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Abstract—This paper describes a web-based interactive 
framework for the analysis and visualization of gene 
expressions and protein structures. The formulation of the 
proposed framework was encountered by many challenges   
due to the wide range of relevant analysis and visualization 
techniques, in addition to the existence of a diversity of 
biological data types, on which these techniques operate.  
The main challenges that guided the formulation of the 
present framework are: (a) the integration of data from 
heterogeneous resources, such as expert-driven data from 
text, public domain databases and diverse large scale 
experimental data sets, and (b) difficulty in integrating the 
most recent analysis and visualization tools due to the lack 
of standard I/O.  Therefore, the fundamental innovation in 
the proposed framework is the integration of the state-of-
the-art techniques of both analysis and visualization for 
gene expressions and protein structures through a unified 
workflow. In addition, it supports a wide range of input 
data types and exports three dimensional interactive outputs 
using Virtual Reality Modeling Language (VRML) to be 
ready for exploration via off-the-shelf monitors as well as 
immersive, 3D, stereo display environments.  
 
Index Terms—computer visualization, bioinformatics, gene 
expressions, protein structures 
 

I.  INTRODUCTION 

 
Gigantic amounts of biological data are being 

generated from researches and experiments everyday. 
This, along with the evolution of computer science, has 
resulted in the emerging of the world of Bioinformatics 
that is growing at an undeniably fast rate. Bioinformatics 
is officially known as the science of storing, organizing, 
retrieving and analyzing biological data in order to make 
use of them in many vital applications  [1]. Since the 
different types of biological data come in enormous 
amounts, analysis and visualization techniques became 
essential for the data to be meaningful and interpretable. 
Consequently, these techniques support biologists in 
revealing conclusions from their data, leading to more 
understanding about the principles of biology. 

Developing efficient and easy to use tools for the 
analysis and visualization of gene expressions and protein 
structures is a goal which has been pursued by a diversity 
of research groups with various objectives and 
approaches  [32]. The available analysis tools can be 

categorized into two main categories. The first category 
handles gene and protein sequences, compares them to 
the online sequence-databases, and returns the best 
matching sequences. This proves extremely useful 
providing that the returned sequences are accompanied 
with thorough descriptions of them, which assists 
biologists to assume (or determine with certainty) the 
properties of the query gene/protein sequence sent   [2]. 
Two effective tools professionally perform this type of 
analysis which are BLAST  [3] and ClustalW   [4]. The 
second category of analysis tools involves performing 
various analysis techniques on data resulting from the 
micro-array experiments. One of these analysis 
techniques is ‘clustering’ that may be performed on the 
data of the experiments conducted on genes. Similarities 
in the genes’ behaviors lead to the corresponding genes to 
be grouped together. Consequently, biologists will be 
able to know the behavior of these groups and why they 
behave in such ways  [5]. The main famous tools that 
carry out such analysis techniques are GEPAS  [6] and 
Cluster 3.0   [7]. 

Visualization tools provide the biologists with 
graphical representations of the data to be interpreted in 
more easily way than by merely looking at the raw data. 
Desktop applications like RasMol  [7], PyMOL  [9] and 
IBM Protein Viewer  [10] render several representations 
of the protein structures  [10]. Also, ADN-Viewer is 
specialized in visualizing the DNA sequences using 
various methods  [12]. 

The data sets, on which these analysis and 
visualization tools operate, are stored in large online 
databases such as the National Center of Biotechnology 
Information (NCBI)  [13]. To access these databases, tools 
that provide web services such as BioMoby  [14] and 
myGrid  [15] have to be emerged . 

Two main challenges in Bioinformatics have evolved 
due to this wide variety of tools in addition to the 
existence of a diversity of biological data types, on which 
these tools operate. The first challenge is the integration 
of data from heterogeneous sources, such as expert-
driven data from text, public domain databases and 
diverse large scale experimental data sets. The second is 
the difficulty in integrating the available analysis and 
visualization tools due to the lack of standard I/O. To 
overcome these problems, the proposed framework 
introduces a unified workflow, which integrates various 
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types of the state of the art techniques of both analysis 
and visualization specifically for gene expressions and 
protein structures. On the other hand, it handles wide 
range of the commonly used data formats in addition to 
the support of the virtual reality modeling language 
(VRML) output to be ready for exploration via off-the-
shelf monitors as well as immersive, 3D, stereo display 
environments. The design of the formulated framework 
allows users to analyze and visualize their data through a 
web-portal. Also, users can access, retrieve and acquire 
data from online biological databases through this portal.  

The next sections will be organized as follows: section 
2 outlines the basic architecture of the proposed 
framework. Section 3 presents the implemented analysis 
functionalities while the adopted visualization 
functionalities are described in section 4. The analysis 
and visualization functionalities of the proposed 
framework are studied and discussed in section 5. Finally, 
section 6 gives the conclusions of this work and an 
overview of the future work. 

II.  ARCHITECTURE 

Analysis and visualization are important to interpret 
scientific data and reveal conclusions in many areas of 
bioinformatics. It is particularly significant in the 
structural bioinformatics since the foundation of this field 
is the 3D structure of biological macromolecules, which 
can only be interpreted using a molecular graphics 
program. Historically, to run a visualization program, a 
user needed to install and configure the program locally. 
With the advent of the World Wide Web, users can run 
increasingly complex applications without having to 
explicitly download them, relying instead on the Web 
page’s delivery with a single mouse click. In addition, 
web applications have the edge of directly accessing the 
online databases. 

The proposed framework is composed from several 
modules: the analysis and visualization manager, the user 
interface and the web services as depicted in figure 1. 

 

Online 
Databases

Proposed Framework

Analysis and Visualization 
Manager

User Interface Web Services

Online 
Databases

Proposed FrameworkProposed Framework

Analysis and Visualization 
Manager

User Interface Web Services

 
Figure 1. The Proposed Framework Components. 

 
 Based on the user request, the present framework 

follows the corresponding scenario. Each scenario starts 
from the client site by uploading the user’s data to be 
processed. This data is entered in the client site using one 
of three methods: (1) entering the data directly in its 
corresponding fields, (2) uploading the data file or (3) 
retrieving the data from one of the available online 
databases employing the search engine. The considered 
types of the input data files are: (a) the files containing 
DNA/Protein sequences like Fasta  [28], Swiss-Prot  [29], 

GenBank  [30] and NBRF files, (b) BLAST [2] and 
ClustalW [4] files which contain the results of query 
sequences comparisons with other sequences in the 
online, biological databases and (c) PDB files  [31] which 
contain 3D protein structures. 

 The search engine has been included in the formulated 
framework using the web services technology to permit 
users to retrieve the desired biological data for analysis 
and/or visualization. The user can directly enter a protein 
name, select the database name or the URL of that 
protein. Biomedical articles can also be accessed via the 
search engine by entering the article name in the search 
parameter.  

As the user action reaches the server site, the server 
starts searching in the public domain databases or passes 
the input directly for further processing based on the user 
request. Once the desired data has been acquired, the user 
selects either analysis or visualization to handle the data 
using the analysis and visualization manager. Finally, the 
framework returns the results to the client site in a 
concise, informative, and visual manner. The basic 
architecture of the proposed framework is shown in 
figure 2. It is based on three-tier architecture: client, 
server and online databases as a third-party component. 
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Figure 2. Proposed Framework Architecture 

 
The considered analysis techniques are BLAST  [2], 

gene transformations and clustering. If the user input is a 
sequence (DNA, RNA or a protein), it can be sent by the 
BLAST functionality, as a query sequence, to one of the 
online biological databases. Then, the subject sequence is 
returned back (the best matching sequence). The gene 
transformations, including translation and transcription 
processes (and their reverses), can also be performed on 
the gene/protein sequences, and the resulting sequences 
are presented in the user interface. Finally, the clustering 
module handles the results of the performed experiments 
on different genes. This technique provides three 
different schemes: partitional, hierarchical and grid-based 
clustering. 

Visualization operations can be performed directly on 
the input data or on the output(s) of the analysis 
techniques. The visualization techniques, which can be 
performed directly on the input data, include the PDB 
visualization and the gene/protein sequences 
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visualization. The PDB visualization is carried out via 
wire-frame, sticks, ball-and-stick, non-bonded, backbone, 
ribbons, and cartoons. On the other hand, the sequences 
can be visualized using gene scale, atomic scale, DB-
Curves and 3D representation. 

III.  ANALYSIS FUNCTIONALITIES 

The analysis functionalities described in the following 
subsections are the first part of the analysis and 
visualization manager, which is the main module within 
the proposed framework. These functionalities facilitate 
the identification of genes/proteins and the detection of 
their behavior and characteristics. This is useful because 
the more similar two sequences are, the more their 
corresponding genes/proteins are alike (properties-wise 
and behavior-wise). The considered analysis techniques 
are shown in figure 3. 

 
Analysis

Clustering Gene Transformations

Hierarchical

Partitional

Grid-Based Transcription Translation

BLAST

 
 

Figure 3. The considered analysis techniques 

A.  Gene Transformations 
Protein production is carried out via cascading 

transformations. RNA is first generated from DNA, and 
then proteins are produced from RNA  [16]. This is 
known as the “Central Dogma” in molecular biology as 
shown in figure 4. The data of DNA, RNA and proteins 
may be represented in the form of sequences. The gene 
transformations were considered and implemented in the 
present framework by connecting to the ExPASy’s online 
translation tool  [17], using web services. The resultant 
sequence can then be presented and/or visualized to the 
user. 

DNA RNA Protein

Transcription

Translation

DNA RNA Protein

Transcription

Translation  
Figure 4. Central Dogma Theory 

B.  BLAST 
Gene/protein sequences carry properties and 

functionalities of their corresponding genes or proteins. 
Thus, similarity of sequences can be used as an approach 
for identifying unknowns and implicit relationships in the 
sequence world  [2]. This is why the web services are 
provided for connecting to both the BLAST, and the 
sequence-comparison tool at the NCBI website  [16]. 
Figure 5 shows the events flow in the user interface when 
performing the BLAST operation. The resulting BLAST 
report contains the nearest matching sequences that can 
be visualized, afterwards, by the visualization 
functionalities provided within the proposed framework. 

 

Enter sequence

Select biological database to compare

Enter required search parameters

Select format of returning result

Specify whether it is DNA, RNA or Protein

Submit search

Interact with result

Enter sequence

Select biological database to compare

Enter required search parameters

Select format of returning result

Specify whether it is DNA, RNA or Protein

Submit search

Interact with result  
Figure 5. Event Flow during the BLAST Operation 

C.  Clustering 
Micro-array technologies facilitate measuring the gene 

expression levels for thousands of genes simultaneously. 
To extract knowledge from the generated datasets, these 
datasets have to be presented to the user in a meaningful 
way. Gene clustering methods fulfill this requirement in a 
professional way. Gene clustering is the process of 
grouping each set of related genes in a cluster based on 
their behavior  [17]. The considered clustering algorithms 
are: K-Algorithm  [19], Hierarchical  [20] and Self-
Organized Maps (SOM)  [21]. The input for the K-
Algorithm is a set V consists of N points and a parameter 
K. The output is a set X consists of K points (cluster 
centers) that minimizes the squared error distortion 
d(V,X) over all possible choices of X. The algorithm is 
described in figure 6. 

 
Arbitrarily assign the K cluster centers 
While the cluster centers keep changing: 
     Assign each data point to cluster Ci corresponding to the  

closest cluster representative (center) having the least d (V, X) 
     where 1≤i≤K 
     After the assignment of all data points, compute new 

cluster representatives according to the center of gravity of 
each cluster  

     (for every cluster C, the new cluster representative is ∑v|C| 
for all v in C) 

Figure 6. K Algorithm 
 

The input to the hierarchical clustering technique  [20] 
is a N*N matrix D of pair-wise distances between points. 
The output is a tree T with a single all-inclusive cluster at 
the top and single point clusters at the bottom. The user 
selects one of four ways to compute distances (called 
distance measures) to be used in the clustering operation. 
These distance measures are: single, complete, average, 
and centroid linkage. Figure 7 illustrates the algorithm of 
the hierarchical clustering technique. 
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Form N clusters each with one element 
Construct a graph T by assigning one vertex to each cluster 
while there is more than one cluster: 
     Find the two closest centers C1 and C2 
     Merge C1 and C2 into a new cluster C with |C1|+|C2| 
elements 
     Compute the distance from C to all the other clusters 
     Add a new vertex C to T and connect it to C1 and C2 as their 
parent 
     Remove rows and columns of D corresponding to C1 and C2 
     Add a row and column to D corresponding to the cluster C 
Return T 

Figure 7. Hierarchical Clustering Algorithm 
 

Finally, for the SOM technique  [21], as a grid based 
technique, the input is a set X consists of N points, and 
the output is a 2D grid of clusters. Figure 8 illustrates the 
algorithm of the SOM clustering technique. 

 

Randomly initialize all weights 
while there are input vectors in X: 
     Select next input vector x = [x1, x2, … , xN] 
     for each neuron j : 
          Compute the distance between x and wj 
          Find neuron j  with minimum distance (winner) 
          Update winner so that it becomes more like x, together 
with the winner’s neighbors for units within the neighborhood 

according to:  )]n(wx)[n()n(w)1n(w ijiijij −+=+ η  
          Adjust parameters; learning rate η and neighborhood 
function (each neuron represents a cluster that contains similar 
data). 

Figure 8. SOM Algorithm 

IV. VISUALIZATION FUNCTIONALITIES 

The second part of the analysis and visualization 
manager is concerned with the visualization 
functionalities, which described in the following 
subsections. These functionalities assist biologists to 
reveal conclusions from the massive amounts of data 
generated from genetics and proteomics experiments. The 
considered visualization techniques are shown in figure 9. 

 
Visualization

PDB

BackboneNon Bonded

Ribbon

Wire Frame

Stick

Cartoon

Space Fill

Ball & Stick

 
a. Considered visualization techniques for PDB 
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b. Considered Visualization Techniques for Blast results, DNA/RNA 

Sequences and Protein Sequences. 
Figure 9.  The considered visualization techniques 

A. Sequence Visualization 
The 3D structure of genes are very important in many 

essential biological mechanisms, such as the “Central 
Dogma”  [16]. 3D visualization of the gene sequences can 
be performed using one of the following different 
methods. 

1) Gene Scale 
The entire gene sequence can be visualized in a 

double-helix form representing the connections between 
the nitrogenous base pairs (A-T and C-G). This 
representation can be performed along with the 
connections backbones  [12]. Each of the nucleotides, A, 
C, G and T, is distinguished by a distinct color. Also, 
each nucleotide in the input sequence is visualized with a 
cylinder, connecting it to its complementary nucleotide 
(the nucleotide base pairs are A-T and C-G). Each base 
pair is visualized above its preceding base pair by a small 
fixed translation (in the y-direction) and a small fixed 
rotation (around the y-axis). Figure 10 shows the 
algorithm of the DNA sequence visualization. 

 
Rotation Angle = 0 
Translation Distance = 0 
for each nucleotide in the sequence: 
     Rotation Angle += fixed rotation value about y-axis 
     Translation Distance += fixed translation value in +ve y-
direction 
     Draw nucleotide and its complementary nucleotide 
connected by a cylinder 
     Apply rotation and translation to drawn base pair 

Figure 10. DNA Sequence Visualization at the Gene Scale 
 

2) Atomic Scale 
The atomic scale visualizes gene sequences (or part of 

them) to show the atomic structure of the nitrogenous 
bases and their connections  [12]. There are two standard 
representations for the atomic scale: the ‘wire-frame’ (the 
connections are visualized as cylinders) and the ‘ball-and-
stick’ (the nucleotides are visualized as spheres and the 
connections between them as cylinders). The atomic scale 
visualization is similar to that of the gene scale, but with 
some slight modifications, (atomic scale focuses on a part 
of the DNA while the gene scale visualizes the entire 
DNA). 

3) DB-Curves 
DB-Curves are the 2D representation of the 

nucleotides in the DNA sequences. This visualization 
technique facilitates studying the gene characteristics in 
terms of the behavior of two nucleotides  [22]. The DNA 
sequence is entered as an input and one of six curve types 
can then be selected. The types of the curves are AC, TC, 
CG, AT, TG and AG. For the AC DB-Curve, as an 
example, the vector (1, 0) is defined corresponding to the 
base A and the vector (0, 1) is defined corresponding to 
the base C. The rest of the bases, T and G, are given by 
the vector (1, 1). If the starting point is defined as (0, 0), 
the DNA sequence can be mapped to the 2D-coordinate 
system by a cumulative plot of the bases in the sequence 
using the above notation. The AC DB-Curve emphasizes 
the A and C bases and makes their visualization more 
obvious than the rest of the bases. Colors are assigned to 
the four different bases of the DB-Curves according to 
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the type of the nucleotide. Figure 11 describes the DB-
Curves visualization algorithm. 

 
Curve Type = XY 
Start at point (0,0) 
for each nucleotide in the sequence: 
     if (nucleotide type == X) 
          Assign (1,0) vector to X 
     else if (nucleotide type == Y) 
          Assign (0,1) vector to Y 
     else if (nucleotide type is otherwise) 
          Assign (1,1) vector 
     Assign color to nucleotide according to its type 
     Draw vector 

Figure 11. Visualization of DNA sequences via “DB-Curves” 
 
4) 3D Representation  
The 3D representation of the DNA sequences is 

performed by assigning a vector to each nucleotide in the 
DNA sequence  [23]. It is similar to the DB-Curves except 
that the vectors are assigned in the 3D. Figure 12 
describes the algorithm of creating the “3D 
Representation” to visualize DNA sequences. 

In this work, the “3D representation” was modified to 
visualize linear sequences of proteins. Consequently, the 
letters in the protein sequence which represent the 
different amino acids can be divided into several 
categories based on their side chains. 

The algorithm of creating “3D Representation” 
visualization for the protein sequences is quite similar to 
that of the DNA sequences. The only difference is that 
there are six vectors for the six categories of amino acids 
instead of the four vectors used for the four types of 
nucleotides. 

 
for each nucleotide in the sequence: 
     if (nucleotide type == A) 
          Assign vector (1,0,0) 
     if (nucleotide type == C) 
          Assign vector (0,1,0) 
     if (nucleotide type == G) 
          Assign vector (0,0,1) 
     if (nucleotide type == T) 
          Assign vector (0,1,1) 
     Assign color to nucleotide according to its type 
     Draw vector 

Figure 12. Visualizing DNA Sequences using “3D Representation 
 

5) Visualization of BLAST/ClustalW Results 
For the visualization of the BLAST operation results, 

the query sequence and the subject sequence are both 
visualized, in a superimposed representation, using the 
technique of the DB-Curves. Red dots are placed at the 
locations of mismatches between the two sequences as 
shown in figure 13. ClustalW uses almost the same idea 
in its visualization but more than two sequences being 
compared simultaneously. Figure 14 describes this 
algorithm. 

 
a. BLAST result on a DNA sequence (DB-Curves) 

 

 
b. BLAST result on a protein sequence (3D Representation) 

Figure 13. The visualization of BLAST result 
 

Curve Type = XY 
fore ach sequence (from BLAST/ClustalW): 
     for each nucleotide: 
          if (nucleotide type == X) 
               Assign (1,0) vector to X 
          if (nucleotide type == Y) 
               Assign (0,1) vector to Y 
          else 
               Assign (1,1) vector 
          Assign color according to its type 
          if ( gap(ClustalW)/mismatch(BLAST) ): 
               Draw a red dot at the vector 
Figure 14. Visualizing BLAST/ClustalW results using “DB-Curves” 

 
The “3D Representation” algorithm was modified 

again to visualize the results of both the BLAST and the 
ClustalW as well. This algorithm is described in figure 
15. 

 
for each sequence (from BLAST/ClustalW) 
     for each sequence symbol: 
          if (nucleotide): 
               Assign to the nucleotide its corresponding vector 
               Assign corresponding color  
          else 
               Assign new vector 
               Assign white color 
          Draw vector 

Figure 15. Visualizing BLAST/ClustalW results using “3D 
Representation” 

B. Protein Structure Visualization 
The functionality of any protein can be determined 

from its 3D structure. There are several techniques to 
represent the protein 3D structure.  The availability of 
these techniques confirms that the biologist’s 
interpretation of the protein’s properties will be quite 
high. In this work, the considered visualization 
techniques for the protein structure are: wire-frame, 
sticks, ball-and-stick, non-bonded, backbone, ribbons, 
and cartoons representation. The protein structures are 
saved in standard ‘PDB files’. The CPK color scheme 
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 [27] was used within the algorithms described in this sub-
section. A distinct standard color is assigned to each atom 
type (Oxygen atoms are red colored, carbon atoms are 
green colored, and so on). 

The number of ‘standard’ amino acids, that form 
proteins, is known to be 20 so far. These amino acids are 
called ‘standard’ because the connections between the 
atoms are already known and can be found in the 
references concerning biochemistry. In addition, these 
amino acids are connected by means of peptide bonds as 
shown in figure 16. The primary structure of the protein 
is the amino-acid sequence of the formed polypeptide 
chains  [24]. 

All amino acids have in common a central carbon 
atom, a hydrogen atom, an amino group (NH2) and a 
carboxyl group (COOH), as shown in Figure 17. The 
central carbon atom is called the Calpha (or CA) atom. The 
side chain of each amino acid is what makes it unique and 
different from the other amino acids. There are 20 side 
chains found in the proteins encoded by the genetic 
machinery of the cell (one for each amino acid)  [24]. 

 

 
Figure 16. Peptide Chain Formation 
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Figure 17. Amino Acid 

 
‘Wire-frame’, ‘sticks’ and ‘ball-and-stick’ are the 

standard representations which show the atoms along 
with the connections between them  [25]. In order to 
create these representations, a text specifying the 
connections within each amino acid (i.e. residue) is 
needed.  

As implied by the primary structure of the protein, the 
amino acids in the PDB file should be connected unless 
there is a TER record in the middle (which indicates the 
end of a peptide chain and, possibly, the beginning of 
another one). Finally, the CONECT records in the PDB 
file contain the non-standard connections (which are not 
peptide bond connections) between the atoms. Having 
determined all the required connections, these 
representations can hence be created. The algorithm for 
the ‘wire-frame’ representation is shown in figure 18. 

 
 
 

Initialize CONN as an empty array 
for each residue: 
     Store the atoms of the residue (or copy) in some temporary 
array 
     Determine the connections and store them in the form: 
(atomSerial1, atomSerial2) 
     Add these connections to CONN 
     if the next record is not of type TER 
          Add a connection between its C-atom and the next 
residue’s  
             N-atom to CONN 
for each CONECT record: 
     Add its connections to CONN 
for each connection (atomSerial1, atomSerial2) in CONN: 
     Retrieve atom1 and atom2 
     Color1 = color of atom1 
     Color2 = color of atom2 
     Vector = atom2 – atom1 
     Midpoint = (atom1 + atom2)/2 
     Use Vector and Midpoint to compute required rotation and 
translation transformations respectively 
     Create a cylinder (half of it in Color1, and the other half in 
Color2) 
     Apply transformations to the created cylinder 
     Draw the cylinder 

Figure 18. Wire-frame Representation 
 

The ‘sticks’ and ‘ball-and-stick’ visualization 
techniques are quite similar to the ‘wire-frame’. The 
cylinders in the ‘sticks’ representation are little thicker. In 
the ‘ball-and-stick’ representation, spheres are drawn at 
the atoms’ locations to emphasize them. All of the atoms 
in the protein (not only oxygen atoms as in other viewers) 
are simply drawn as spheres with no connections between 
them. The ‘backbone’ and ‘ribbons’ representations focus 
on the backbone of the protein  [26]. The ‘backbone’ 
representation is created by connecting the central carbon 
atom (CA) of each amino acid to that of the next one. The 
idea is to create peptide planes along the amino acids for 
the ribbons to be twisted around  [26]. Figure 19 shows 
the algorithm for the ‘backbone’ representation. 

 
tempCA = CA-atom of first amino acid 
for each atom (starting from the second amino acid): 
     if atom is a CA-atom: 
          Draw cylinder between it and tempCA 
          tempCA = atom 

Figure 19. Backbone Representation 
 

Finally, the ‘cartoons’ visualization technique concerns 
with the secondary structures of the protein. In this 
framework, the “cartoon” representation is developed by 
a new methodology. Helices and sheets are represented as 
red cylinders and yellow arrows respectively. The red 
cylinders are drawn between the first and the last CA 
atoms in each helix. The yellow arrows are drawn using 
Bezier Curves with CA atoms as their control points (also 
between the first and the last CA atoms in each sheet). 
For the rest of the protein, a Hermite Spline connects 
each consecutive pair of CA atoms (i.e. CA atoms of 
consecutive amino acids in the PDB file). The tangent of 
the spline at each CA atom is double the vector from the 
CA atom to the C atom (i.e. the carbon atom of the 
carboxyl group) of the same amino acid. This algorithm 
is illustrated in figure 20. 
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for each helix (HELIX record): 
     seqR1 = the sequence number of the starting residue 
     seqR2 = the sequence number of the terminating residue 
     serialCA1 = serial of the CA atom of the residue of sequence 
number ‘seqR1’ 
     serialCA2 = serial of the CA atom of the residue of sequence 
number ‘seqR2’ 
     Retrieve atomCA1 and atomCA2 
     Vector = atomCA2 – atomCA1 
     Midpoint = (atom1 + atom2)/2 
     Use Vector to compute required rotation transformation 
     Use Midpoint to compute required translation transformation 
     Create a red thick cylinder 
     Apply transformations to created cylinder 
     DRAW the cylinder 
for each sheet (SHEET record): 
     seqR1 = the sequence number of the starting residue 
     seqR2 = the sequence number of the terminating residue 
     CAserials = serials of the CA atoms from seqR1 to seqR2 
     Retrieve the CA atoms and use them as control points to 
create Bezier curve 
     Draw yellow arrows along the generated Bezier curve to 
represent the sheet 
for each CA-atom not in a helix or a sheet: 
     Compute tangent: T1 = CA – C 
     Similarly compute tangent T2 at the next CA-atom 
     Generate Hermite Spline using T1 and T2 
     Draw curve using the generated Hermite Spline 

Figure 20. Cartoons Representation 
 

C. Clustering Visualization 
The proposed framework also provides visualization 

service for the data resulting from most of the clustering 
techniques previously mentioned in section 3. 

For the K-Algorithm, each cluster of genes is 
represented as a group of spheres having a distinct color. 
In the hierarchical clustering, evolutionary trees are 
drawn with genes as their leaves. Every node (except the 
leaf nodes) has two children. The node can be a child of 
another node, which may be also a child of another node 
and so on. If each node is assigned the correct children, 
this will lead to the formation of a tree data structure. The 
depth-first algorithm can then be used to visualize the 
results of the hierarchical clustering, also in the form of a 
tree. The use of the depth-first technique prevents any 
visual intersections between the stems of the visualized 
trees. 

Finally, For the SOM clustering technique, each set of 
genes, which are similar in behavior are grouped up in a 
cluster. When the user selects one of the clusters, a 
Cartesian graph look-alike is drawn (where the x-axis 
represents the experiments, the y-axis represents the 
gene’s behavior). Each of the genes is represented by a 
number of connected line segments. These segments 
show the selected gene cluster behavior in different 
experiments. 

V. DISCUSSION 
In this work, the analysis and visualization 

functionalities were implemented using python, and C++ 
programming languages while the portal interface was 
developed using ASP.NET and PHP.  

The results of the different functionalities of the 
proposed framework were validated against other 
analysis and visualization tools. The considered tools for 

validation purposes are Cluster 3.0  [7] and GEPAS [6] for 
the clustering results, ADN-Viewer  [12] for the 
DNA/RNA/Protein Sequence visualization, and RasMol 
 [7] and PyMol  [9] for the protein structure visualization. 

The features of the present framework are compared 
with that of the Cluster 3.0  [7] and GEPAS [6]. The 
metrics of comparison include the web-enablement, the 
range of the algorithms supported, the distance functions 
used and the I/O types. As shown in table 1, the proposed 
framework covers most of the other two applications 
features. Also, the visualization functionalities of the 
proposed framework for the different types of clustering 
results are compared with that of the Cluster 3.0 and 
GEPAS as depicted in table 2. As shown, the proposed 
framework bested others since it supports hierarchical, 
partitional and grid-based clustering results.  

TABLE I.  COMPARISON BETWEEN THE PROPOSED FRAMEWORK 
AND CLUSTER 3.0 AND GEPAS 

 Cluster 3.0 GEPAS Proposed 
Framework 

Web-based/ 
Console 
Application 

Console Web-based Web-based 

Algorithms 

• K-Mean 
• K-Median 
• SOM 
• Hierarchical 
• PCA 

• K-Mean 
• SOM 
• Hierarchical 

• K-Mean 
• K-Median 
• SOM 
• Hierarchical 

Distance 
Functions Used 

• Correlation 
“Centered” 

• Correlation “ Not 
Centered” 

• Euclidean 
Distance 

• Absolute 
Correlation 
“Centered” 

• Absolute 
Correlation “Not 
Centered” 

• Spearman Rank 
Correlation 

• Kendall’s Tau 
• City block 

• Correlation 
“Centered” 

• Correlation “Not 
Centered” 

• Euclidean Distance 
• Absolute 

Correlation 
“Centered” 

• Absolute 
Correlation “ Not 
Centered” 

• Spearman Rank 
Correlation 

• Kendall’s Tau 
• City Block 
• Harmonically 

Summed Euclidean 
Distance 

• Correlation 
“Centered” 

• Correlation “Not 
Centered” 

• Euclidean Distance 
• Absolute 

Correlation 
“Centered” 

• Absolute 
Correlation “Not 
Centered” 

• Spearman Rank 
Correlation 

• Kendall’s Tau 
• City block 

Input Format A text file contains the results of certain experiments on genes 

Output 

• Files that contain 
the clustering 
results. 

• Visualization can 
be obtained for 
results of 
hierarchical 
clustering only 
(using TreeView). 

• Files that contain 
the clustering 
results (can be 
downloaded). 

• Visualizes the 
result in jpg format. 

• Files that contain 
the clustering 
results. 

• Visualization of all 
clustering 
techniques in 3D 
VRML format. 
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TABLE II.   THE PROPOSED FRAMEWORK OUTPUT FOR 
VISUALIZING CLUSTERING RESULTS VERSUS THAT OF THE OTHER PUBLIC 

DOMAIN TOOLS 

 Cluster 3.0 GEPAS Proposed Framework 

Hierarchic
al 
Clustering 
Result 

   

Partitional 
Clustering 
Result 

 

No Visualization for 
Partitional Clustering 

Technique 

Grid-
Based 
Clustering 
Result 

No visualization for 
Grid-Based Clustering 
Technique 

 

 
The features of the present framework are compared 

with that of the ADN-Viewer  [12] for visualizing DNA 
sequences. The metrics of comparison are web-
enablement, supported techniques and output format. The 
comparison is summarized in table 3. For 
DNA/RNA/Protein sequences visualization, the proposed 
framework includes three new visualization techniques 
which are not included in the ADN-Viewer  [12]. These 
techniques are the Atomic Scale, DB-Curves 
representations, and the 3D Representation. In addition, it 
has some extra features like the web-enablement and the 
interactive 3D output provided in VRML format. Also, it 
provides some enhancements on the gene scale 
representation by representing the gene scale with back-
bone. Sample of the visualization outputs are given in 
table 4. 

TABLE III.  COMPARISON BETWEEN THE PROPOSED FRAMEWORK 
AND THE ADN-VIEWER FOR VISUALIZING DNA SEQUENCES. 

 ADN-Viewer Proposed Framework 
Web-based/ Text-based Text-based Web-based 

Supported Techniques • Gene Scale Only 

• Gene Scale 
• Atomic Scale 
• DB-Curves 
• 3D Representation 

Output Format OpenGL VRML 
 
 

 

TABLE IV.  AMPLE OUTPUTS FROM THE PROPOSED FRAMEWORK 
AND THE ADN-VIEWER FOR VISUALIZING DNA SEQUENCES. 

 ADN-Viewer Proposed Framework

Gene Scale 

 
 
 

Only Without Backbone 
  

With and without backbone 
 
 
 
 
Atomic Scale Not supported  

DB-Curves Not supported 

3D 
Representation Not supported 

 
Finally, the protein structure visualization 

functionalities of the proposed framework are compared 
to that of the RasMol  [7] and PyMol  [9]. The metrics of 
comparison include interactivity, labeling atoms, 
supported techniques, web-enablement and coloring 
schemes. As shown in table 5, the proposed framework 
covers most of the other two applications features.  

TABLE V.  COMPARISON BETWEEN THE PROPOSED FRAMEWORK 
AND THE OTHER PROTEIN VIEWERS 

 RasMol PyMol Proposed 
Framework 

Interactivity Rotation, Zooming Rotation, Zooming 

VRML facilitates : 
navigation, immersive 
navigation and fly-
through 

Labeling 
Atoms Yes Yes Yes 

Supported 
Techniques 

• Wire-frame 
• Sticks 
• Space-fill 
• Ball & Stick 
• Backbone 
• Ribbons 
• Strands 
• Cartoon 

• Wire-frame 
• Sticks 
• Space-fill 
• Backbone 
• Cartoon  

• Wire-frame 
• Sticks 
• Non bonded 
• Ball & Stick 
• Backbone 
• Ribbons 
• Cartoon 

Web-based/ 
Text-based 
Application 

Text-based Text-based Web-based 

Coloring 
Schemes 

• CPK 
• Monochrome 
• Chains 
• Temperature 
• Structure 

• CPK 
• Monochrome 
• Chains 
• Temperature 
• Structure 

• CPK 

 
The output generated by the proposed framework 

compares favorably with that generated from RasMol  [8] 
and PyMol  [9] for most of the techniques as shown in 
table 6. Due to the enhancements in the implemented 
cartoon and non-bounded representations, some 
differences appear. Unlike RasMol and PyMol, the 
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helices in the cartoons representation in our framework 
are represented by cylinders instead of twirls, which give 
better representation as shown. For the non-bonded 
representation, the proposed framework visualizes all of 
the atoms in the protein as small spheres (not just the 
oxygen atoms as in some of the other protein viewers). 

TABLE VI.  COMPARISON BETWEEN THE VISUALIZATION OUTPUT 
OF THE PROPOSED FRAMEWORK AND THE OTHER PROTEIN VIEWERS 

 RasMol PyMol Proposed 
Framework 

Wire-frame  

  

Stick  

Ball-and-
Stick  

 

 
Not Supported 

Space-fill  

 

 
Not Supported 

Backbone  

  
 
For all the considered comparisons, the Virtual Reality 

Modeling Language (VRML) provides high interactivity 
for exploration employing either traditional VRML 
navigators or immersive, 3D, stereo display 
environments. 

VI. CONCLUSION 

In this work, a unified web-based framework is 
proposed to interactively analyze and visualize gene 
expressions and protein structures.  The proposed 
framework integrates the state-of-the-art analysis and 
visualization techniques through a complete coherent 
web-based interactive environment. The considered 
analysis techniques include gene transformations, 
BLAST and clustering, while the considered visualization 

techniques include wire-frame, sticks, ball-and-stick, 
non-bonded, backbone, ribbons, cartoons representation, 
gene scale, atomic scale, DB-Curves and 3D 
representations. On the other hand, the proposed 
framework handles a wide range of the commonly used 
input data types and employs the Virtual Reality 
Modeling Language (VRML) for the interactive output. 
The proposed framework was compared favorably with 
other applications. In addition, the proposed framework 
covers most of the available features within these 
applications and has more features especially in the 
visualization functionalities. As a future work, the 
distributed memory parallelization will be considered for 
the analysis functionalities to reduce their total execution 
time. 
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