
Analysis and Visualization of Gene Expressions
and Protein Structures

Ashraf S. Hussein
Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt.

Email: ashrafh@acm.org

Abstract—This paper describes a web-based interactive
framework for the analysis and visualization of gene
expressions and protein structures. The formulation of the
proposed framework was encountered by many challenges
due to the wide range of relevant analysis and visualization
techniques, in addition to the existence of a diversity of
biological data types, on which these techniques operate.
The main challenges that guided the formulation of the
present framework are: (a) the integration of data from
heterogeneous resources, such as expert-driven data from
text, public domain databases and diverse large scale
experimental data sets, and (b) difficulty in integrating the
most recent analysis and visualization tools due to the lack
of standard I/O. Therefore, the fundamental innovation in
the proposed framework is the integration of the state-of-
the-art techniques of both analysis and visualization for
gene expressions and protein structures through a unified
workflow. In addition, it supports a wide range of input
data types and exports three dimensional interactive outputs
using Virtual Reality Modeling Language (VRML) to be
ready for exploration via off-the-shelf monitors as well as
immersive, 3D, stereo display environments.

Index Terms—computer visualization, bioinformatics, gene
expressions, protein structures

I. INTRODUCTION

Gigantic amounts of biological data are being

generated from researches and experiments everyday.
This, along with the evolution of computer science, has
resulted in the emerging of the world of Bioinformatics
that is growing at an undeniably fast rate. Bioinformatics
is officially known as the science of storing, organizing,
retrieving and analyzing biological data in order to make
use of them in many vital applications [1]. Since the
different types of biological data come in enormous
amounts, analysis and visualization techniques became
essential for the data to be meaningful and interpretable.
Consequently, these techniques support biologists in
revealing conclusions from their data, leading to more
understanding about the principles of biology.

Developing efficient and easy to use tools for the
analysis and visualization of gene expressions and protein
structures is a goal which has been pursued by a diversity
of research groups with various objectives and
approaches [32]. The available analysis tools can be

categorized into two main categories. The first category
handles gene and protein sequences, compares them to
the online sequence-databases, and returns the best
matching sequences. This proves extremely useful
providing that the returned sequences are accompanied
with thorough descriptions of them, which assists
biologists to assume (or determine with certainty) the
properties of the query gene/protein sequence sent [2].
Two effective tools professionally perform this type of
analysis which are BLAST [3] and ClustalW [4]. The
second category of analysis tools involves performing
various analysis techniques on data resulting from the
micro-array experiments. One of these analysis
techniques is ‘clustering’ that may be performed on the
data of the experiments conducted on genes. Similarities
in the genes’ behaviors lead to the corresponding genes to
be grouped together. Consequently, biologists will be
able to know the behavior of these groups and why they
behave in such ways [5]. The main famous tools that
carry out such analysis techniques are GEPAS [6] and
Cluster 3.0 [7].

Visualization tools provide the biologists with
graphical representations of the data to be interpreted in
more easily way than by merely looking at the raw data.
Desktop applications like RasMol [7], PyMOL [9] and
IBM Protein Viewer [10] render several representations
of the protein structures [10]. Also, ADN-Viewer is
specialized in visualizing the DNA sequences using
various methods [12].

The data sets, on which these analysis and
visualization tools operate, are stored in large online
databases such as the National Center of Biotechnology
Information (NCBI) [13]. To access these databases, tools
that provide web services such as BioMoby [14] and
myGrid [15] have to be emerged .

Two main challenges in Bioinformatics have evolved
due to this wide variety of tools in addition to the
existence of a diversity of biological data types, on which
these tools operate. The first challenge is the integration
of data from heterogeneous sources, such as expert-
driven data from text, public domain databases and
diverse large scale experimental data sets. The second is
the difficulty in integrating the available analysis and
visualization tools due to the lack of standard I/O. To
overcome these problems, the proposed framework
introduces a unified workflow, which integrates various

2 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

types of the state of the art techniques of both analysis
and visualization specifically for gene expressions and
protein structures. On the other hand, it handles wide
range of the commonly used data formats in addition to
the support of the virtual reality modeling language
(VRML) output to be ready for exploration via off-the-
shelf monitors as well as immersive, 3D, stereo display
environments. The design of the formulated framework
allows users to analyze and visualize their data through a
web-portal. Also, users can access, retrieve and acquire
data from online biological databases through this portal.

The next sections will be organized as follows: section
2 outlines the basic architecture of the proposed
framework. Section 3 presents the implemented analysis
functionalities while the adopted visualization
functionalities are described in section 4. The analysis
and visualization functionalities of the proposed
framework are studied and discussed in section 5. Finally,
section 6 gives the conclusions of this work and an
overview of the future work.

II. ARCHITECTURE

Analysis and visualization are important to interpret
scientific data and reveal conclusions in many areas of
bioinformatics. It is particularly significant in the
structural bioinformatics since the foundation of this field
is the 3D structure of biological macromolecules, which
can only be interpreted using a molecular graphics
program. Historically, to run a visualization program, a
user needed to install and configure the program locally.
With the advent of the World Wide Web, users can run
increasingly complex applications without having to
explicitly download them, relying instead on the Web
page’s delivery with a single mouse click. In addition,
web applications have the edge of directly accessing the
online databases.

The proposed framework is composed from several
modules: the analysis and visualization manager, the user
interface and the web services as depicted in figure 1.

Online
Databases

Proposed Framework

Analysis and Visualization
Manager

User Interface Web Services

Online
Databases

Proposed FrameworkProposed Framework

Analysis and Visualization
Manager

User Interface Web Services

Figure 1. The Proposed Framework Components.

 Based on the user request, the present framework

follows the corresponding scenario. Each scenario starts
from the client site by uploading the user’s data to be
processed. This data is entered in the client site using one
of three methods: (1) entering the data directly in its
corresponding fields, (2) uploading the data file or (3)
retrieving the data from one of the available online
databases employing the search engine. The considered
types of the input data files are: (a) the files containing
DNA/Protein sequences like Fasta [28], Swiss-Prot [29],

GenBank [30] and NBRF files, (b) BLAST [2] and
ClustalW [4] files which contain the results of query
sequences comparisons with other sequences in the
online, biological databases and (c) PDB files [31] which
contain 3D protein structures.

 The search engine has been included in the formulated
framework using the web services technology to permit
users to retrieve the desired biological data for analysis
and/or visualization. The user can directly enter a protein
name, select the database name or the URL of that
protein. Biomedical articles can also be accessed via the
search engine by entering the article name in the search
parameter.

As the user action reaches the server site, the server
starts searching in the public domain databases or passes
the input directly for further processing based on the user
request. Once the desired data has been acquired, the user
selects either analysis or visualization to handle the data
using the analysis and visualization manager. Finally, the
framework returns the results to the client site in a
concise, informative, and visual manner. The basic
architecture of the proposed framework is shown in
figure 2. It is based on three-tier architecture: client,
server and online databases as a third-party component.

SearchUpload File

Client Server Third Party
Biological Online DBs

SearchSearch Result

SearchUser Entry

SearchInteract with
Result

SearchSearch Engine

Input

SearchBLAST

Analysis

SearchGene
Transformation

SearchClustering

Biological DBs

Gen Bank

Swiss Prot

NBRF

PDB

PubMed

SearchParse File

Input
Input

Subject

Query

SearchSearch Term Search Term

SearchSearch ResultSearchSearch Result
Search Result

Visualization

VRML File

Figure 2. Proposed Framework Architecture

The considered analysis techniques are BLAST [2],

gene transformations and clustering. If the user input is a
sequence (DNA, RNA or a protein), it can be sent by the
BLAST functionality, as a query sequence, to one of the
online biological databases. Then, the subject sequence is
returned back (the best matching sequence). The gene
transformations, including translation and transcription
processes (and their reverses), can also be performed on
the gene/protein sequences, and the resulting sequences
are presented in the user interface. Finally, the clustering
module handles the results of the performed experiments
on different genes. This technique provides three
different schemes: partitional, hierarchical and grid-based
clustering.

Visualization operations can be performed directly on
the input data or on the output(s) of the analysis
techniques. The visualization techniques, which can be
performed directly on the input data, include the PDB
visualization and the gene/protein sequences

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 3

© 2008 ACADEMY PUBLISHER

visualization. The PDB visualization is carried out via
wire-frame, sticks, ball-and-stick, non-bonded, backbone,
ribbons, and cartoons. On the other hand, the sequences
can be visualized using gene scale, atomic scale, DB-
Curves and 3D representation.

III. ANALYSIS FUNCTIONALITIES

The analysis functionalities described in the following
subsections are the first part of the analysis and
visualization manager, which is the main module within
the proposed framework. These functionalities facilitate
the identification of genes/proteins and the detection of
their behavior and characteristics. This is useful because
the more similar two sequences are, the more their
corresponding genes/proteins are alike (properties-wise
and behavior-wise). The considered analysis techniques
are shown in figure 3.

Analysis

Clustering Gene Transformations

Hierarchical

Partitional

Grid-Based Transcription Translation

BLAST

Figure 3. The considered analysis techniques

A. Gene Transformations
Protein production is carried out via cascading

transformations. RNA is first generated from DNA, and
then proteins are produced from RNA [16]. This is
known as the “Central Dogma” in molecular biology as
shown in figure 4. The data of DNA, RNA and proteins
may be represented in the form of sequences. The gene
transformations were considered and implemented in the
present framework by connecting to the ExPASy’s online
translation tool [17], using web services. The resultant
sequence can then be presented and/or visualized to the
user.

DNA RNA Protein

Transcription

Translation

DNA RNA Protein

Transcription

Translation
Figure 4. Central Dogma Theory

B. BLAST
Gene/protein sequences carry properties and

functionalities of their corresponding genes or proteins.
Thus, similarity of sequences can be used as an approach
for identifying unknowns and implicit relationships in the
sequence world [2]. This is why the web services are
provided for connecting to both the BLAST, and the
sequence-comparison tool at the NCBI website [16].
Figure 5 shows the events flow in the user interface when
performing the BLAST operation. The resulting BLAST
report contains the nearest matching sequences that can
be visualized, afterwards, by the visualization
functionalities provided within the proposed framework.

Enter sequence

Select biological database to compare

Enter required search parameters

Select format of returning result

Specify whether it is DNA, RNA or Protein

Submit search

Interact with result

Enter sequence

Select biological database to compare

Enter required search parameters

Select format of returning result

Specify whether it is DNA, RNA or Protein

Submit search

Interact with result
Figure 5. Event Flow during the BLAST Operation

C. Clustering
Micro-array technologies facilitate measuring the gene

expression levels for thousands of genes simultaneously.
To extract knowledge from the generated datasets, these
datasets have to be presented to the user in a meaningful
way. Gene clustering methods fulfill this requirement in a
professional way. Gene clustering is the process of
grouping each set of related genes in a cluster based on
their behavior [17]. The considered clustering algorithms
are: K-Algorithm [19], Hierarchical [20] and Self-
Organized Maps (SOM) [21]. The input for the K-
Algorithm is a set V consists of N points and a parameter
K. The output is a set X consists of K points (cluster
centers) that minimizes the squared error distortion
d(V,X) over all possible choices of X. The algorithm is
described in figure 6.

Arbitrarily assign the K cluster centers
While the cluster centers keep changing:
 Assign each data point to cluster Ci corresponding to the

closest cluster representative (center) having the least d (V, X)
 where 1≤i≤K
 After the assignment of all data points, compute new

cluster representatives according to the center of gravity of
each cluster

 (for every cluster C, the new cluster representative is ∑v|C|
for all v in C)

Figure 6. K Algorithm

The input to the hierarchical clustering technique [20]
is a N*N matrix D of pair-wise distances between points.
The output is a tree T with a single all-inclusive cluster at
the top and single point clusters at the bottom. The user
selects one of four ways to compute distances (called
distance measures) to be used in the clustering operation.
These distance measures are: single, complete, average,
and centroid linkage. Figure 7 illustrates the algorithm of
the hierarchical clustering technique.

4 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

Form N clusters each with one element
Construct a graph T by assigning one vertex to each cluster
while there is more than one cluster:
 Find the two closest centers C1 and C2
 Merge C1 and C2 into a new cluster C with |C1|+|C2|
elements
 Compute the distance from C to all the other clusters
 Add a new vertex C to T and connect it to C1 and C2 as their
parent
 Remove rows and columns of D corresponding to C1 and C2
 Add a row and column to D corresponding to the cluster C
Return T

Figure 7. Hierarchical Clustering Algorithm

Finally, for the SOM technique [21], as a grid based
technique, the input is a set X consists of N points, and
the output is a 2D grid of clusters. Figure 8 illustrates the
algorithm of the SOM clustering technique.

Randomly initialize all weights
while there are input vectors in X:
 Select next input vector x = [x1, x2, … , xN]
 for each neuron j :
 Compute the distance between x and wj
 Find neuron j with minimum distance (winner)
 Update winner so that it becomes more like x, together
with the winner’s neighbors for units within the neighborhood

according to:)]n(wx)[n()n(w)1n(w ijiijij −+=+ η
 Adjust parameters; learning rate η and neighborhood
function (each neuron represents a cluster that contains similar
data).

Figure 8. SOM Algorithm

IV. VISUALIZATION FUNCTIONALITIES

The second part of the analysis and visualization
manager is concerned with the visualization
functionalities, which described in the following
subsections. These functionalities assist biologists to
reveal conclusions from the massive amounts of data
generated from genetics and proteomics experiments. The
considered visualization techniques are shown in figure 9.

Visualization

PDB

BackboneNon Bonded

Ribbon

Wire Frame

Stick

Cartoon

Space Fill

Ball & Stick

a. Considered visualization techniques for PDB

Visualization

BLAST Result

DNA/RNA Sequence

Protein Sequence

DB Curve 3D Representation 3D Representation

Atom Scale

Gene ScaleDB Curve

3D Representation

b. Considered Visualization Techniques for Blast results, DNA/RNA

Sequences and Protein Sequences.
Figure 9. The considered visualization techniques

A. Sequence Visualization
The 3D structure of genes are very important in many

essential biological mechanisms, such as the “Central
Dogma” [16]. 3D visualization of the gene sequences can
be performed using one of the following different
methods.

1) Gene Scale
The entire gene sequence can be visualized in a

double-helix form representing the connections between
the nitrogenous base pairs (A-T and C-G). This
representation can be performed along with the
connections backbones [12]. Each of the nucleotides, A,
C, G and T, is distinguished by a distinct color. Also,
each nucleotide in the input sequence is visualized with a
cylinder, connecting it to its complementary nucleotide
(the nucleotide base pairs are A-T and C-G). Each base
pair is visualized above its preceding base pair by a small
fixed translation (in the y-direction) and a small fixed
rotation (around the y-axis). Figure 10 shows the
algorithm of the DNA sequence visualization.

Rotation Angle = 0
Translation Distance = 0
for each nucleotide in the sequence:
 Rotation Angle += fixed rotation value about y-axis
 Translation Distance += fixed translation value in +ve y-
direction
 Draw nucleotide and its complementary nucleotide
connected by a cylinder
 Apply rotation and translation to drawn base pair

Figure 10. DNA Sequence Visualization at the Gene Scale

2) Atomic Scale
The atomic scale visualizes gene sequences (or part of

them) to show the atomic structure of the nitrogenous
bases and their connections [12]. There are two standard
representations for the atomic scale: the ‘wire-frame’ (the
connections are visualized as cylinders) and the ‘ball-and-
stick’ (the nucleotides are visualized as spheres and the
connections between them as cylinders). The atomic scale
visualization is similar to that of the gene scale, but with
some slight modifications, (atomic scale focuses on a part
of the DNA while the gene scale visualizes the entire
DNA).

3) DB-Curves
DB-Curves are the 2D representation of the

nucleotides in the DNA sequences. This visualization
technique facilitates studying the gene characteristics in
terms of the behavior of two nucleotides [22]. The DNA
sequence is entered as an input and one of six curve types
can then be selected. The types of the curves are AC, TC,
CG, AT, TG and AG. For the AC DB-Curve, as an
example, the vector (1, 0) is defined corresponding to the
base A and the vector (0, 1) is defined corresponding to
the base C. The rest of the bases, T and G, are given by
the vector (1, 1). If the starting point is defined as (0, 0),
the DNA sequence can be mapped to the 2D-coordinate
system by a cumulative plot of the bases in the sequence
using the above notation. The AC DB-Curve emphasizes
the A and C bases and makes their visualization more
obvious than the rest of the bases. Colors are assigned to
the four different bases of the DB-Curves according to

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 5

© 2008 ACADEMY PUBLISHER

the type of the nucleotide. Figure 11 describes the DB-
Curves visualization algorithm.

Curve Type = XY
Start at point (0,0)
for each nucleotide in the sequence:
 if (nucleotide type == X)
 Assign (1,0) vector to X
 else if (nucleotide type == Y)
 Assign (0,1) vector to Y
 else if (nucleotide type is otherwise)
 Assign (1,1) vector
 Assign color to nucleotide according to its type
 Draw vector

Figure 11. Visualization of DNA sequences via “DB-Curves”

4) 3D Representation
The 3D representation of the DNA sequences is

performed by assigning a vector to each nucleotide in the
DNA sequence [23]. It is similar to the DB-Curves except
that the vectors are assigned in the 3D. Figure 12
describes the algorithm of creating the “3D
Representation” to visualize DNA sequences.

In this work, the “3D representation” was modified to
visualize linear sequences of proteins. Consequently, the
letters in the protein sequence which represent the
different amino acids can be divided into several
categories based on their side chains.

The algorithm of creating “3D Representation”
visualization for the protein sequences is quite similar to
that of the DNA sequences. The only difference is that
there are six vectors for the six categories of amino acids
instead of the four vectors used for the four types of
nucleotides.

for each nucleotide in the sequence:
 if (nucleotide type == A)
 Assign vector (1,0,0)
 if (nucleotide type == C)
 Assign vector (0,1,0)
 if (nucleotide type == G)
 Assign vector (0,0,1)
 if (nucleotide type == T)
 Assign vector (0,1,1)
 Assign color to nucleotide according to its type
 Draw vector

Figure 12. Visualizing DNA Sequences using “3D Representation

5) Visualization of BLAST/ClustalW Results
For the visualization of the BLAST operation results,

the query sequence and the subject sequence are both
visualized, in a superimposed representation, using the
technique of the DB-Curves. Red dots are placed at the
locations of mismatches between the two sequences as
shown in figure 13. ClustalW uses almost the same idea
in its visualization but more than two sequences being
compared simultaneously. Figure 14 describes this
algorithm.

a. BLAST result on a DNA sequence (DB-Curves)

b. BLAST result on a protein sequence (3D Representation)

Figure 13. The visualization of BLAST result

Curve Type = XY
fore ach sequence (from BLAST/ClustalW):
 for each nucleotide:
 if (nucleotide type == X)
 Assign (1,0) vector to X
 if (nucleotide type == Y)
 Assign (0,1) vector to Y
 else
 Assign (1,1) vector
 Assign color according to its type
 if (gap(ClustalW)/mismatch(BLAST)):
 Draw a red dot at the vector
Figure 14. Visualizing BLAST/ClustalW results using “DB-Curves”

The “3D Representation” algorithm was modified

again to visualize the results of both the BLAST and the
ClustalW as well. This algorithm is described in figure
15.

for each sequence (from BLAST/ClustalW)
 for each sequence symbol:
 if (nucleotide):
 Assign to the nucleotide its corresponding vector
 Assign corresponding color
 else
 Assign new vector
 Assign white color
 Draw vector

Figure 15. Visualizing BLAST/ClustalW results using “3D
Representation”

B. Protein Structure Visualization
The functionality of any protein can be determined

from its 3D structure. There are several techniques to
represent the protein 3D structure. The availability of
these techniques confirms that the biologist’s
interpretation of the protein’s properties will be quite
high. In this work, the considered visualization
techniques for the protein structure are: wire-frame,
sticks, ball-and-stick, non-bonded, backbone, ribbons,
and cartoons representation. The protein structures are
saved in standard ‘PDB files’. The CPK color scheme

6 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

 [27] was used within the algorithms described in this sub-
section. A distinct standard color is assigned to each atom
type (Oxygen atoms are red colored, carbon atoms are
green colored, and so on).

The number of ‘standard’ amino acids, that form
proteins, is known to be 20 so far. These amino acids are
called ‘standard’ because the connections between the
atoms are already known and can be found in the
references concerning biochemistry. In addition, these
amino acids are connected by means of peptide bonds as
shown in figure 16. The primary structure of the protein
is the amino-acid sequence of the formed polypeptide
chains [24].

All amino acids have in common a central carbon
atom, a hydrogen atom, an amino group (NH2) and a
carboxyl group (COOH), as shown in Figure 17. The
central carbon atom is called the Calpha (or CA) atom. The
side chain of each amino acid is what makes it unique and
different from the other amino acids. There are 20 side
chains found in the proteins encoded by the genetic
machinery of the cell (one for each amino acid) [24].

Figure 16. Peptide Chain Formation

NHNH22 CCAAHH

RR

COOHCOOH
Amino
Group

Central
Carbon

Carboxyl
Group

Side Chain

NHNH22 CCAAHH

RR

COOHCOOH
Amino
Group

Central
Carbon

Carboxyl
Group

Side Chain

Figure 17. Amino Acid

‘Wire-frame’, ‘sticks’ and ‘ball-and-stick’ are the

standard representations which show the atoms along
with the connections between them [25]. In order to
create these representations, a text specifying the
connections within each amino acid (i.e. residue) is
needed.

As implied by the primary structure of the protein, the
amino acids in the PDB file should be connected unless
there is a TER record in the middle (which indicates the
end of a peptide chain and, possibly, the beginning of
another one). Finally, the CONECT records in the PDB
file contain the non-standard connections (which are not
peptide bond connections) between the atoms. Having
determined all the required connections, these
representations can hence be created. The algorithm for
the ‘wire-frame’ representation is shown in figure 18.

Initialize CONN as an empty array
for each residue:
 Store the atoms of the residue (or copy) in some temporary
array
 Determine the connections and store them in the form:
(atomSerial1, atomSerial2)
 Add these connections to CONN
 if the next record is not of type TER
 Add a connection between its C-atom and the next
residue’s
 N-atom to CONN
for each CONECT record:
 Add its connections to CONN
for each connection (atomSerial1, atomSerial2) in CONN:
 Retrieve atom1 and atom2
 Color1 = color of atom1
 Color2 = color of atom2
 Vector = atom2 – atom1
 Midpoint = (atom1 + atom2)/2
 Use Vector and Midpoint to compute required rotation and
translation transformations respectively
 Create a cylinder (half of it in Color1, and the other half in
Color2)
 Apply transformations to the created cylinder
 Draw the cylinder

Figure 18. Wire-frame Representation

The ‘sticks’ and ‘ball-and-stick’ visualization
techniques are quite similar to the ‘wire-frame’. The
cylinders in the ‘sticks’ representation are little thicker. In
the ‘ball-and-stick’ representation, spheres are drawn at
the atoms’ locations to emphasize them. All of the atoms
in the protein (not only oxygen atoms as in other viewers)
are simply drawn as spheres with no connections between
them. The ‘backbone’ and ‘ribbons’ representations focus
on the backbone of the protein [26]. The ‘backbone’
representation is created by connecting the central carbon
atom (CA) of each amino acid to that of the next one. The
idea is to create peptide planes along the amino acids for
the ribbons to be twisted around [26]. Figure 19 shows
the algorithm for the ‘backbone’ representation.

tempCA = CA-atom of first amino acid
for each atom (starting from the second amino acid):
 if atom is a CA-atom:
 Draw cylinder between it and tempCA
 tempCA = atom

Figure 19. Backbone Representation

Finally, the ‘cartoons’ visualization technique concerns
with the secondary structures of the protein. In this
framework, the “cartoon” representation is developed by
a new methodology. Helices and sheets are represented as
red cylinders and yellow arrows respectively. The red
cylinders are drawn between the first and the last CA
atoms in each helix. The yellow arrows are drawn using
Bezier Curves with CA atoms as their control points (also
between the first and the last CA atoms in each sheet).
For the rest of the protein, a Hermite Spline connects
each consecutive pair of CA atoms (i.e. CA atoms of
consecutive amino acids in the PDB file). The tangent of
the spline at each CA atom is double the vector from the
CA atom to the C atom (i.e. the carbon atom of the
carboxyl group) of the same amino acid. This algorithm
is illustrated in figure 20.

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 7

© 2008 ACADEMY PUBLISHER

for each helix (HELIX record):
 seqR1 = the sequence number of the starting residue
 seqR2 = the sequence number of the terminating residue
 serialCA1 = serial of the CA atom of the residue of sequence
number ‘seqR1’
 serialCA2 = serial of the CA atom of the residue of sequence
number ‘seqR2’
 Retrieve atomCA1 and atomCA2
 Vector = atomCA2 – atomCA1
 Midpoint = (atom1 + atom2)/2
 Use Vector to compute required rotation transformation
 Use Midpoint to compute required translation transformation
 Create a red thick cylinder
 Apply transformations to created cylinder
 DRAW the cylinder
for each sheet (SHEET record):
 seqR1 = the sequence number of the starting residue
 seqR2 = the sequence number of the terminating residue
 CAserials = serials of the CA atoms from seqR1 to seqR2
 Retrieve the CA atoms and use them as control points to
create Bezier curve
 Draw yellow arrows along the generated Bezier curve to
represent the sheet
for each CA-atom not in a helix or a sheet:
 Compute tangent: T1 = CA – C
 Similarly compute tangent T2 at the next CA-atom
 Generate Hermite Spline using T1 and T2
 Draw curve using the generated Hermite Spline

Figure 20. Cartoons Representation

C. Clustering Visualization
The proposed framework also provides visualization

service for the data resulting from most of the clustering
techniques previously mentioned in section 3.

For the K-Algorithm, each cluster of genes is
represented as a group of spheres having a distinct color.
In the hierarchical clustering, evolutionary trees are
drawn with genes as their leaves. Every node (except the
leaf nodes) has two children. The node can be a child of
another node, which may be also a child of another node
and so on. If each node is assigned the correct children,
this will lead to the formation of a tree data structure. The
depth-first algorithm can then be used to visualize the
results of the hierarchical clustering, also in the form of a
tree. The use of the depth-first technique prevents any
visual intersections between the stems of the visualized
trees.

Finally, For the SOM clustering technique, each set of
genes, which are similar in behavior are grouped up in a
cluster. When the user selects one of the clusters, a
Cartesian graph look-alike is drawn (where the x-axis
represents the experiments, the y-axis represents the
gene’s behavior). Each of the genes is represented by a
number of connected line segments. These segments
show the selected gene cluster behavior in different
experiments.

V. DISCUSSION
In this work, the analysis and visualization

functionalities were implemented using python, and C++
programming languages while the portal interface was
developed using ASP.NET and PHP.

The results of the different functionalities of the
proposed framework were validated against other
analysis and visualization tools. The considered tools for

validation purposes are Cluster 3.0 [7] and GEPAS [6] for
the clustering results, ADN-Viewer [12] for the
DNA/RNA/Protein Sequence visualization, and RasMol
 [7] and PyMol [9] for the protein structure visualization.

The features of the present framework are compared
with that of the Cluster 3.0 [7] and GEPAS [6]. The
metrics of comparison include the web-enablement, the
range of the algorithms supported, the distance functions
used and the I/O types. As shown in table 1, the proposed
framework covers most of the other two applications
features. Also, the visualization functionalities of the
proposed framework for the different types of clustering
results are compared with that of the Cluster 3.0 and
GEPAS as depicted in table 2. As shown, the proposed
framework bested others since it supports hierarchical,
partitional and grid-based clustering results.

TABLE I. COMPARISON BETWEEN THE PROPOSED FRAMEWORK
AND CLUSTER 3.0 AND GEPAS

 Cluster 3.0 GEPAS Proposed
Framework

Web-based/
Console
Application

Console Web-based Web-based

Algorithms

• K-Mean
• K-Median
• SOM
• Hierarchical
• PCA

• K-Mean
• SOM
• Hierarchical

• K-Mean
• K-Median
• SOM
• Hierarchical

Distance
Functions Used

• Correlation
“Centered”

• Correlation “ Not
Centered”

• Euclidean
Distance

• Absolute
Correlation
“Centered”

• Absolute
Correlation “Not
Centered”

• Spearman Rank
Correlation

• Kendall’s Tau
• City block

• Correlation
“Centered”

• Correlation “Not
Centered”

• Euclidean Distance
• Absolute

Correlation
“Centered”

• Absolute
Correlation “ Not
Centered”

• Spearman Rank
Correlation

• Kendall’s Tau
• City Block
• Harmonically

Summed Euclidean
Distance

• Correlation
“Centered”

• Correlation “Not
Centered”

• Euclidean Distance
• Absolute

Correlation
“Centered”

• Absolute
Correlation “Not
Centered”

• Spearman Rank
Correlation

• Kendall’s Tau
• City block

Input Format A text file contains the results of certain experiments on genes

Output

• Files that contain
the clustering
results.

• Visualization can
be obtained for
results of
hierarchical
clustering only
(using TreeView).

• Files that contain
the clustering
results (can be
downloaded).

• Visualizes the
result in jpg format.

• Files that contain
the clustering
results.

• Visualization of all
clustering
techniques in 3D
VRML format.

8 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

TABLE II. THE PROPOSED FRAMEWORK OUTPUT FOR
VISUALIZING CLUSTERING RESULTS VERSUS THAT OF THE OTHER PUBLIC

DOMAIN TOOLS

 Cluster 3.0 GEPAS Proposed Framework

Hierarchic
al
Clustering
Result

Partitional
Clustering
Result

No Visualization for
Partitional Clustering

Technique

Grid-
Based
Clustering
Result

No visualization for
Grid-Based Clustering
Technique

The features of the present framework are compared

with that of the ADN-Viewer [12] for visualizing DNA
sequences. The metrics of comparison are web-
enablement, supported techniques and output format. The
comparison is summarized in table 3. For
DNA/RNA/Protein sequences visualization, the proposed
framework includes three new visualization techniques
which are not included in the ADN-Viewer [12]. These
techniques are the Atomic Scale, DB-Curves
representations, and the 3D Representation. In addition, it
has some extra features like the web-enablement and the
interactive 3D output provided in VRML format. Also, it
provides some enhancements on the gene scale
representation by representing the gene scale with back-
bone. Sample of the visualization outputs are given in
table 4.

TABLE III. COMPARISON BETWEEN THE PROPOSED FRAMEWORK
AND THE ADN-VIEWER FOR VISUALIZING DNA SEQUENCES.

 ADN-Viewer Proposed Framework
Web-based/ Text-based Text-based Web-based

Supported Techniques • Gene Scale Only

• Gene Scale
• Atomic Scale
• DB-Curves
• 3D Representation

Output Format OpenGL VRML

TABLE IV. AMPLE OUTPUTS FROM THE PROPOSED FRAMEWORK
AND THE ADN-VIEWER FOR VISUALIZING DNA SEQUENCES.

 ADN-Viewer Proposed Framework

Gene Scale

Only Without Backbone

With and without backbone

Atomic Scale Not supported

DB-Curves Not supported

3D
Representation Not supported

Finally, the protein structure visualization

functionalities of the proposed framework are compared
to that of the RasMol [7] and PyMol [9]. The metrics of
comparison include interactivity, labeling atoms,
supported techniques, web-enablement and coloring
schemes. As shown in table 5, the proposed framework
covers most of the other two applications features.

TABLE V. COMPARISON BETWEEN THE PROPOSED FRAMEWORK
AND THE OTHER PROTEIN VIEWERS

 RasMol PyMol Proposed
Framework

Interactivity Rotation, Zooming Rotation, Zooming

VRML facilitates :
navigation, immersive
navigation and fly-
through

Labeling
Atoms Yes Yes Yes

Supported
Techniques

• Wire-frame
• Sticks
• Space-fill
• Ball & Stick
• Backbone
• Ribbons
• Strands
• Cartoon

• Wire-frame
• Sticks
• Space-fill
• Backbone
• Cartoon

• Wire-frame
• Sticks
• Non bonded
• Ball & Stick
• Backbone
• Ribbons
• Cartoon

Web-based/
Text-based
Application

Text-based Text-based Web-based

Coloring
Schemes

• CPK
• Monochrome
• Chains
• Temperature
• Structure

• CPK
• Monochrome
• Chains
• Temperature
• Structure

• CPK

The output generated by the proposed framework

compares favorably with that generated from RasMol [8]
and PyMol [9] for most of the techniques as shown in
table 6. Due to the enhancements in the implemented
cartoon and non-bounded representations, some
differences appear. Unlike RasMol and PyMol, the

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 9

© 2008 ACADEMY PUBLISHER

helices in the cartoons representation in our framework
are represented by cylinders instead of twirls, which give
better representation as shown. For the non-bonded
representation, the proposed framework visualizes all of
the atoms in the protein as small spheres (not just the
oxygen atoms as in some of the other protein viewers).

TABLE VI. COMPARISON BETWEEN THE VISUALIZATION OUTPUT
OF THE PROPOSED FRAMEWORK AND THE OTHER PROTEIN VIEWERS

 RasMol PyMol Proposed
Framework

Wire-frame

Stick

Ball-and-
Stick

Not Supported

Space-fill

Not Supported

Backbone

For all the considered comparisons, the Virtual Reality

Modeling Language (VRML) provides high interactivity
for exploration employing either traditional VRML
navigators or immersive, 3D, stereo display
environments.

VI. CONCLUSION

In this work, a unified web-based framework is
proposed to interactively analyze and visualize gene
expressions and protein structures. The proposed
framework integrates the state-of-the-art analysis and
visualization techniques through a complete coherent
web-based interactive environment. The considered
analysis techniques include gene transformations,
BLAST and clustering, while the considered visualization

techniques include wire-frame, sticks, ball-and-stick,
non-bonded, backbone, ribbons, cartoons representation,
gene scale, atomic scale, DB-Curves and 3D
representations. On the other hand, the proposed
framework handles a wide range of the commonly used
input data types and employs the Virtual Reality
Modeling Language (VRML) for the interactive output.
The proposed framework was compared favorably with
other applications. In addition, the proposed framework
covers most of the available features within these
applications and has more features especially in the
visualization functionalities. As a future work, the
distributed memory parallelization will be considered for
the analysis functionalities to reduce their total execution
time.

ACKNOWLEDGMENT

The author would like to thank Prof. M. F. Tolba, Dr.
O. H. Karam and Dr. T. Hassan for valuable discussions.
This work was supported in part by a grant from
Information Technology Academia Collaboration
Programs (ITAC), Information Technology Industry
Development Agency (ITIDA), Ministry of
Communication and Information Technology, Egypt.

REFERENCES

[1] J. Barker and J. Thornton, “Software Engineering
Challenges in Bioinformatics”, Proc. of the 26th Int. Conf.
on Software Engineering (ICSE’04), pp. 12- 15, 2004.

[2] J. Bedell, I. Korf and M. Yandell, BLAST. O'Reilly, July
2003.

[3] “Basic Local Alignment Search Tool,” National Center for
Biotechnology Information, U.S. National Library of
Medicine. http://www.ncbi.nlm.nih.gov/BLAST. 2007.

[4] “ClustalW2: A General Purpose Multiple Sequence
Alignment Program for DNA or Proteins,” European
Bioinformatics Institute, http://www.ebi.ac.uk/clustalw.
2007.

[5] M. Dettling and P. Bühlmann, “Supervised Clustering of
Genes,” Genome Biology, vol. 3, No. 12,
http://genomebiology.com/2002/3/12/research/0069.3.
2002.

[6] J.M. Vaquerizas, L. Conde, P. Yankilevich, A. Cabezon, P.
Minguez, R. Diaz-Uriarte, F. Al-Shahrour, J. Herrero and
J. Dopazo, “GEPAS: An Experiment-Oriented Pipeline for
the Analysis of Microarray Gene Expression
Data,” Nucleic Acids Research, vol. 33, (Web Server
issue): W616-W620, 2005.

[7] M. J. L. de Hoon, S. Imoto, J. Nolan, and S. Miyano,
“Open Source Clustering Software,” Bioinformatics, vol.
20, No. 9, pp. 1453—1454, 2004.

[8] H. J. Bernstein, “Home Page for RasMol and
OpenRasMol,” Bernstein and Sons, Information Systems
Consultants, http://www.openrasmol.org. 2007.

[9] “PyMOL: A User Sponsored Molecular Visualization
System,” http://pymol.sourceforge.net. 2007.

[10] F. Suits and D. Gresh, “Prototype Protein Viewer,” IBM’s
T. J. Watson Research Center,
http://www.alphaworks.ibm.com/tech/ppv/. 2001.

[11] P. Lai, W. Kaplan, W. B. Church and R. K. Wong,
“Informative 3D Visualization of Multiple Protein
Structures”, Proc. of the 2nd Asia-Pacific Bioinformatics
Conf. (APBC2004), vol. 29, pp. 201 – 208, 2004.

10 JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008

© 2008 ACADEMY PUBLISHER

[12] J. Hérisson, P. E. Gros, N. Férey, O. Magneau and R.
Gherbi, “DNA in Virtuo: Visualization and Exploration of
3D Genomic Structures”, Proc. of the 3rd Int. Conf. on
Computer Graphics, Virtual reality, Visualisation and
interaction in Africa, pp. 35-40, 2004.

[13] “National Center for Biotechnology Information,” U.S.
National Library of Medicine,
http://www.ncbi.nlm.nih.gov/. 2007.

[14] M. D. Wilkinson and M. Links, “BioMoby: An Open
Source Biological Web Services Proposal,” Briefings in
Bioinformatics, vol. 3, No. 4, pp. 331-341, 2002.

[15] Y. L. Simmhan, B. Plale, D. Gannon, “A Survey of Data
Provenance in e-Science,” ACM SIGMOD Record, vol. 34,
No. 3, pp. 31-36, 2005.

[16] Jacques Cohen, “Bioinformatics—An Introduction for
Computer Scientists,” ACM Computing Surveys (CSUR),
vol. 36, No. 2, pp. 122–158, 2004.

[17] E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R.D.
Appel and A. Bairoch, “ExPASy: the proteomics server for
in-depth protein knowledge and analysis,” Nucleic Acids
Research, vol. 31, pp. 3784-3788, 2003.

[18] X. Xiao, E. R. Dow, R. Eberhart, Z. B. Miled, R. J. Oppelt,
“Gene Clustering Using Self-Organizing Maps and Particle
Swarm Optimization,” Proc. of the Int. Parallel and
Distributed Processing Symposium, 2003.

[19] A. M. Fahim, A. M. Salem, F. A. Torkey, F. A. Ramadan,
“An Efficient Enhanced K-means Clustering Algorithm,”
Journal of Zhejiang University SCIENCE A, vol. 7, No.
10, pp. 1626-1633, 2006.

[20] A. K. Jain, M.N. Murty and P.J. Flynn, “Data Clustering:
A Review,” ACM Computing Surveys, vol. 31, No. 3,
1999.

[21] T. Honkela, T. Leinonen, K. Lonka, A. Raike, “Self-
Organizing Maps and Constructive Learning,” Proc. of Int.
Conf. on Educational Uses of Communication and
Information Technologies (ICEUT'2000), pp. 339-343,
2000.

[22] Y. Wu, A. W. Liew, H. Yan and M. Yang, “DB-Curve: A
Novel 2D Method of DNA Sequence Visualization and
Representation,” Chemical Physics Letters, vol. 367, No.
1, pp. 170-176, 2003.

[23] C. Li and J. Wang, “On a 3-D Representation of DNA
Primary Sequences,” Combinatorial Chemistry & High
Throughput Screening, vol. 7, No. 1, pp. 23-27, 2004.

[24] A. Halm, L. Offen and D. Fellner, “BioBrowser: A
Framework for Fast Protein Visualization,”
EUROGRAPHICS - IEEE VGTC Symposium on
Visualization, pp. 287–294, 2005.

[25] “PROTEIN DATA BANK: Atomic Coordinate and
Bibliographic Entry Format,” Research Collaboratory for
Structural Bioinformatics (RCSB), www.rcsb.org/. 2007.

[26] M. Carson and C. E. Bugg, "Algorithm for Ribbon Models
of Proteins," Journal of Molecular Graphics, vol. 4, No.2,
pp.121-122, 1986.

[27] CPK Color Schema, http://pdb.bu.edu/oca-docs/cpk.html
and http://en.wikipedia.org/wiki/CPK_coloring/. 2007.

[28] FASTA Sequence Comparison at the U. of Virginia,
http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtm
l/. 2007.

[29] Protein knowledgebase, http://www.expasy.ch/sprot/.
2007.

[30] GenBank Databases,
http://www.psc.edu/general/software/packages/genbank/ge
nbank.php /. 2007.

[31] Protein Data Bank, www.PDB.org/. 2007.
[32] Q. Zhang, S. Veretnik and P. E. Bourne, “Overview of

Structural Bioinformatics,” Bioinformatics Technologies,
Springer Berlin Heidelberg, pp. 15-44, 2005.

Ashraf S. Hussein was born in Giza, Egypt, in 1970. He

received his B.Sc., M.Sc. and Ph.D. degrees in Aerospace
Engineering from Cairo University, Egypt in 1992, 1996 and
1999, respectively. The major fields of his studies are Modeling
and Simulation, and Computer Visualization.

During 1992-1996, he worked as a research engineer in the
Department of Aerospace Engineering, Cairo University. He
joined IBM Cairo Technology Development Centre in 1996 and
IBM Cairo Center for Advanced Studies in 2005. In addition, he
joined Faculty of Computer and Information Sciences, Ain
Shams University, Egypt in 2001. Currently, he is an Associate
Professor in the Department of Scientific Computing, Faculty of
Computer and Information Sciences, Ain Shams University.
Also, he is a Visiting Scientist, IBM Center for Advanced
Studies in Cairo.

His research areas cover Modeling and Simulation,
Computational Techniques in Science and Engineering,
Computer Graphics and Visualization, and High Performance
Computing Applications. He has more than 35 published
scientific papers in international conferences and journals. He
has participated in more than 15 R&D and incubation projects.

Dr. Hussein served as a member in numerous technical
committees of international scientific conferences. He is a
member of the editorial board of one technical journal and a
professional member of the ACM.

JOURNAL OF SOFTWARE, VOL. 3, NO. 7, OCTOBER 2008 11

© 2008 ACADEMY PUBLISHER

