
Graphical Mission Specification and Partitioning

for Unmanned Underwater Vehicles
1

Gary Giger, Mahmut Kandemir
Pennsylvania State University/Department of Computer Science and Engineering, University Park, PA 16802, USA

{giger, kandemir}@cse.psu.edu

John Dzielski
Pennsylvania State University /Applied Research Laboratory

University Park, PA 16802, USA

jed@enterprise.arl.psu.edu

Abstract - The use of Unmanned Underwater Vehicles

(UUVs) has been proposed for several different types of

applications including hydrographic surveys (e.g., mapping

the ocean floor and exploring sunken wreckage), mine

detection and identification, law enforcement (e.g., enforcing

certain fishing regulations), environmental and pollution

monitoring, and even performing surveys to find potential

drilling locations on the ocean floor for the oil industry.

Recently the idea of using multiple, cooperating UUVs to

execute these missions has also been proposed. There are

two main factors that dictate a particular mission’s success.

The first factor regards creating a mission that is free from

errors, in terms of both syntax and semantics. The second

factor deals with properly splitting a mission into a set of

sub-missions and assigning each sub-mission to a group of

UUVs. Even though tools have been developed to help

reduce these potential problems such as high level mission

programming languages, compilers for these languages and

utilities to automatically split an operator specified mission,

the potential still exists for errors when creating a mission

(e.g. semantic errors introduced from programming and

maintaining the code for existing missions). The goal of this

article is to present a programming-free, parallel mission

generation utility that uses a series of tools we developed

along with a commercially available graphical package. Our

utility allows an operator to graphically specify a mission

for a group of UUVs and automatically split the mission

among the group based on an objective provided by the

operator. The main contribution of this tool is twofold. First,

it relieves the operator from low-level mission programming

including the manual partitioning of the mission across a

group of available UUVs. Second, it allows the operator to

review the resulting set of generated sub-missions using the

graphical interface. Thus, no matter what the particular

UUV application is, this tool is another step towards

successfully creating missions for UUVs.

Index Terms – High-Level Mission Programming, UUV,

Graphical Mission Specification, Mission Planning,

Compiler.

I. INTRODUCTION

The use of Unmanned Underwater Vehicles (UUVs)

has been proposed for several different types of

applications including hydrographic surveys for mapping

the ocean floor and exploring sunken wreckage [3], mine

detection and identification [4], law enforcement such as

enforcing certain fishing regulations [16], collecting data

on various forms of aquatic life [27], environmental

monitoring regarding pollution [17], and even performing

surveys to find potential spots on the ocean floor for oil

drilling operations and for the inspection of underwater

oil pipelines [5][28]. Recently the idea of using multiple,

cooperating UUVs to execute these missions has also

been proposed [29][30][40]. Whether the application for

a UUV is finding potential drilling locations for an oil

platform or searching for mines, successfully creating

missions (either for a single UUV or a group of UUVs)

poses many challenging problems. There are two critical

issues in this context. First, attempting to create a mission

free from syntactic errors as well as semantic errors and

second, if multiple UUVs are used for a mission, one has

to properly split these missions into a set of sub-missions

and assign them in an optimal way to each vehicle. Both

of these factors play a key role in a given mission's

success.

Fortunately, tools have been created recently to aid in

the resolution of some of these issues. Such tools include

mission programming languages (MPLs) [7][12][13] with

compiler support that allow an operator to create missions

easily (similar to that of general purpose high level

languages such as C++ and Java) as well as utilities that

generate parallel sub-missions from a given high level

sequential mission description [10][11][33]. Even though

these tools were developed to make mission creation and

maintenance easier rather than using a low level language

or writing a set of parallel missions by hand, there are

still many potential problems that have to be addressed.

For example, if an operator writes a mission using an

MPL, the potential still exists for the operator to make

mistakes the same as with any programmer writing

1: The preliminary version of this paper appears in the Proceedings

of the OCEANS 2007 MTS/IEEE. This paper extends the conference

version by (1) providing additional graphical tools eliminating the need

for an operator to write any source code for UUV missions and (2)

providing two new strategies for generating sets of parallel sub-

missions (reducing the number of vehicles and reducing total mission

latency).

42 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

source code using a generic high level language. While a

compiler typically catches some of these errors (e.g.,

those related to the syntactic structure of the program),

semantic errors are hard to catch and fix at compile time.

In addition, when the mission description written in an

MPL is to be read by someone who is not the author of

that mission text, it may be difficult to understand easily

what the mission is supposed to do. As a result, mission

text maintenance and update can be very problematic.

Last, an MPL is typically specific to a UUV and does not

port to other UUVs at all, or requires extensive effort on

the programmer’s side to port it. While there already exist

several attempts at developing a universal MPL

[14][18][23][24] that can execute regarding different

vehicle types, this is not expected to happen very soon in

practice. Even if this is realized someday, such an MPL

has to be extended periodically to keep up with new

vehicle capabilities and emerging mission requirements.

Therefore, there is a clear need for developing more

user-intuitive programming environments for writing and

visualizing missions that require multiple, cooperating

UUVs. This work is an attempt at this direction, and

proposes a programming-free parallel mission generation

through a graphical tool. Our tool has five major

components. The first component uses a maritime

navigational package called Nobeltec [8] and allows the

operator to graphically specify the high level mission

very easily without indicating explicitly any low level

details about the parallelization and workload

distribution. The second component provides the ability

for an operator to specify additional mission parameters

using another graphical interface, which eliminates any

source code the operator needs to write for the mission.

The third component translates this mission from the

graphical description to a mission programming language

(MPL) version. The forth component is an automatic

mission parallelizer, which takes the MPL description of

the mission and parallelizes it across the specified set of

UUVs without operator involvement. This parallelization

is transparent to the operator and can be targeted at

different objective functions such as minimizing total

mission latency or reducing total number of vehicles used

for a mission. The fifth component of our tool maps these

parallel sub-missions back to the Nobeltec representation,

again in an operator-transparent manner.

The combined effect of all these components is that the

operator defines his/her mission requirements and

available resources (UUVs and their sensors) using a

graphical interface and the specified mission is

automatically parallelized by the tool and displays the

resulting set of sub-mission of this parallelization process

on screen for the operator to review. The main

contribution of this tool is that it relieves the operator

from low-level mission programming using an MPL (not

to mention all the potential problems that come with it)

and the manual partitioning of the mission across the

available vehicles. Therefore, this approach does not only

eliminate the need for programming but also allows the

operator to visualize his/her parallelized mission using

our graphical interface.

The rest of this paper is organized as follows. Section

II presents background information describing the typical

steps involved with a UUV mission. Section III discusses

our existing tools including our high-level mission

programming language, its corresponding compiler, and a

mission splitting utility that includes three different

mission splitting strategies. Section IV introduces our

new graphical mission specification and partitioning

utility for creating a set of parallel sub-missions for a

group of UUVs and discusses the details of each of the

five components of our tool. Section V offers an

experimental evaluation of our tool by illustrating how

the different mission splitting strategies are used to

allocate vehicles to specific missions and Section VI

discusses our future work followed by our concluding

remarks.

II. BACKGROUND

UUVs come in many different sizes ranging from a

half meter in length up to thirty or more feet. The

Seahorse UUV (shown in Figure 1) was designed and

built by the Applied Research Lab at the Pennsylvania

State University (ARL/PSU) for research purposes

including the collection of high quality environmental

data in the littoral regions of the world [2]. A typically

scenario involving the preparation for a UUV mission

includes an operator creating a mission for a particular

vehicle, loading the mission onto the vehicle after it has

been written, and deploying the vehicle from an oceanic

vessel (e.g., T-AGS 60 class oceanographic vessel) in

order to execute its mission.

The creation of the mission usually involves an

operator typing the mission by hand in the same manner

as a programmer would write source code. The mission

for a UUV can either be written in the vehicles native

programming language or a high-level vehicle language

such as the high-level MPL developed for the Seahorse

UUV (we will discuss our MPL in more detail in Section

III [1]). After the mission is written, the mission is loaded

onto the vehicle’s onboard control system (e.g., a

computer running some type of mission control software

[19][21]). Typically these vehicles are equipped with a

wireless device such as an 802.11 network card, which

allows an operator to transmit the mission to the vehicle’s

onboard control system via wireless transmission.

When commanded to, the UUV submerges and begins

to execute its mission. The execution time of the mission

is dependent upon the type of mission. A mission can

take anywhere from a few hours to more than a day. A

Figure 1 – The Seahorse UUV courtesy of the Applied Research Lab at

The Pennsylvania State University.

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 43

© 2008 ACADEMY PUBLISHER

hydrographic survey as discussed in [3] may take 8 hours

or less to conduct and other mission types such as law

enforcement missions or surveillance missions [17] may

require UUVs to execute their missions 24/7 with

periodic recharging of their onboard power systems. In

addition to the nature of the mission, the type of vehicle

used also plays an important role in determining the

length of the mission. Smaller UUVs may only have

enough battery power to last a few hours whereas larger

UUVs may have the staying power to last several days.

The Seahorse UUV actually has enough battery power to

last approximately 100 hours at a rate of 4 knots.

A UUV is usually equipped with one or more sensors

that are used to collect data during mission execution.

Two different sensor types include side-scan sonars (SSS)

and sub-bottom profilers. A SSS is used to map

underwater terrain features and sometimes used to search

for sunken wreckage (e.g., ships and downed aircraft) that

may lie on the ocean floor. A SSS projects a beam from

both sides of the UUV and scans the ocean floor as it

traverses over a particular region. In the case of the

Seahorse UUV, its onboard SSS can scan an area of 100

meters on each side of the vehicle. In other words, the

UUV traces out a path 200 meters wide as it moves over

the ocean floor. The data collected from a SSS can be

reconstructed to provide 2D (and sometimes 3D) images

of different features found on the ocean floor. A sub-

bottom profiler, on the other hand, is usually located on

the bottom of the vehicle and scans for subsurface

features, that is, records images of structures and contents

below the ocean floor. This data can be reconstructed to

form 2D images of these subsurface structures. For more

detail regarding SSS and sub-bottom profiler sensors,

please refer to [3].

After the mission is finished executing the UUV comes

to the surface for retrieval by the oceanic vessel. The

larger UUVs are typically fished out, that is, when they

surface, a cable is attached to the nose of the vehicle and

it is reeled in by a small crane. Smaller vehicles may

simply be retrieved by hand. Once the vehicle is retrieved

the data it gathered while on its mission can be

downloaded and analyzed. In the next section, the

existing tools developed at ARL/PSU are discussed that

includes the high-level MPL, the supporting compiler,

and a mission partitioning utility that automatically

generates missions for groups of cooperating vehicles.

III. EXISTING TOOLS

This section discusses some existing tools including a

high-level MPL, a supporting compiler for this MPL, and

a tool that offers three different strategies for splitting an

operator specified mission into a set of parallel sub-

missions.

A. Our High-Level Mission Programming Language

We developed a high-level Mission Programming

Language (MPL) [1] at the Applied Research Lab at the

Pennsylvania State University for use with the Seahorse

UUV [2] to allow an operator to easily specify missions

without having to worry about any details for a particular

UUV (similar to a programmer writing a C++ program

without having to worry about any of the underlying

hardware details for a particular machine’s architecture).

Our high-level MPL has different types of orders that can

be used to specify a mission. Some of these orders

include Waypoint Navigation Orders (WNOs) and

Survey Orders (SOs). Examples of these orders are

shown in a sample mission for the Seahorse UUV (Figure

2). Here the WNO is used to specify a destination latitude

and longitude from the UUV’s current position. The SO

is used to specify an area of the ocean floor to be

surveyed or scanned. A SO could be used for different

applications such as mapping the ocean floor, mine

detection and identification, and exploring potential

drilling locations for the oil industry. Next we discuss the

supporting compiler for this high-level MPL.

B. Compiler Support for our Mission Programming

Language
Each order type supported by our high-level MPL has

a corresponding language specification. The language

specification for each order type is a rule on how to use

each particular order type. The language specifications

for the WNO type and SO type are shown in Figure 3.

This language has critical elements as well as optional

elements. The operator must specify critical elements

whereas optional elements may be omitted. Note that if

an optional element is omitted then a default value is

substituted for this element. Default values are shown in

parenthesis. For example, with respect to the WNO, if the

Destination Latitude and Destination Longitude are

omitted, the UUV will have no way of knowing where to

travel to from its current position. The MPL cannot

simply assume a value for these elements. If it does

assume a value, the default values for the Destination

Latitude and Destination Longitude could be a position

far outside of the operating area for the UUV. On the

other hand, if the operator does not specify the optional

element Use_SSS (which indicates whether to use the

SSS), the MPL can assume this is to be used since there

are only two options for this element, True and False.

Figure 2 – A sample mission involving a WNO and a SO. A WNO

commands a UUV to travel to a destination latitude and longitude. A

SO commands a UUV to survey a region of the ocean floor defined by

four sets of latitude and longitude coordinates that traces out a

rectangular region.

44 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

To develop the compiler for this high-level MPL, we

derived a grammar for the different order types based on

the corresponding order type specifications. Once we had

the grammar representation for each order type, source

code for our compiler was generated using the tools Lex

(a lexical analyzer) and YACC (Yet Another Compiler

Compiler) [25] that is based on our grammar and set of

regular expressions (REs) [26] (REs are used by Lex to

identify certain patterns within text strings). An example

of the grammar for the WNO is shown in Figure 4. The

grammars used in our compiler are in the style of Backus-

Naur Form or BNF [6]. Note that some productions in

this grammar have a <no token> token and other

productions do not have this token. The <no token>

token is used to represent the optional order elements as

in the production for Use_SSS. Other productions that do

not include this <no token> token are the critical

elements. For a detailed discussion regarding our high-

level MPL and its corresponding compiler, we refer the

reader to [1].

C. A UUV Mission Partitioning Utility

Since research has been moving towards using

multiple UUVs in recent years, we needed a way to add

support for this capability to our existing high-level MPL.

We added a feature (called the parallel region construct)

that allows an operator to easily express complex

missions involving multiple UUVs. An example of this

construct is shown in Figure 5 (Note that this construct is

similar to compiler directives used in the C programming

language [31]).

This construct allows an operator to quickly and easily

convert operator specified missions for a single UUV into

missions involving multiple UUV’s by simply enclosing

the preferred orders in the parallel region construct. If an

operator wants to convert this mission back into a mission

for a single UUV, the operator simply removes the

parallel region construct. The compiler has access to the

available UUVs when the mission is compiled and, based

on the number and types of UUVs, the compiler can

generate the corresponding set of parallel sub-missions

from the operator specified mission.

Our mission partitioning utility contains three different

mission splitting strategies, a simple mission splitting

approach, an approach to reduce the number of vehicles

for a particular mission, and an approach that reduces the

total mission execution time or latency. Note that these

three strategies assume each vehicle has enough battery

capacity to traverse their assigned region of a survey area.

Under future work we discuss expanding these strategies

to also consider the available battery capacity of each

vehicle as a constraint when determining which vehicles

are capable of traversing particular regions of a given

survey area.

The simple mission splitting approach, strategy one, is

as follows. Given an operator specified mission and a set

of n vehicles (each one with the same capabilities) this

simple mission splitting algorithm divides the mission

into n sub missions. For example, when the parallel

mission from Figure 5 is compiled and we have four

UUVs available, our mission splitting algorithm will

create a set of four sub-missions depicted graphically in

Figure 6. Note that this mission splitting algorithm is very

Figure 3 – Sample of the language specifications for both WNOs and

SOs. Note that each order type has many different order elements such

as the Transit_Depth element for WNOs that indicates the depth of the

vehicle as it travels to its destination and the element Survey_Speed for

SOs that specifies the speed of the vehicle as it conducts a survey of an

area.

Figure 4 – The corresponding grammar for a WNO based on its

corresponding language specification from Figure 3. This grammar is in

the style of Backus-Naur form (BNF) and is used with the tools Lex and

YACC to generate source code for our MPL compiler.

Figure 5 – An example mission using the Parallel Region construct.

Orders contained inside of this construct (such as this survey order) will

have a set of parallel sub-missions automatically generated when this

construct is encountered by the MPL compiler. The compiler has access

to vehicle data including the vehicle types and number of each type that

will be available at the time of mission execution.

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 45

© 2008 ACADEMY PUBLISHER

simple and assumes all available vehicles have the same

capability (i.e., equipped with the same set of sensors and

have the same speed). One practical application for this

algorithm would be mine detection using a set of identical

vehicles for a specified region of the ocean floor.

The second strategy attempts to reduce the number of

vehicles for a particular mission. This strategy can work

for vehicles that are heterogeneous, that is, vehicles that

have different sensor capabilities. For the purposes of

explanation we assume the vehicles are equipped with

generic sensors s1, through s4. The algorithm used for this

strategy is a greedy approach that uses an adaptation of

the classic set-covering algorithm that can be used to

model resource selection problems [32] and is shown in

Figure 7.

To briefly describe this algorithm, X represents the set

of regions contained within the survey area, each one

requiring a specific set of sensor readings. Set V

represents the set of available vehicles that can be used to

survey the different regions. Each vehicle in V is

equipped with one or more sensors (e.g., sensors from the

set s1 , ... , s4). The regions contained in set X must be

traversed by one or more of the vehicles contained in set

V that are equipped with the sensors needed by the

particular regions. The idea here is to find the minimal set

of vehicles that will satisfy (or "cover") the sensor

requirements of each region. Therefore, at a particular

instance when a vehicle is about to be chosen (line 4) the

next vehicle that can cover the largest subset of regions

that are currently not covered (i.e., do not have all of their

sensor requirements satisfied by a previously selected

vehicle) is selected. It is this line that makes this

algorithm a greedy algorithm.

The third strategy (Figure 8) attempts to reduce the

total mission latency given the number of available

vehicles for the mission and uses a greedy approach

similar to the set covering algorithm. To briefly describe

this algorithm, first the vehicle data is retrieved along

with the survey area information (lines 1 and 2). Next, the

types of vehicles that will best satisfy each region of the

survey area is determined, and then this vehicle list is

sorted from the largest group to the smallest group (lines

3 and 4). Lines 5 through 11 then iterate through the

different survey regions and the vehicle list. During each

iteration of the loop structure the next largest group of

vehicles is selected and assigned to the next available

region of the survey area. It is this behavior that makes

this algorithm a greedy approach. We encourage the

reader to read [11] for a detailed explanation of all three

strategies.

IV. THE GRAPHICAL MISSION SPECIFICATION AND

PARTITIONING TOOL

This section discusses our graphical mission

specification and partitioning tool and all of the sub

components that were integrated to realize this package.

We remark on the function of each sub component and

explain how it interacts with the rest of the system.

A. The Nobeltec Visual Navigation Suite Package

To create our graphical mission specification and

partitioning (GMSP) tool, we integrated a set of

independent tools to work together. First, we used the

package called Nobeltec’s Visual Navigation Suite

(VNS) [8] by Jeppesen Marine, which is a commercially

available package to aid in the navigation of sea vessels.

A screenshot of this package is shown in Figure 9. This

package provides an operator with a graphical user

interface (GUI) allowing the operator to view various

locations in the ocean and any nearby coastal regions.

Figure 6 – The set of parallel sub-missions generated from the mission

in Figure 5.

Figure 7 – Setcovering algorithm used to reduce the number of UUV for

a particular mission.

Figure 8 – The greedy algorithm to reduce the total mission latency for

a group of UUVs.

Figure 9 – Screenshot of Nobeltec’s Visual Navigation Suite maritime

software package.

46 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

This tool also lets the operator specify waypoints to visit

and areas to explore by using a simple point and click

interface. An operator can easily specify a series of

waypoints and areas of interest to quickly create a

mission for a sea vessel.

We decided to leverage the power of this commercial

package for use in creating missions for UUV’s. More

specifically we wanted a tool that an operator can use to

specify one or more survey areas for a group of available

UUVs. The idea was to let the operator specify regions

that need to be surveyed without worrying about how the

survey areas were to be split up among the group of

UUVs. Figure 10 shows a close-up of an operator

specified mission. Here there is a single SO represented

by the rectangle and two WNOs. One WNO order goes

from the vessel that will launch the UUVs to the upper

left corner of the survey area and the second WNO goes

from the lower left corner of the survey area back to the

vessel on the left hand side of the screenshot. As the

operator specified the mission graphically, the operator

places a series of what are known as Marks in the VNS.

These Marks can be used to define a WNO (e.g., two

Marks connected by a line) or a SO (e.g., Three or more

Marks that define an area such as a rectangle). Once the

operator represents the orders of a mission as a series of

Marks in the VNS, this mission can then be exported

from the VNS to a text file represented using the Open

Navigation Format (ONF) [9], which is based on the INI-

style ASCII text file format shown in Figure 11. The next

section discusses how MPL order elements are added to

the ONF representation of the mission using a graphical

interface.

B. Graphically Adding MPL Order Elements

After the graphical representation of this mission is

exported to the ONF representation, the next step

involves adding MPL order elements to this ONF

representation via another graphical interface. Before

discussing the addition of these MPL elements using this

graphical interface, note that some data pertaining to the

mission such as the Transit Depth element for WNOs

cannot be directly represented in the Nobeltec VNS

package (i.e., there is no concept for this type of data in

Nobeltec). Fortunately, the Nobeltec package provides a

description field for each Mark the operator places on the

screen. We use this description field to store MPL

specific data such as the Transit_Depth and Use_SSS

elements for WNOs and the Survey_Depth and

Survey_Speed elements used in SOs. In a previous

version of our tool, the operator entered these MPL order

elements in the description field by hand [35]. A

screenshot of this description field along with MPL

elements for a SO entered manually by an operator is

shown in Figure 12.

Even though the operator was able to create part of the

mission graphically, the operator still had to enter these

MPL elements by hand, which allowed for the possibility

of syntax errors. Anytime a person writes any type of

source code by hand, the potential always exists for errors

to be introduced into the source code. This is the main

reason for creating an additional graphical interface

(Figure 13) to allow an operator to add these MPL order

elements graphically rather than typing them by hand.

This graphical interface reads the ONF representation of

the mission after it is exported and allows an operator to

specify MPL elements in a point and click fashion using

Figure 10 – Screenshot of an operator specified SO in the Nobeltec

Visual Navigation Suite maritime software package. This operator

specified mission shows a survey area as a rectangular region and two

waypoints. One waypoint goes from the vessel on the left hand side

that will launch the UUVs to the upper left corner of the survey area.

The second waypoint goes from the bottom left corner of the survey

area back to the vessel after the mission completes.

Figure 11 – A sample of the ONF representation for a SO. Note that the

MPL order elements are part of the description field for this particular

Mark. This is the result after the GUI used from Figure 13 writes the

MPL order elements back the ONF file.

Figure 12 – The description field for a particular mark displaying the

MPL order elements entered manually by an operator. This method was

required by the previous version of the GMSP utility. In the current

version these elements are added using the GUI tool from Figure 13

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 47

© 2008 ACADEMY PUBLISHER

common controls such as check boxes, radio buttons, and

spin controls as shown here in Figure 13.

For this particular example, the operator is presented

with a way to specify all of the MPL order elements for a

SO. A few of the MPL SO elements an operator can

configure are the depth and speed of the UUV during the

survey, the starting point of the UUV before it traverses

the area, and scheduling information such as the arrival

time and whether or not the UUV is to loiter after the

survey of the area is finished. After the operator finishes

specifying the MPL order elements, these elements are

written to the description fields of the corresponding

orders in the ONF representation. An example of the

ONF file with the MPL elements added to the description

field is shown in Figure 11. Here the description field for

a SO in the ONF representation contains the textual

representation of the MPL order elements specified by

the operator using the graphical interface from Figure 13.

Once all of the MPL elements are written to their

respective orders in the ONF file, this file is now ready to

be converted to the corresponding MPL representation of

the mission.

C. Converting from ONF to MPL

After the ONF representation has all of the MPL order

elements added to the various orders, it is ready for

processing by the Nobeltec to MPL (NT2MPL)

translation component. This component reads the

operator specified mission represented in the ONF format

and converts the mission orders to the corresponding

order types in the MPL format. The translation is a simple

one-to-one translation. For example, a WNO represented

by two Marks in the Nobeltec package is simply

translated to a WNO in the corresponding MPL format. A

Mark in the VNS includes the destination latitude and

longitude and other data for the display of this mark in

the Nobeltec environment. When the NT2MPL

component translates a particular mission order from the

ONF format to the MPL format, specific data relating to

the mission order (e.g., a WNO) stored in the description

field is added to the corresponding MPL order type. In

short, this ONF format captures all of the mission details

in a text file similar to the way configuration settings are

saved in the INI-style ASCII text file format used by

many Windows applications. Once the ONF

representation of the operator specified mission is

converted to its MPL equivalent, the mission is ready to

be split into its corresponding set of parallel sub-

missions. We discuss the mission splitting component in

the next sub section.

D. Generating the Set of Parallel Sub-Missions
After the mission represented in the ONF format has

been converted into the corresponding MPL format, the

mission is ready to be split into a set of parallel sub-

missions. The mission splitting component or Mission

Parallelizer (MP) reads the MPL representation of the

operator specified mission and begins the mission

splitting process. For the purposes of this example, we

choose to use strategy one form Section III, the simple

mission splitting algorithm. In the next section we present

examples that illustrate the use of strategies two and three

on a particular set of missions. Since we are using a very

simple algorithm, we simply read the dimensions of the

entire survey area and divide it (as explained in Section

III.C) into n equal sub areas, where n represents the

number of vehicles available for the mission. Each sub-

mission is then written to a separate file in the MPL

format. Each file can then be loaded onto the mission

controller of its corresponding UUV when the mission is

to be executed as discussed in [22]. Once the set of

parallel missions is generated from the operator specified

mission, these missions are ready for converting back into

the ONF representation so they can be loaded back in the

Nobeltec VNS package to be viewed by the operator.

E. Converting from MPL back to ONF

After the operator specified mission is split into its

corresponding set of sub-missions, this set of sub-

missions must be converted back into the ONF

representation to be imported back into the Nobeltec

VNS package. Again this translation is a one-to-one

translation process. The entire set of sub-mission in the

MPL format are read by the MPL to Nobeltec (MPL2NT)

translation component and translates the contents of each

sub-mission file back into its corresponding ONF

representation. All sub-missions are then written to one

Nobeltec file in the ONF format. Once this file is created

it can then be imported back into Nobeltec for review by

the operator. Figure 14 shows the corresponding set of

generated sub-missions based on the operator specified

mission in Nobeltec VNS as depicted in Figure 10. Here

the operator specified mission was split into a set of four

sub-missions and placed over the original operator

specified mission.

Figure 13 – The graphical interface that allows an operator to specify

MPL order elements in a point and click fashion. The method of MPL

specification replaces the old method shown in Figure 12, thus further

reducing potential errors. Once all MPL order elements are specified,

this data is written back to the file containing the ONF representation.

48 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

F. Bringing it all Together, an Operator View

We have presented all five sub-components of our

graphical mission specification and partitioning tool. We

now want to give a complete summary of the different

steps for this tool from an operator’s standpoint. Figure

15 shows a diagram of the entire process of generating a

set of parallel sub-mission from an operator specified

mission using our graphical mission specification and

partitioning tool. Note that our five sub-components are

depicted by gray boxes. Here, step 1 involves the operator

specifying the mission graphically using the Nobeltec

VNS. After the graphical specification of the mission is

completed, the mission is exported from the Nobeltec

VNS to a text file containing the ONF representation of

this mission (Step 2). Step 3 involves the operator using

the MPL Tool to graphically specify all the MPL order

elements for the mission. Once the operator finishes this

task, the MPL order elements are written back to the text

file containing the ONF representation. The operator then

invokes the compiler (a command line utility) where this

ONF representation of the mission is processed by the

compiler (Steps 4, 5, and 6). Step 4 converts the ONF

representation to the corresponding MPL format using the

NT2MPL conversion utility. Step 5 generates the

corresponding set of parallel sub-missions in the MPL

format. These missions are the ones to be loaded onto the

actual vehicles as mentioned before and is discussed in

[1]. Step 6 converts the MPL version of the sub-missions

back the ONF representation using the MPL2NT

conversion utility. Note that steps 4, 5, and 6 all happen

automatically. Step 7 involves the operator importing the

set of newly generated sub-missions back into the

Nobeltec VNS for review. From an operator’s standpoint,

the only manual steps are step 1 (exporting the mission

from Nobeltec) step 2 (launching the MPL Tool), step 4

(invoking the compiler to generate the corresponding set

of parallel sub-missions), and step 7 (importing the ONF

representation of the set of parallel sub-missions back

into Nobeltec for inspection). Steps 4, 5, and 6 are

contained in the compiler and are transparent to the

operator.

V. EXPERIMENTAL EVALUATION OF SCENARIOS

This section illustrates how mission splitting strategies

two and three from Section III are used by the GMSP

utility to allocate UUVs to different examples of

missions. First we examine how strategy two (reducing

the number of vehicles) is used by the GMSP utility for

two different missions. We then examine how the GMSP

utility uses strategy three (reducing total mission latency)

to allocate UUVs for the same two missions.

A. Reducing the total Number of Vehicles for a Given Set of

Missions

For this strategy we consider two different missions

and for each mission we will use two different groups of

vehicles to show how our GMSP tool works under

different conditions. The two groups of vehicles used for

this strategy are shown in Table 1. The first group (Group

A) contains eight vehicles total (four different vehicle

types and two vehicles in each type). Each vehicle type in

this group (Type 1 through Type 4) is equipped with a

unique sensor (s1 through s4 respectively). The second

group of vehicles (Group B) also contains eight vehicles

Figure 14 – Screenshot of the set of generated sub-missions after

being imported back into the Nobeltec Visual Navigation Suite

maritime software package. Note how four different sub-missions

are shown based on the original mission from Figure 10

Figure 15 – High-level view regarding all of the steps involved when

using the Graphical Mission Specification and Partitioning Tool.

Step 1, the operator specifies the mission graphically and exports the

mission as ONF representation (step 2). Step 3, the operator adds

MPL elements via MPL GUI. The operator invokes the compiler and

the ONF mission is converted to MPL, split into set of parallel sub-

missions, and sub-missions are converted back to ONF (steps 4-6

respectively). Step 7, operator loads ONF sub-missions into the VNS

for review.

TABLE 1

VEHICLES USED FOR THE EXAMPLE MISSIONS

Group A

Vehicle Type Quantity Equipped Sensors

Type 1 2 s1

Type 2 2 s2

Type 3 2 s3

Type 4 2 s4

Group B

Vehicle Type Quantity Equipped Sensors

Type 5 4 s1, s2, s3

Type 6 4 s3, s4

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 49

© 2008 ACADEMY PUBLISHER

(two different vehicle types and four vehicles in each

type). The first vehicle type in this group (Type 5)

contains three sensors (s1, s2, and s3). The second vehicle

type in this group (Type 6) is equipped with two sensors

(s3 and s4).

The first mission used for this strategy is shown in

Figure 16. For this mission, there are four separate

regions where each region requires a different sensor

type. The top left region requires sensor s1,, the top right

region requires sensor s2, the bottom right region requires

sensor s3, and the bottom left region requires sensor s4.

Note that for the purpose of clarity we added the specific

sensor labels to the regions in Figure 16. These labels do

not actually appear on the screen when the operator

specifies the mission.

Together these regions comprise the entire survey area.

This example mission represents a typical mission that an

operator creates using the Nobeltec VNS package. After

the operator creates this mission, the mission is exported

and the MPL elements are then added to the ONF

representation (Step 3 from Figure 15). When the

operator invokes the MPL compiler, the option to reduce

the number of vehicles is selected. For this execution,

vehicle Group A is assumed to be the set of available

vehicles for this mission. After the compiler generates the

set of parallel sub-missions, the ONF representation can

be loaded back into the VNS package for review. The

resulting set of parallel sub-missions generated by the

MPL compiler for the operator specified mission in

Figure 16 is shown in Figure 17.

Here a minimum of four vehicles is needed to conduct

the survey. Since each vehicle has a unique sensor and

since there are four different regions each requiring a

different sensor type, one vehicle is needed from each

vehicle type from the group to fulfill the sensor

requirements of the entire survey area.

If we use vehicle Group B for this same mission, only

two vehicles are needed (one vehicle from each of the

two different vehicle types). The resulting set of parallel

sub-missions generated by the MPL compiler for this

group of vehicles is illustrated in Figure 18. Here a single

vehicle of Type 5 (containing sensors s1 , s2, and s3) is

needed to conduct a survey of the upper two regions and

the bottom right region. A single vehicle of Type 6

(containing sensor s3 and s4) is needed to conduct a

survey of the lower left region. The vehicle from Type 5

will use all three of its sensors for its assigned regions.

Sensor s1 will be used for the upper left region, sensor s2

will be used for the upper right region, and sensor s3 will

be used for the lower right region. Even though the

vehicle from Type 6 is equipped with both sensors s3 and

s4, this vehicle will only use sensor s4 to survey the lower

left region since this is the only sensor required for its

assigned region. Note that if strategy three was used to

reduce total mission latency, vehicles with multiple

sensors will be utilized to aid in reducing the total

execution time.

Next we consider both groups of vehicles for our

second example mission shown in Figure 19. Here there

are three different regions that comprise our survey area.

The top left region requires sensor s1, the top right region

requires sensor s2, and the entire bottom region requires

both sensors s3 and s4. If we use the vehicles from Group

A for this mission, a total of four vehicles are needed to

satisfy the sensor requirements of the different regions in

Figure 16 – Example Mission one that will be used for strategies two

and three, reducing the number of vehicle and reducing total mission

latency.

Figure 17 – The set of parallel sub-missions generated by the

compiler for vehicle Group A with respect to reducing the total

number of vehicles for the mission in Figure 16.

Figure 18 - The set of parallel sub-missions generated by the

compiler for vehicle Group B with respect to reducing the total

number of vehicles for the mission in Figure 16.

50 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

this survey area (the same as before when these vehicles

were used for the mission in Figure 16). A vehicle of

Type 1 is assigned to the upper left region (the region that

requires sensor s1); a vehicle of Type 2 is assigned to the

upper right region (the region that requires sensor s2) and

one vehicle each from Type 3 and Type 4 is assigned to

the bottom region (the region that requires sensors s3 and

s4).

If we use the vehicles from Group B for this same

mission, only two vehicles are required. One vehicle from

Type 5 is used to survey all three regions since it is

equipped with sensors s1, s2, and s3 and all three regions

require these sensor types. One vehicle is used from Type

6 since it is required to patrol the bottom region that

requires sensor s4. Note that even though the vehicle from

Type 6 contains sensor s3, this sensor is not used by this

vehicle as it conducts a survey of the bottom region. The

resulting set of parallel sub-missions for Group B is

shown in Figure 20. Here the task of using sensor s3 is

given to the vehicle of Type 5 since this was the first

vehicle assigned to the different regions. If we were to

use strategy three (reducing mission latency) instead of

strategy two for this mission, the vehicles of Type 6

would be used to satisfy the sensor requirements of the

different regions in conjunction with the vehicles of Type

5 in order to reduce the total mission execution time as

we will see later in this section.

B. Reducing the total Mission Latency for a Given Set of

Missions

For this strategy (reducing the total mission latency)

we consider the same two missions from Figure 16 and

Figure 19. For each mission we will use the same two

groups of vehicle listed in Table 1 (vehicle Group A and

vehicle Group B will be used). There are a few additional

pieces of information for this strategy. The size of the

survey area in each example mission is 800 meters by

800 meters, that is, each survey area is comprised of

different regions. Together these regions make a square

survey area where the length and width are both 800

meters. Since we are trying to reduce total mission

latency we need to take the speed of each vehicle into

account. We assume that the vehicles in Group A and

Group B all have the same rate of speed of 1 meter per

second (3.6 Km/h).

First, vehicle Group A is used for example mission one

from Figure 16. After running the option to reduce total

mission latency, we get the output as shown in Figure 21

Note how all vehicles are utilized for this mission. Both

vehicles of each type are used on a different region in

order to satisfy the sensor requirements of that region, but

to also help reduce the total mission latency. If one

vehicle was equipped with all the sensors and was to

traverse all regions of this entire survey area, it would

take over an hour at a rate of 3.6 Km/h (This time

includes the time it takes for the vehicle to turn as it

surveys the area). Using all eight vehicles where each

vehicle only traverses its assigned slice as depicted in

Figure 21, the total mission time is only less than seven

minutes. Note that this time is a theoretical value

assuming that the UUVs are traveling in ideal conditions

(i.e., no turbulence, drag, or currents that will impede the

speed of the vehicle, not to mention the time it takes for

each vehicle to reach its assigned region). We discuss

improvements to our tool in Section VI regarding these

Figure 19 - Example Mission two that will be used for strategies two

and three, reducing the number of vehicle and reducing total mission

latency.

Figure 20 - The set of parallel sub-missions generated by the

compiler for vehicle Group B with respect to reducing the total

number of vehicles for the mission in Figure 19.

Figure 21 - The set of parallel sub-missions generated by the

compiler for vehicle Group A with respect to reducing total mission

latency for the mission in Figure 16.

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 51

© 2008 ACADEMY PUBLISHER

issues.

Next we ran Group B for this same mission in Figure

16 and the results were identical to the results shown in

Figure 21. The algorithm to reduce the total mission

latency generated the same eight sub missions with one

difference, the vehicle assignments. The top four slices

were assigned to the vehicles of Type 5 and the bottom

four slices were assigned to the vehicles of Type 6. When

we ran Group B using example mission two from Figure

19, the results in this situation were also the same. Again

there were eight slices and the vehicles of Type 5 were

assigned to the top four slices and the vehicles of Type 6

were assigned to the bottom four slices. However, when

we ran the vehicles of Group A against the mission from

Figure 19, we did have different results than the previous

three runs. The set of parallel sub-missions are shown in

Figure 22. Here vehicles of Type 1 and Type 2 are

assigned to the top regions the same as with the previous

runs for this mission, but the vehicles of Type 3 and Type

4 have a different assignment. Since there are only two

vehicles of Type 3 (equipped with sensor s3) and two

vehicles of Type 4 (equipped with sensor s4), both

vehicles of each type must traverse the entire width of the

survey area in order to satisfy the sensor requirements of

the bottom region. The path these vehicles take is the

critical path and the total mission latency in this example

is slightly less than 14 minutes. Again note that our

method does not take the time needed for vehicles to

reach their assigned regions. We will discuss this next

under future work.

VI. CONCLUDING REMARKS AND FUTURE WORK

In summary, we have presented previous work

regarding a high-level MPL, the supporting compiler, and

three different strategies for generating a set of parallel

sub-missions based on a operator specified mission for a

group of cooperating UUVs. We also presented the

integration of these different components with a

commercially available package called Nobeltec VNS as

the basis of our GMSP utility that allows the operator to

create missions (both for a single UUV and multiple

UUVs) using its graphical interfaces without manually

writing any source code. The preliminary experiments

involving this tool show much promise as a tool that can

aid in the UUV mission creation and planning phases and

remove from the operator much of the burden of creating

missions for multiple UUVs. Even though our current

tool shows much promise as a graphical mission-planning

tool, many more improvements can be added to make this

utility more versatile and practical.

Several tools already exist that allow operators to plan,

rehearse, and replay missions, and even allow real-time

monitoring of UUVs as they execute a mission

[15][20][36][37]. We would like to extend this previous

work by offering our own utilities in addition to these

existing tools to automatically generate missions for

multiple UUVs. Although our current mission-

partitioning strategies may offer only a few objectives

(e.g., reduce the total mission latency or reduce the total

number of vehicles), more strategies can be added to our

current repertoire to expand upon the number of available

objectives. We recently developed other mission splitting

algorithms that utilize integer linear programming (ILP)

formulations that will minimize the number of vehicles,

minimize the total mission latency [10], and even an ILP

formulation to minimize the power consumed by a group

of vehicles when they attempt to communicate data to a

surface vessel or land based station [41]. Note that ILP

formulations produce optimal results [34] when

compared to the greedy approaches from Section III that

may produce sub-optimal results in certain instances. We

also plan to extend this work and create other objectives

that will attempt to minimize the total power

consumption of a group of vehicles while they conduct a

mission. We have even devised dynamic mission re-

planning methods that will reassign the tasks of a failed

UUV to the remaining vehicles in a group to successfully

complete the mission [38][39]. Since our graphical

mission specification and partitioning tool is modular, we

can simply add these additional mission-splitting

strategies to our existing strategies. We may even be able

to offer multi-objective optimization techniques for a

particular mission. As we continue this work, our goal is

to devise a whole series of mission splitting algorithms

that will offer an array of different objectives for our

GMSP utility and provide the operator with a complete

graphical UUV mission-planning tool while relieving the

operator from low-level mission programming tasks.

REFERENCES

[1] G. Giger, L. Xue, S. Tangirala, and M. Kandemir, “High

Level Mission Programming Support for Autonomous

Underwater Vehicles,” AUVSI’s Unmanned Systems North

America, Orlando, FL., 2006.

[2] Systems and Unmanned Vehicle, Applied Research

Laboratory at the Pennsylvania State University, “Seahorse

- Autonomous Underwater Vehicle (AUV),” 2006,

http://www.arl.psu.edu/capabilities/at_suv.html

[3] R. Henthorn, D. W. Caress, H. Thomas, R. Mcewen, W. J.

Kirkwood, C. K. Paull, and R. Keaten, “High-Resolution

Multibeam and Subbottom Surveys of Submarine

Figure 22 – The set of parallel sub-mission generated using the

example mission from Figure 19 and the vehicle from Group A. Note

that both vehicles of Type 3 and Type 4 are assigned to the bottom

regions. Since there is only two of each of these vehicle types, each

vehicle must traverse the entire width of the survey area.

52 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

Canyons, Deep-Sea Fan Channels, and Gas Seeps Using

the MBARI Mapping AUV,” IEEE OCEANS 2006, Boston

MA., September 2006.

[4] L. Freitag, M. Grund, C. von Alt, R. Stokey, and T. Austin,

“A Shallow Water Acoustic Network for Mine

Countermeasures with Autonomous Underwater Vehicles,”

IEEE OCEANS 2005, Washington D.C., September 2005.

[5] D. Bingham, T. Drake, A. Hill, and R. Lott, “The

Application of Autonomous Underwater Vehicle (AUV)

Technology in the Oil Industry - Vision and Experience,”

Proceedings of the International Federation of Surveyors'

22nd Congress, Washington D.C., 2002.

[6] M. L. Scott, Programming Language Pragmatics,

Academic Press, 2000.

[7] E. Eberbach, C. Duarte, C. Buzzell, and G. Martel, “A

Portable Language for Control of Multiple Autonomous

Vehicles and Distributed Problem Solving,” Proceedings

of the 2nd International Conference on Computational
Intelligence, Robotics and Autonomous Systems, 2003.

[8] Products, Nobeltec, “Nobeltec Visual Navigation Suite,”

2007, http://www.nobeltec.com/products/prod_suite.asp

[9] Open Navigation Format, Nobeltec, 2007,

http://www.nobeltec.com/onf/ONFBody.htm

[10] G. Giger, M. Kandemir, S. D. Lovell, and J. Dzielski,

“Automated Mission Parallelization for a Group of

UUVs,” Proceedings of the 15th International Symposium

on Unmanned Untethered Submersible Technology,

Durham, NH., August 2007.

[11] G. Giger, M. Kandemir, S. D. Lovell, J. Dzielski, and S.

Tangirala, “Automated Mission Parallelization for

Unmanned Underwater Vehicles,” AAAI Fall Symposium

on Regarding the Intelligence in Distributed Intelligent

Systems, Washington D.C., November 2007.

[12] C. N. Duarte, C. Buzzell, G. R. Martel, D. Crimmins, R.

Komerska, S. Mupparapu, S. Chappell, D. R. Blidberg, and

R. Nitzel, “A Common Control Language to Support

Multiple Cooperating AUVS,” Proceedings of the 14th

International Symposium on Unmanned Untethered

Submersible Technology, Durham, NH., August 2005.

[13] R. L. Stokey, L. Freitag, and M. Grund, “A Compact

Control Language for AUV Acoustic Communication,” in

OCEANS 2005 - Europe, June 2005.

[14] F. F. Ingrand, R. Chatila, R. Alami, F. Robert, “PRS: A

High Level Supervision and Control Language for

Autonomous Mobile Robots,” Proceedings of the IEEE

International Conference on Robotics and Automation,

April 1996.

[15] N. A. Anisimov, A. A. Kovalenko, G. V. Tarasov, A. V.

Inzartsev, and A. Scherbatyuk, “A Graphical Environment

for AUV Mission Programming and Verification,”

Proceedings of the 10th International Symposium on

Unmanned Untethered Submersible Technology, Durham,

NH., September 1997.

[16] J. E. Manley, “Multiple AUV missions in the National

Oceanic and Atmospheric Administration,” Autonomous

Underwater Vehicles, 2004 IEEE/OES, June 2004.

[17] S. T. Tripp, “Autonomous Underwater Vehicles (AUVs):

A Look at Coast Guard Needs to Close Performance Gaps

and Enhance Current Mission Performance,” Technical

Report ADA450814, Coast Guard Research and

Development Center, Groton, CT., 2006.

[18] A. Rajala, M. O'Rourke, and D. B. Edwards, "AUVish: An

Application-Based Language for Cooperating AUVs,"

IEEE OCEANS 2006, September 2006.

[19] S. Chappell, S. Mupparapu, R. Komerska, and D. R.

Blidberg, “SAUV II High Level Software Architecture,”

14th International Symposium on Unmanned Untethered

Submersible Technology, Durham, NH., August 2005.

[20] S. S. Mupparapu, S. G. Chappell, R. J. Komerska, D. R.

Blidberg, R. Nitzel, C. Benton, D. O. Popa, A. C.

Sanderson, "Autonomous systems monitoring and control

(ASMAC) - an AUV fleet controller," Autonomous

Underwater Vehicles, IEEE/OES, June 2004.

[21] J. Borges Sousa, F. Lobo Pereira, and E. Pereira da Silva,

"A Dynamically Configurable Architecture for the Control

of Autonomous Underwater Vehicles," IEEE/OES 1994

'Oceans Engineering for Today's Technology and

Tomorrow's Preservation,’ September 1994.

[22] S. Tangirala, R. Kumar, S. Bhattacharyya, M. O’Connor,

and L. E. Holloway, “Hybrid-Model based Hierarchical

Mission Control Architecture for Autonomous Underwater

Vehicles,” Proceedings of the 2005 American Control

Conference, Portland, OR., June 2005.

[23] D. Davis, “Automated Parsing and Conversion of Vehicle-

Specific Data into Autonomous Vehicle Control Language

(AVCL) Using Context-Free Grammars and XML Data

Binding,” Proceedings of the 14th International

Symposium on Unmanned Untethered Submersible

Technology, Durham, NH., August 2005.

[24] R. Blank, "A Structured Programming Approach For

Complex AUV Mission Control," Masters Thesis, Naval

Postgraduate School, Monterey, CA., September 1993.

[25] J. Levine, T. Mason, and D. Brown, UNIX Programming

Tools lex & yacc, O’Reilly & Associates Inc., 1992.

[26] J. Friedl, Mastering Regular Expressions, O’Reilly &

Associates Inc., 1998.

[27] M. Caccia, R. Bono, G. Bruzzone, and G. Veruggio,

"Variable-Configuration UUVs for Marine Science

Applications," IEEE Robotics & Automation Magazine,

June 1999.

[28] G. Conte, S. Zanoli, A. Perdon, and A. Radicioni, "A

system for the automatic survey of underwater structures,"

IEEE OCEANS 1994 'Oceans Engineering for Today's

Technology and Tomorrow's Preservation,’ September

1994.

[29] B. Bourgeois and P. McDowell, "UUV Teams for Deep

Water Operations," Technical Report 430774, Naval

Reseach Laboratory, Stennis Space Center, 2001.

[30] R. Wernli, "Low Cost UUV’S for Military Applications: Is

the Technology Ready?," Space and Naval Warfare

Systems Center, San Diego, CA., 2001.

[31] K. A. Barclay, ANSI C Problem Solving and

Programming, Prentice Hall International, 1990.

[32] T. Corman, C. Leiserson, R. Rivest, and C. Stein,

Introduction to Algorithms, The MIT Press, 2001.

[33] G. Giger, M. Kandemir, and S. D. Lovell, “Automatic

Generation of Parallel Missions for Autonomous

Underwater Vehicles,” Technical Report CSE 07-006,

Department of Computer Science and Engineering, The

Pennsylvania State University, 2007.

[34] H. Anton, B. Kolman, and B. Averbach, Applied Finite

Mathematics, Saunders College Publishing, 1992.

[35] G. Giger, M. Kandemir, and J. Dzielski, "A Graphical

Mission Specification and Partitioning Tool for Unmanned

Underwater Vehicles," IEEE OCEANS 2007, October

2007.

[36] D. T. Davis, and D. Brutzman. “The Autonomous

Unmanned Vehicle Workbench: Mission Planning,

Mission Rehearsal, and Mission Replay Tool for Physics-

Based X3D Visualizations,” Proceedings of the 14th

International Symposium on Unmanned Untethered

Submersible Technology, Durham, NH., August 2005.

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 53

© 2008 ACADEMY PUBLISHER

[37] I. Woodrow, C. Purry, A. Mawby, and J. Goodwin,

“Autonomous AUV Mission Planning and Replanning –

Towards True Autonomy,” Proceedings of the 14th

International Symposium on Unmanned Untethered

Submersible Technology, Durham, NH., August 2005.

[38] S. Erkan, M. Kandemir, and G. Giger, "Dynamic Fault

Tolerant Mission Re-Planning Algorithms for a Group of

UUVs," Proceedings of the 15th International Symposium
on Unmanned Unthethered Submersible Technology,

Durham, NH., August 2007.

[39] G. Giger, M. Kandemir, and J. Dzielski, "Reliable Mission

Execution Using Unreliable UUVs," AUVSI’s Unmanned

Systems North America, San Diego, CA., June 2008.

[40] R. Peel and B. Williams, “Bringing a Common Operating

Picture to Fleet UUV Exercises," AUVSI’s Unmanned

Systems North America, August 2004.

[41] S. Erkan, M. Kandemir, G. Giger, and S. D. Lovell,

"Energy-Optimal Data Collection and Communication

Using a Group of UUVs," AAAI Fall Symposium on

Regarding the Intelligence in Distributed Intelligent

Systems, Washington D.C., November 2007.

54 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

