasoning.
The application will not be limited to family domain. As
SRS can “think ”, it can apply to the varous different
fields, espcailly ubiquitous computing.

In this paper, we focus more on the Semantic Web
technology. In the near term, our research will be how to
apply this Semantic Web technology to the ubiquitous
computing environment.

VI. REFERENCES

[1] Sachin Singh, Sushil Puradkar, Yugyung Lee, "Ubiquitous

computing: connecting Pervasive computing through

Semantic Web",Information Systems and E- Business

Management,Springer Berlin /Heidelberg ,Volume 4,

Number 4 , 2006.10, pp. 421-439

[2] David Martin, Mark Burstein and Drew McDermott etc.

"Bringing Semantics to Web Services with OWL-S",

World Wide Web, Volume 10, Number 3, 2007.9, pp223-

227

[3] Yalin Yarimagan , Asuman Dogac,"Semantics based

customization of UBL document schemas", Distrib Parallel

Databases, 2007 (22), pp.107-131

[4] Michael J. Shaw, David M. Gardner, Howard Thomas

"Research opportunities in electronic commerce",

Department of Business Administration, College of

Commerce, University', Decision Support Systems, 1997,

pp. 149-156

32 JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008

© 2008 ACADEMY PUBLISHER

[5] David Ley, Becta, "Ubiquitous Computing", emerging

technologie,Volume 2 (2007), pp. 64-79

[6] Ora Lassila, "Applying Semantic Web in Mobile and

Ubiquitous Computing: Will Policy-Awareness Help?",

http://www.csee.umbc.edu/swpw/papers/lassila.pdf

[7] Marek Hatala, Ron Wakkary, Leila Kalantari,"Rules and

ontologies in support of real-time ubiquitous application",

Web Semantics: Science, Services and Agents on the

World Wide Web, 2005, pp.5-22

[8] Fabian Abel, Jan Brase, "Using Semantic Web

Technologies for context- aware Information Providing to

Mobile Devices",

http://wetice.jpl.nasa,gov/wetice03/presentations/ Ahn.pdf

[9] Martin O'Connor, Holger Knublauch, Samson Tu,etc.,

"Rule System Interoperability on the Semantic Web with

SWRL", ISWC 2005, LNCS 3729,2005, pp. 974 - 986,

[10] Wen-ying Guo, De-ren Chen, and Xiao-lin Zheng "A

Semantic Web Approach to 'Request for Quote' in E-

Commerce", APWeb Workshops 2006, LNCS 3842, 2006,

pp.885-888

[11] Alessandra A. Macedo, Larcio Baldochi Jr. "Automatically

linking live experiences captured with a ubiquitous

infrastructure", Business Media, LLC 2007

[12] Kalle Lyytinen, Youngjin Yoo, "Designing and

implementing effectively high impact ubiquitous

computing environments", Springer-Verlag 2006, pp395-

397

[13] http://protege.cim3.net/file/pub/ontologies/family.swrl.owl

/family.swrl.owl

WenYing Guo is currently an Associate Professor of

Computer Information Engineering and Technology at ZheJiang

GongShang University, Hangzhou, China. She received her

PhD. in the Computer Science from ZheJiang University and

got her MSc degree from Northwestern polytechnology

university, Xian. Her research over the last ten years has

focused mainly on Semantic Web technology, the application of

e-Learning and Electronic Commerce.

JOURNAL OF SOFTWARE, VOL. 3, NO. 8, NOVEMBER 2008 33

© 2008 ACADEMY PUBLISHER

http://wetice.jpl.nasa,gov/
http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl
http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl

