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Abstract - The use of Unmanned Underwater Vehicles 

(UUVs) has been proposed for several different types of 

applications including hydrographic surveys (e.g., mapping 

the ocean floor and exploring sunken wreckage), mine 

detection and identification, law enforcement (e.g., enforcing 

certain fishing regulations), environmental and pollution 

monitoring, and even performing surveys to find potential 

drilling locations on the ocean floor for the oil industry. 

Recently the idea of using multiple, cooperating UUVs to 

execute these missions has also been proposed. There are 

two main factors that dictate a particular mission’s success. 

The first factor regards creating a mission that is free from 

errors, in terms of both syntax and semantics. The second 

factor deals with properly splitting a mission into a set of 

sub-missions and assigning each sub-mission to a group of 

UUVs. Even though tools have been developed to help 

reduce these potential problems such as high level mission 

programming languages, compilers for these languages and 

utilities to automatically split an operator specified mission, 

the potential still exists for errors when creating a mission 

(e.g. semantic errors introduced from programming and 

maintaining the code for existing missions). The goal of this 

article is to present a programming-free, parallel mission 

generation utility that uses a series of tools we developed 

along with a commercially available graphical package. Our 

utility allows an operator to graphically specify a mission 

for a group of UUVs and automatically split the mission 

among the group based on an objective provided by the 

operator. The main contribution of this tool is twofold. First, 

it relieves the operator from low-level mission programming 

including the manual partitioning of the mission across a 

group of available UUVs. Second, it allows the operator to 

review the resulting set of generated sub-missions using the 

graphical interface. Thus, no matter what the particular 

UUV application is, this tool is another step towards 

successfully creating missions for UUVs. 

Index Terms – High-Level Mission Programming, UUV, 

Graphical Mission Specification, Mission Planning, 

Compiler. 

I. INTRODUCTION

The use of Unmanned Underwater Vehicles (UUVs) 

has been proposed for several different types of 

applications including hydrographic surveys for mapping 

the ocean floor and exploring sunken wreckage [3], mine 

detection and identification [4], law enforcement such as 

enforcing certain fishing regulations [16], collecting data 

on various forms of aquatic life [27], environmental 

monitoring regarding pollution [17], and even performing 

surveys to find potential spots on the ocean floor for oil 

drilling operations and for the inspection of underwater 

oil pipelines [5][28]. Recently the idea of using multiple, 

cooperating UUVs to execute these missions has also 

been proposed [29][30][40]. Whether the application for 

a UUV is finding potential drilling locations for an oil 

platform or searching for mines, successfully creating 

missions (either for a single UUV or a group of UUVs) 

poses many challenging problems. There are two critical 

issues in this context. First, attempting to create a mission 

free from syntactic errors as well as semantic errors and 

second, if multiple UUVs are used for a mission, one has 

to properly split these missions into a set of sub-missions 

and assign them in an optimal way to each vehicle. Both 

of these factors play a key role in a given mission's 

success. 

Fortunately, tools have been created recently to aid in 

the resolution of some of these issues. Such tools include 

mission programming languages (MPLs) [7][12][13] with 

compiler support that allow an operator to create missions 

easily (similar to that of general purpose high level 

languages such as C++ and Java) as well as utilities that 

generate parallel sub-missions from a given high level 

sequential mission description [10][11][33]. Even though 

these tools were developed to make mission creation and 

maintenance easier rather than using a low level language 

or writing a set of parallel missions by hand, there are 

still many potential problems that have to be addressed. 

For example, if an operator writes a mission using an 

MPL, the potential still exists for the operator to make 

mistakes the same as with any programmer writing 

1: The preliminary version of this paper appears in the Proceedings

of the OCEANS 2007 MTS/IEEE. This paper extends the conference

version by (1) providing additional graphical tools eliminating the need

for an operator to write any source code for UUV missions and (2)

providing two new strategies for generating sets of parallel sub-

missions (reducing the number of vehicles and reducing total mission

latency).
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source code using a generic high level language. While a 

compiler typically catches some of these errors (e.g., 

those related to the syntactic structure of the program), 

semantic errors are hard to catch and fix at compile time. 

In addition, when the mission description written in an 

MPL is to be read by someone who is not the author of 

that mission text, it may be difficult to understand easily 

what the mission is supposed to do. As a result, mission 

text maintenance and update can be very problematic. 

Last, an MPL is typically specific to a UUV and does not 

port to other UUVs at all, or requires extensive effort on 

the programmer’s side to port it. While there already exist 

several attempts at developing a universal MPL 

[14][18][23][24] that can execute regarding different 

vehicle types, this is not expected to happen very soon in 

practice. Even if this is realized someday, such an MPL 

has to be extended periodically to keep up with new 

vehicle capabilities and emerging mission requirements. 

Therefore, there is a clear need for developing more 

user-intuitive programming environments for writing and 

visualizing missions that require multiple, cooperating 

UUVs. This work is an attempt at this direction, and 

proposes a programming-free parallel mission generation 

through a graphical tool. Our tool has five major 

components. The first component uses a maritime 

navigational package called Nobeltec [8] and allows the 

operator to graphically specify the high level mission 

very easily without indicating explicitly any low level 

details about the parallelization and workload 

distribution. The second component provides the ability 

for an operator to specify additional mission parameters 

using another graphical interface, which eliminates any 

source code the operator needs to write for the mission. 

The third component translates this mission from the 

graphical description to a mission programming language 

(MPL) version. The forth component is an automatic 

mission parallelizer, which takes the MPL description of 

the mission and parallelizes it across the specified set of 

UUVs without operator involvement. This parallelization 

is transparent to the operator and can be targeted at 

different objective functions such as minimizing total 

mission latency or reducing total number of vehicles used 

for a mission. The fifth component of our tool maps these 

parallel sub-missions back to the Nobeltec representation, 

again in an operator-transparent manner. 

The combined effect of all these components is that the 

operator defines his/her mission requirements and 

available resources (UUVs and their sensors) using a 

graphical interface and the specified mission is 

automatically parallelized by the tool and displays the 

resulting set of sub-mission of this parallelization process 

on screen for the operator to review. The main 

contribution of this tool is that it relieves the operator 

from low-level mission programming using an MPL (not 

to mention all the potential problems that come with it) 

and the manual partitioning of the mission across the 

available vehicles. Therefore, this approach does not only 

eliminate the need for programming but also allows the 

operator to visualize his/her parallelized mission using 

our graphical interface. 

The rest of this paper is organized as follows. Section 

II presents background information describing the typical 

steps involved with a UUV mission. Section III discusses 

our existing tools including our high-level mission 

programming language, its corresponding compiler, and a 

mission splitting utility that includes three different 

mission splitting strategies. Section IV introduces our 

new graphical mission specification and partitioning 

utility for creating a set of parallel sub-missions for a 

group of UUVs and discusses the details of each of the 

five components of our tool. Section V offers an 

experimental evaluation of our tool by illustrating how 

the different mission splitting strategies are used to 

allocate vehicles to specific missions and Section VI 

discusses our future work followed by our concluding 

remarks.

II. BACKGROUND

UUVs come in many different sizes ranging from a 

half meter in length up to thirty or more feet. The 

Seahorse UUV (shown in Figure 1) was designed and 

built by the Applied Research Lab at the Pennsylvania 

State University (ARL/PSU) for research purposes 

including the collection of high quality environmental 

data in the littoral regions of the world [2]. A typically 

scenario involving the preparation for a UUV mission 

includes an operator creating a mission for a particular 

vehicle, loading the mission onto the vehicle after it has 

been written, and deploying the vehicle from an oceanic 

vessel (e.g., T-AGS 60 class oceanographic vessel) in 

order to execute its mission. 

The creation of the mission usually involves an 

operator typing the mission by hand in the same manner 

as a programmer would write source code. The mission 

for a UUV can either be written in the vehicles native 

programming language or a high-level vehicle language 

such as the high-level MPL developed for the Seahorse 

UUV (we will discuss our MPL in more detail in Section 

III [1]). After the mission is written, the mission is loaded 

onto the vehicle’s onboard control system (e.g., a 

computer running some type of mission control software 

[19][21]). Typically these vehicles are equipped with a 

wireless device such as an 802.11 network card, which 

allows an operator to transmit the mission to the vehicle’s 

onboard control system via wireless transmission. 

When commanded to, the UUV submerges and begins 

to execute its mission. The execution time of the mission 

is dependent upon the type of mission. A mission can 

take anywhere from a few hours to more than a day. A 

Figure 1 – The Seahorse UUV courtesy of the Applied Research Lab at 

The Pennsylvania State University. 
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hydrographic survey as discussed in [3] may take 8 hours 

or less to conduct and other mission types such as law 

enforcement missions or surveillance missions [17] may 

require UUVs to execute their missions 24/7 with 

periodic recharging of their onboard power systems. In 

addition to the nature of the mission, the type of vehicle 

used also plays an important role in determining the 

length of the mission. Smaller UUVs may only have 

enough battery power to last a few hours whereas larger 

UUVs may have the staying power to last several days. 

The Seahorse UUV actually has enough battery power to 

last approximately 100 hours at a rate of 4 knots. 

A UUV is usually equipped with one or more sensors 

that are used to collect data during mission execution. 

Two different sensor types include side-scan sonars (SSS) 

and sub-bottom profilers. A SSS is used to map 

underwater terrain features and sometimes used to search 

for sunken wreckage (e.g., ships and downed aircraft) that 

may lie on the ocean floor. A SSS projects a beam from 

both sides of the UUV and scans the ocean floor as it 

traverses over a particular region. In the case of the 

Seahorse UUV, its onboard SSS can scan an area of 100 

meters on each side of the vehicle. In other words, the 

UUV traces out a path 200 meters wide as it moves over 

the ocean floor. The data collected from a SSS can be 

reconstructed to provide 2D (and sometimes 3D) images 

of different features found on the ocean floor. A sub-

bottom profiler, on the other hand, is usually located on 

the bottom of the vehicle and scans for subsurface 

features, that is, records images of structures and contents 

below the ocean floor. This data can be reconstructed to 

form 2D images of these subsurface structures. For more 

detail regarding SSS and sub-bottom profiler sensors, 

please refer to [3]. 

After the mission is finished executing the UUV comes 

to the surface for retrieval by the oceanic vessel. The 

larger UUVs are typically fished out, that is, when they 

surface, a cable is attached to the nose of the vehicle and 

it is reeled in by a small crane. Smaller vehicles may 

simply be retrieved by hand. Once the vehicle is retrieved 

the data it gathered while on its mission can be 

downloaded and analyzed. In the next section, the 

existing tools developed at ARL/PSU are discussed that 

includes the high-level MPL, the supporting compiler, 

and a mission partitioning utility that automatically 

generates missions for groups of cooperating vehicles. 

III. EXISTING TOOLS

This section discusses some existing tools including a 

high-level MPL, a supporting compiler for this MPL, and 

a tool that offers three different strategies for splitting an 

operator specified mission into a set of parallel sub-

missions. 

A. Our High-Level Mission Programming Language 

We developed a high-level Mission Programming 

Language (MPL) [1] at the Applied Research Lab at the 

Pennsylvania State University for use with the Seahorse 

UUV [2] to allow an operator to easily specify missions 

without having to worry about any details for a particular 

UUV (similar to a programmer writing a C++ program 

without having to worry about any of the underlying 

hardware details for a particular machine’s architecture). 

Our high-level MPL has different types of orders that can 

be used to specify a mission. Some of these orders 

include Waypoint Navigation Orders (WNOs) and 

Survey Orders (SOs). Examples of these orders are 

shown in a sample mission for the Seahorse UUV (Figure 

2). Here the WNO is used to specify a destination latitude 

and longitude from the UUV’s current position. The SO 

is used to specify an area of the ocean floor to be 

surveyed or scanned. A SO could be used for different 

applications such as mapping the ocean floor, mine 

detection and identification, and exploring potential 

drilling locations for the oil industry. Next we discuss the 

supporting compiler for this high-level MPL. 

B. Compiler Support for our Mission Programming 

Language 
Each order type supported by our high-level MPL has 

a corresponding language specification. The language 

specification for each order type is a rule on how to use 

each particular order type. The language specifications 

for the WNO type and SO type are shown in Figure 3. 

This language has critical elements as well as optional 

elements. The operator must specify critical elements 

whereas optional elements may be omitted. Note that if 

an optional element is omitted then a default value is 

substituted for this element. Default values are shown in 

parenthesis. For example, with respect to the WNO, if the 

Destination Latitude and Destination Longitude are 

omitted, the UUV will have no way of knowing where to 

travel to from its current position. The MPL cannot 

simply assume a value for these elements. If it does 

assume a value, the default values for the Destination 

Latitude and Destination Longitude could be a position 

far outside of the operating area for the UUV. On the 

other hand, if the operator does not specify the optional 

element Use_SSS (which indicates whether to use the 

SSS), the MPL can assume this is to be used since there 

are only two options for this element, True and False. 

Figure 2 – A sample mission involving a WNO and a SO. A WNO 

commands a UUV to travel to a destination latitude and longitude. A 

SO commands a UUV to survey a region of the ocean floor defined by 

four sets of latitude and longitude coordinates that traces out a 

rectangular region. 
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To develop the compiler for this high-level MPL, we 

derived a grammar for the different order types based on 

the corresponding order type specifications. Once we had 

the grammar representation for each order type, source 

code for our compiler was generated using the tools Lex 

(a lexical analyzer) and YACC (Yet Another Compiler 

Compiler) [25] that is based on our grammar and set of 

regular expressions (REs) [26] (REs are used by Lex to 

identify certain patterns within text strings). An example 

of the grammar for the WNO is shown in Figure 4. The 

grammars used in our compiler are in the style of Backus-

Naur Form or BNF [6]. Note that some productions in 

this grammar have a <no token> token and other 

productions do not have this token. The <no token>

token is used to represent the optional order elements as 

in the production for Use_SSS. Other productions that do 

not include this <no token> token are the critical 

elements. For a detailed discussion regarding our high-

level MPL and its corresponding compiler, we refer the 

reader to [1]. 

C.  A UUV Mission Partitioning Utility 

Since research has been moving towards using 

multiple UUVs in recent years, we needed a way to add 

support for this capability to our existing high-level MPL. 

We added a feature (called the parallel region construct) 

that allows an operator to easily express complex 

missions involving multiple UUVs. An example of this 

construct is shown in Figure 5 (Note that this construct is 

similar to compiler directives used in the C programming 

language [31]). 

This construct allows an operator to quickly and easily 

convert operator specified missions for a single UUV into 

missions involving multiple UUV’s by simply enclosing 

the preferred orders in the parallel region construct. If an 

operator wants to convert this mission back into a mission 

for a single UUV, the operator simply removes the 

parallel region construct. The compiler has access to the 

available UUVs when the mission is compiled and, based 

on the number and types of UUVs, the compiler can 

generate the corresponding set of parallel sub-missions 

from the operator specified mission. 

Our mission partitioning utility contains three different 

mission splitting strategies, a simple mission splitting 

approach, an approach to reduce the number of vehicles 

for a particular mission, and an approach that reduces the 

total mission execution time or latency. Note that these 

three strategies assume each vehicle has enough battery 

capacity to traverse their assigned region of a survey area. 

Under future work we discuss expanding these strategies 

to also consider the available battery capacity of each 

vehicle as a constraint when determining which vehicles 

are capable of traversing particular regions of a given 

survey area. 

The simple mission splitting approach, strategy one, is 

as follows. Given an operator specified mission and a set 

of n vehicles (each one with the same capabilities) this 

simple mission splitting algorithm divides the mission 

into n sub missions. For example, when the parallel 

mission from Figure 5 is compiled and we have four 

UUVs available, our mission splitting algorithm will 

create a set of four sub-missions depicted graphically in 

Figure 6. Note that this mission splitting algorithm is very 

Figure 3 – Sample of the language specifications for both WNOs and 

SOs. Note that each order type has many different order elements such 

as the Transit_Depth element for WNOs that indicates the depth of the 

vehicle as it travels to its destination and the element Survey_Speed for 

SOs that specifies the speed of the vehicle as it conducts a survey of an 

area.  

Figure 4 – The corresponding grammar for a WNO based on its 

corresponding language specification from Figure 3. This grammar is in 

the style of Backus-Naur form (BNF) and is used with the tools Lex and 

YACC to generate source code for our MPL compiler. 

Figure 5 – An example mission using the Parallel Region construct. 

Orders contained inside of this construct (such as this survey order) will 

have a set of parallel sub-missions automatically generated when this 

construct is encountered by the MPL compiler. The compiler has access 

to vehicle data including the vehicle types and number of each type that 

will be available at the time of mission execution. 

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 45

© 2008 ACADEMY PUBLISHER



simple and assumes all available vehicles have the same 

capability (i.e., equipped with the same set of sensors and 

have the same speed). One practical application for this 

algorithm would be mine detection using a set of identical 

vehicles for a specified region of the ocean floor. 

The second strategy attempts to reduce the number of 

vehicles for a particular mission. This strategy can work 

for vehicles that are heterogeneous, that is, vehicles that 

have different sensor capabilities. For the purposes of 

explanation we assume the vehicles are equipped with 

generic sensors s1, through s4. The algorithm used for this 

strategy is a greedy approach that uses an adaptation of 

the classic set-covering algorithm that can be used to 

model resource selection problems [32] and is shown in 

Figure 7. 

To briefly describe this algorithm, X represents the set 

of regions contained within the survey area, each one 

requiring a specific set of sensor readings. Set V

represents the set of available vehicles that can be used to 

survey the different regions. Each vehicle in V is 

equipped with one or more sensors (e.g., sensors from the 

set s1 , ... , s4). The regions contained in set X must be 

traversed by one or more of the vehicles contained in set 

V that are equipped with the sensors needed by the 

particular regions. The idea here is to find the minimal set 

of vehicles that will satisfy (or "cover") the sensor 

requirements of each region. Therefore, at a particular 

instance when a vehicle is about to be chosen (line 4) the 

next vehicle that can cover the largest subset of regions 

that are currently not covered (i.e., do not have all of their 

sensor requirements satisfied by a previously selected 

vehicle) is selected. It is this line that makes this 

algorithm a greedy algorithm. 

The third strategy (Figure 8) attempts to reduce the 

total mission latency given the number of available 

vehicles for the mission and uses a greedy approach 

similar to the set covering algorithm. To briefly describe 

this algorithm, first the vehicle data is retrieved along 

with the survey area information (lines 1 and 2). Next, the 

types of vehicles that will best satisfy each region of the 

survey area is determined, and then this vehicle list is 

sorted from the largest group to the smallest group (lines 

3 and 4). Lines 5 through 11 then iterate through the 

different survey regions and the vehicle list. During each 

iteration of the loop structure the next largest group of 

vehicles is selected and assigned to the next available 

region of the survey area. It is this behavior that makes 

this algorithm a greedy approach. We encourage the 

reader to read [11] for a detailed explanation of all three 

strategies. 

IV. THE GRAPHICAL MISSION SPECIFICATION AND 

PARTITIONING TOOL

This section discusses our graphical mission 

specification and partitioning tool and all of the sub 

components that were integrated to realize this package. 

We remark on the function of each sub component and 

explain how it interacts with the rest of the system. 

A. The Nobeltec Visual Navigation Suite Package 

To create our graphical mission specification and 

partitioning (GMSP) tool, we integrated a set of 

independent tools to work together. First, we used the 

package called Nobeltec’s Visual Navigation Suite 

(VNS) [8] by Jeppesen Marine, which is a commercially 

available package to aid in the navigation of sea vessels. 

A screenshot of this package is shown in Figure 9. This 

package provides an operator with a graphical user 

interface (GUI) allowing the operator to view various 

locations in the ocean and any nearby coastal regions. 

Figure 6 – The set of parallel sub-missions generated from the mission 

in Figure 5. 

Figure 7 – Setcovering algorithm used to reduce the number of UUV for 

a particular mission. 

Figure 8 – The greedy algorithm to reduce the total mission latency for 

a group of UUVs. 

Figure 9 – Screenshot of Nobeltec’s Visual Navigation Suite maritime 

software package. 
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This tool also lets the operator specify waypoints to visit 

and areas to explore by using a simple point and click 

interface. An operator can easily specify a series of 

waypoints and areas of interest to quickly create a 

mission for a sea vessel. 

We decided to leverage the power of this commercial 

package for use in creating missions for UUV’s. More 

specifically we wanted a tool that an operator can use to 

specify one or more survey areas for a group of available 

UUVs. The idea was to let the operator specify regions 

that need to be surveyed without worrying about how the 

survey areas were to be split up among the group of 

UUVs. Figure 10 shows a close-up of an operator 

specified mission. Here there is a single SO represented 

by the rectangle and two WNOs. One WNO order goes 

from the vessel that will launch the UUVs to the upper 

left corner of the survey area and the second WNO goes 

from the lower left corner of the survey area back to the 

vessel on the left hand side of the screenshot. As the 

operator specified the mission graphically, the operator 

places a series of what are known as Marks in the VNS. 

These Marks can be used to define a WNO (e.g., two 

Marks connected by a line) or a SO (e.g., Three or more 

Marks that define an area such as a rectangle). Once the 

operator represents the orders of a mission as a series of 

Marks in the VNS, this mission can then be exported 

from the VNS to a text file represented using the Open 

Navigation Format (ONF) [9], which is based on the INI-

style ASCII text file format shown in Figure 11. The next 

section discusses how MPL order elements are added to 

the ONF representation of the mission using a graphical 

interface. 

B. Graphically Adding MPL Order Elements 

After the graphical representation of this mission is 

exported to the ONF representation, the next step 

involves adding MPL order elements to this ONF 

representation via another graphical interface. Before 

discussing the addition of these MPL elements using this 

graphical interface, note that some data pertaining to the 

mission such as the Transit Depth element for WNOs 

cannot be directly represented in the Nobeltec VNS 

package (i.e., there is no concept for this type of data in 

Nobeltec). Fortunately, the Nobeltec package provides a 

description field for each Mark the operator places on the 

screen. We use this description field to store MPL 

specific data such as the Transit_Depth and Use_SSS

elements for WNOs and the Survey_Depth and 

Survey_Speed elements used in SOs. In a previous 

version of our tool, the operator entered these MPL order 

elements in the description field by hand [35]. A 

screenshot of this description field along with MPL 

elements for a SO entered manually by an operator is 

shown in Figure 12. 

Even though the operator was able to create part of the 

mission graphically, the operator still had to enter these 

MPL elements by hand, which allowed for the possibility 

of syntax errors. Anytime a person writes any type of 

source code by hand, the potential always exists for errors 

to be introduced into the source code. This is the main 

reason for creating an additional graphical interface 

(Figure 13) to allow an operator to add these MPL order 

elements graphically rather than typing them by hand. 

This graphical interface reads the ONF representation of 

the mission after it is exported and allows an operator to 

specify MPL elements in a point and click fashion using 

Figure 10 – Screenshot of an operator specified SO in the Nobeltec 

Visual Navigation Suite maritime software package. This operator 

specified mission shows a survey area as a rectangular region and two 

waypoints. One waypoint goes from the vessel on the left hand side 

that will launch the UUVs to the upper left corner of the survey area. 

The second waypoint goes from the bottom left corner of the survey 

area back to the vessel after the mission completes.

Figure 11 – A sample of the ONF representation for a SO. Note that the 

MPL order elements are part of the description field for this particular 

Mark. This is the result after the GUI used from Figure 13 writes the 

MPL order elements back the ONF file. 

Figure 12 – The description field for a particular mark displaying the 

MPL order elements entered manually by an operator. This method was 

required by the previous version of the GMSP utility. In the current 

version these elements are added using the GUI tool from Figure 13 
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common controls such as check boxes, radio buttons, and 

spin controls as shown here in Figure 13. 

For this particular example, the operator is presented 

with a way to specify all of the MPL order elements for a 

SO. A few of the MPL SO elements an operator can 

configure are the depth and speed of the UUV during the 

survey, the starting point of the UUV before it traverses 

the area, and scheduling information such as the arrival 

time and whether or not the UUV is to loiter after the 

survey of the area is finished. After the operator finishes 

specifying the MPL order elements, these elements are 

written to the description fields of the corresponding 

orders in the ONF representation. An example of the 

ONF file with the MPL elements added to the description 

field is shown in Figure 11. Here the description field for 

a SO in the ONF representation contains the textual 

representation of the MPL order elements specified by 

the operator using the graphical interface from Figure 13. 

Once all of the MPL elements are written to their 

respective orders in the ONF file, this file is now ready to 

be converted to the corresponding MPL representation of 

the mission. 

C. Converting from ONF to MPL 

After the ONF representation has all of the MPL order 

elements added to the various orders, it is ready for 

processing by the Nobeltec to MPL (NT2MPL) 

translation component. This component reads the 

operator specified mission represented in the ONF format 

and converts the mission orders to the corresponding 

order types in the MPL format. The translation is a simple 

one-to-one translation. For example, a WNO represented 

by two Marks in the Nobeltec package is simply 

translated to a WNO in the corresponding MPL format. A 

Mark in the VNS includes the destination latitude and 

longitude and other data for the display of this mark in 

the Nobeltec environment. When the NT2MPL 

component translates a particular mission order from the 

ONF format to the MPL format, specific data relating to 

the mission order (e.g., a WNO) stored in the description 

field is added to the corresponding MPL order type. In 

short, this ONF format captures all of the mission details 

in a text file similar to the way configuration settings are 

saved in the INI-style ASCII text file format used by 

many Windows applications. Once the ONF 

representation of the operator specified mission is 

converted to its MPL equivalent, the mission is ready to 

be split into its corresponding set of parallel sub-

missions. We discuss the mission splitting component in 

the next sub section. 

D. Generating the Set of Parallel Sub-Missions 
After the mission represented in the ONF format has 

been converted into the corresponding MPL format, the 

mission is ready to be split into a set of parallel sub-

missions. The mission splitting component or Mission 

Parallelizer (MP) reads the MPL representation of the 

operator specified mission and begins the mission 

splitting process. For the purposes of this example, we 

choose to use strategy one form Section III, the simple 

mission splitting algorithm. In the next section we present 

examples that illustrate the use of strategies two and three 

on a particular set of missions. Since we are using a very 

simple algorithm, we simply read the dimensions of the 

entire survey area and divide it (as explained in Section 

III.C) into n equal sub areas, where n represents the 

number of vehicles available for the mission. Each sub-

mission is then written to a separate file in the MPL 

format. Each file can then be loaded onto the mission 

controller of its corresponding UUV when the mission is 

to be executed as discussed in [22]. Once the set of 

parallel missions is generated from the operator specified 

mission, these missions are ready for converting back into 

the ONF representation so they can be loaded back in the 

Nobeltec VNS package to be viewed by the operator. 

E.  Converting from MPL back to ONF 

After the operator specified mission is split into its 

corresponding set of sub-missions, this set of sub-

missions must be converted back into the ONF 

representation to be imported back into the Nobeltec 

VNS package. Again this translation is a one-to-one 

translation process. The entire set of sub-mission in the 

MPL format are read by the MPL to Nobeltec (MPL2NT) 

translation component and translates the contents of each 

sub-mission file back into its corresponding ONF 

representation. All sub-missions are then written to one 

Nobeltec file in the ONF format. Once this file is created 

it can then be imported back into Nobeltec for review by 

the operator. Figure 14 shows the corresponding set of 

generated sub-missions based on the operator specified 

mission in Nobeltec VNS as depicted in Figure 10. Here 

the operator specified mission was split into a set of four 

sub-missions and placed over the original operator 

specified mission. 

Figure 13 – The graphical interface that allows an operator to specify 

MPL order elements in a point and click fashion. The method of MPL 

specification replaces the old method shown in Figure 12, thus further 

reducing potential errors. Once all MPL order elements are specified, 

this data is written back to the file containing the ONF representation. 

48 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER



F. Bringing it all Together, an Operator View 

We have presented all five sub-components of our 

graphical mission specification and partitioning tool. We 

now want to give a complete summary of the different 

steps for this tool from an operator’s standpoint. Figure 

15 shows a diagram of the entire process of generating a 

set of parallel sub-mission from an operator specified 

mission using our graphical mission specification and 

partitioning tool. Note that our five sub-components are 

depicted by gray boxes. Here, step 1 involves the operator 

specifying the mission graphically using the Nobeltec 

VNS. After the graphical specification of the mission is 

completed, the mission is exported from the Nobeltec 

VNS to a text file containing the ONF representation of 

this mission (Step 2). Step 3 involves the operator using 

the MPL Tool to graphically specify all the MPL order 

elements for the mission. Once the operator finishes this 

task, the MPL order elements are written back to the text 

file containing the ONF representation. The operator then 

invokes the compiler (a command line utility) where this 

ONF representation of the mission is processed by the 

compiler (Steps 4, 5, and 6). Step 4 converts the ONF 

representation to the corresponding MPL format using the 

NT2MPL conversion utility. Step 5 generates the 

corresponding set of parallel sub-missions in the MPL 

format. These missions are the ones to be loaded onto the 

actual vehicles as mentioned before and is discussed in 

[1]. Step 6 converts the MPL version of the sub-missions 

back the ONF representation using the MPL2NT 

conversion utility. Note that steps 4, 5, and 6 all happen 

automatically. Step 7 involves the operator importing the 

set of newly generated sub-missions back into the 

Nobeltec VNS for review. From an operator’s standpoint, 

the only manual steps are step 1 (exporting the mission 

from Nobeltec) step 2 (launching the MPL Tool), step 4 

(invoking the compiler to generate the corresponding set 

of parallel sub-missions), and step 7 (importing the ONF 

representation of the set of parallel sub-missions back 

into Nobeltec for inspection). Steps 4, 5, and 6 are 

contained in the compiler and are transparent to the 

operator. 

V. EXPERIMENTAL EVALUATION OF SCENARIOS

This section illustrates how mission splitting strategies 

two and three from Section III are used by the GMSP 

utility to allocate UUVs to different examples of 

missions. First we examine how strategy two (reducing 

the number of vehicles) is used by the GMSP utility for 

two different missions. We then examine how the GMSP 

utility uses strategy three (reducing total mission latency) 

to allocate UUVs for the same two missions. 

A. Reducing the total Number of Vehicles for a Given Set of 

Missions 

For this strategy we consider two different missions 

and for each mission we will use two different groups of 

vehicles to show how our GMSP tool works under 

different conditions. The two groups of vehicles used for 

this strategy are shown in Table 1. The first group (Group 

A) contains eight vehicles total (four different vehicle 

types and two vehicles in each type). Each vehicle type in 

this group (Type 1 through Type 4) is equipped with a 

unique sensor (s1 through s4 respectively). The second 

group of vehicles (Group B) also contains eight vehicles 

Figure 14 – Screenshot of the set of generated sub-missions after 

being imported back into the Nobeltec Visual Navigation Suite 

maritime software package. Note how four different sub-missions 

are shown based on the original mission from Figure 10 

Figure 15 – High-level view regarding all of the steps involved when 

using the Graphical Mission Specification and Partitioning Tool. 

Step 1, the operator specifies the mission graphically and exports the 

mission as ONF representation (step 2). Step 3, the operator adds 

MPL elements via MPL GUI. The operator invokes the compiler and 

the ONF mission is converted to MPL, split into set of parallel sub-

missions, and sub-missions are converted back to ONF (steps 4-6 

respectively). Step 7, operator loads ONF sub-missions into the VNS 

for review. 

TABLE 1

VEHICLES USED FOR THE EXAMPLE MISSIONS

Group A 

Vehicle Type Quantity Equipped Sensors 

Type 1 2 s1

Type 2 2 s2

Type 3 2 s3

Type 4 2 s4

Group B 

Vehicle Type Quantity Equipped Sensors 

Type 5 4 s1, s2, s3

Type 6 4 s3, s4
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(two different vehicle types and four vehicles in each 

type). The first vehicle type in this group (Type 5) 

contains three sensors (s1, s2, and s3). The second vehicle 

type in this group (Type 6) is equipped with two sensors 

(s3 and s4). 

The first mission used for this strategy is shown in 

Figure 16. For this mission, there are four separate 

regions where each region requires a different sensor 

type. The top left region requires sensor s1,, the top right 

region requires sensor s2, the bottom right region requires 

sensor s3, and the bottom left region requires sensor s4.

Note that for the purpose of clarity we added the specific 

sensor labels to the regions in Figure 16. These labels do 

not actually appear on the screen when the operator 

specifies the mission. 

Together these regions comprise the entire survey area. 

This example mission represents a typical mission that an 

operator creates using the Nobeltec VNS package. After 

the operator creates this mission, the mission is exported 

and the MPL elements are then added to the ONF 

representation (Step 3 from Figure 15). When the 

operator invokes the MPL compiler, the option to reduce 

the number of vehicles is selected. For this execution, 

vehicle Group A is assumed to be the set of available 

vehicles for this mission. After the compiler generates the 

set of parallel sub-missions, the ONF representation can 

be loaded back into the VNS package for review. The 

resulting set of parallel sub-missions generated by the 

MPL compiler for the operator specified mission in 

Figure 16 is shown in Figure 17. 

Here a minimum of four vehicles is needed to conduct 

the survey. Since each vehicle has a unique sensor and 

since there are four different regions each requiring a 

different sensor type, one vehicle is needed from each 

vehicle type from the group to fulfill the sensor 

requirements of the entire survey area. 

If we use vehicle Group B for this same mission, only 

two vehicles are needed (one vehicle from each of the 

two different vehicle types). The resulting set of parallel 

sub-missions generated by the MPL compiler for this 

group of vehicles is illustrated in Figure 18. Here a single 

vehicle of Type 5 (containing sensors s1 , s2, and s3) is 

needed to conduct a survey of the upper two regions and 

the bottom right region. A single vehicle of Type 6 

(containing sensor s3 and s4) is needed to conduct a 

survey of the lower left region. The vehicle from Type 5 

will use all three of its sensors for its assigned regions. 

Sensor s1 will be used for the upper left region, sensor s2

will be used for the upper right region, and sensor s3 will 

be used for the lower right region. Even though the 

vehicle from Type 6 is equipped with both sensors s3 and 

s4, this vehicle will only use sensor s4 to survey the lower 

left region since this is the only sensor required for its 

assigned region. Note that if strategy three was used to 

reduce total mission latency, vehicles with multiple 

sensors will be utilized to aid in reducing the total 

execution time. 

Next we consider both groups of vehicles for our 

second example mission shown in Figure 19. Here there 

are three different regions that comprise our survey area. 

The top left region requires sensor s1, the top right region 

requires sensor s2, and the entire bottom region requires 

both sensors s3 and s4. If we use the vehicles from Group 

A for this mission, a total of four vehicles are needed to 

satisfy the sensor requirements of the different regions in 

Figure 16 – Example Mission one that will be used for strategies two 

and three, reducing the number of vehicle and reducing total mission 

latency. 

Figure 17 – The set of parallel sub-missions generated by the 

compiler for vehicle Group A with respect to reducing the total 

number of vehicles for the mission in Figure 16. 

Figure 18 - The set of parallel sub-missions generated by the 

compiler for vehicle Group B with respect to reducing the total 

number of vehicles for the mission in Figure 16. 
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this survey area (the same as before when these vehicles 

were used for the mission in Figure 16). A vehicle of 

Type 1 is assigned to the upper left region (the region that 

requires sensor s1); a vehicle of Type 2 is assigned to the 

upper right region (the region that requires sensor s2) and 

one vehicle each from Type 3 and Type 4 is assigned to 

the bottom region (the region that requires sensors s3 and 

s4).

If we use the vehicles from Group B for this same 

mission, only two vehicles are required. One vehicle from 

Type 5 is used to survey all three regions since it is 

equipped with sensors s1, s2, and s3 and all three regions 

require these sensor types. One vehicle is used from Type 

6 since it is required to patrol the bottom region that 

requires sensor s4. Note that even though the vehicle from 

Type 6 contains sensor s3, this sensor is not used by this 

vehicle as it conducts a survey of the bottom region. The 

resulting set of parallel sub-missions for Group B is 

shown in Figure 20. Here the task of using sensor s3 is 

given to the vehicle of Type 5 since this was the first 

vehicle assigned to the different regions. If we were to 

use strategy three (reducing mission latency) instead of 

strategy two for this mission, the vehicles of Type 6 

would be used to satisfy the sensor requirements of the 

different regions in conjunction with the vehicles of Type 

5 in order to reduce the total mission execution time as 

we will see later in this section. 

B. Reducing the total Mission Latency for a Given Set of 

Missions 

For this strategy (reducing the total mission latency) 

we consider the same two missions from Figure 16 and 

Figure 19. For each mission we will use the same two 

groups of vehicle listed in Table 1 (vehicle Group A and 

vehicle Group B will be used). There are a few additional 

pieces of information for this strategy. The size of the 

survey area in each example mission is 800 meters by 

800 meters, that is, each survey area is comprised of 

different regions. Together these regions make a square 

survey area where the length and width are both 800 

meters. Since we are trying to reduce total mission 

latency we need to take the speed of each vehicle into 

account. We assume that the vehicles in Group A and 

Group B all have the same rate of speed of 1 meter per 

second (3.6 Km/h). 

First, vehicle Group A is used for example mission one 

from Figure 16. After running the option to reduce total 

mission latency, we get the output as shown in Figure 21 

Note how all vehicles are utilized for this mission. Both 

vehicles of each type are used on a different region in 

order to satisfy the sensor requirements of that region, but 

to also help reduce the total mission latency. If one 

vehicle was equipped with all the sensors and was to 

traverse all regions of this entire survey area, it would 

take over an hour at a rate of 3.6 Km/h (This time 

includes the time it takes for the vehicle to turn as it 

surveys the area). Using all eight vehicles where each 

vehicle only traverses its assigned slice as depicted in 

Figure 21, the total mission time is only less than seven 

minutes. Note that this time is a theoretical value 

assuming that the UUVs are traveling in ideal conditions 

(i.e., no turbulence, drag, or currents that will impede the 

speed of the vehicle, not to mention the time it takes for 

each vehicle to reach its assigned region). We discuss 

improvements to our tool in Section VI regarding these 

Figure 19 - Example Mission two that will be used for strategies two 

and three, reducing the number of vehicle and reducing total mission 

latency. 

Figure 20 - The set of parallel sub-missions generated by the 

compiler for vehicle Group B with respect to reducing the total 

number of vehicles for the mission in Figure 19. 

Figure 21 - The set of parallel sub-missions generated by the 

compiler for vehicle Group A with respect to reducing total mission 

latency for the mission in Figure 16. 
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issues.

Next we ran Group B for this same mission in Figure 

16 and the results were identical to the results shown in 

Figure 21. The algorithm to reduce the total mission 

latency generated the same eight sub missions with one 

difference, the vehicle assignments. The top four slices 

were assigned to the vehicles of Type 5 and the bottom 

four slices were assigned to the vehicles of Type 6. When 

we ran Group B using example mission two from Figure 

19, the results in this situation were also the same. Again 

there were eight slices and the vehicles of Type 5 were 

assigned to the top four slices and the vehicles of Type 6 

were assigned to the bottom four slices. However, when 

we ran the vehicles of Group A against the mission from 

Figure 19, we did have different results than the previous 

three runs. The set of parallel sub-missions are shown in 

Figure 22. Here vehicles of Type 1 and Type 2 are 

assigned to the top regions the same as with the previous 

runs for this mission, but the vehicles of Type 3 and Type 

4 have a different assignment. Since there are only two 

vehicles of Type 3 (equipped with sensor s3) and two 

vehicles of Type 4 (equipped with sensor s4), both 

vehicles of each type must traverse the entire width of the 

survey area in order to satisfy the sensor requirements of 

the bottom region. The path these vehicles take is the 

critical path and the total mission latency in this example 

is slightly less than 14 minutes. Again note that our 

method does not take the time needed for vehicles to 

reach their assigned regions. We will discuss this next 

under future work. 

VI. CONCLUDING REMARKS AND FUTURE WORK

In summary, we have presented previous work 

regarding a high-level MPL, the supporting compiler, and 

three different strategies for generating a set of parallel 

sub-missions based on a operator specified mission for a 

group of cooperating UUVs. We also presented the 

integration of these different components with a 

commercially available package called Nobeltec VNS as 

the basis of our GMSP utility that allows the operator to 

create missions (both for a single UUV and multiple 

UUVs) using its graphical interfaces without manually 

writing any source code. The preliminary experiments 

involving this tool show much promise as a tool that can 

aid in the UUV mission creation and planning phases and 

remove from the operator much of the burden of creating 

missions for multiple UUVs. Even though our current 

tool shows much promise as a graphical mission-planning 

tool, many more improvements can be added to make this 

utility more versatile and practical. 

Several tools already exist that allow operators to plan, 

rehearse, and replay missions, and even allow real-time 

monitoring of UUVs as they execute a mission 

[15][20][36][37]. We would like to extend this previous 

work by offering our own utilities in addition to these 

existing tools to automatically generate missions for 

multiple UUVs. Although our current mission-

partitioning strategies may offer only a few objectives 

(e.g., reduce the total mission latency or reduce the total 

number of vehicles), more strategies can be added to our 

current repertoire to expand upon the number of available 

objectives. We recently developed other mission splitting 

algorithms that utilize integer linear programming (ILP) 

formulations that will minimize the number of vehicles, 

minimize the total mission latency [10], and even an ILP 

formulation to minimize the power consumed by a group 

of vehicles when they attempt to communicate data to a 

surface vessel or land based station [41]. Note that ILP 

formulations produce optimal results [34] when 

compared to the greedy approaches from Section III that 

may produce sub-optimal results in certain instances. We 

also plan to extend this work and create other objectives 

that will attempt to minimize the total power 

consumption of a group of vehicles while they conduct a 

mission. We have even devised dynamic mission re-

planning methods that will reassign the tasks of a failed 

UUV to the remaining vehicles in a group to successfully 

complete the mission [38][39]. Since our graphical 

mission specification and partitioning tool is modular, we 

can simply add these additional mission-splitting 

strategies to our existing strategies. We may even be able 

to offer multi-objective optimization techniques for a 

particular mission. As we continue this work, our goal is 

to devise a whole series of mission splitting algorithms 

that will offer an array of different objectives for our 

GMSP utility and provide the operator with a complete 

graphical UUV mission-planning tool while relieving the 

operator from low-level mission programming tasks.
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