
Role-Based Chatting

Haibin Zhu
Department of Computer Science and Mathematics, Nipissing University, North Bay, ON, Canada

Email: haibinz@nipissingu.ca

Rob Alkins
Department of Computer Science and Mathematics, Nipissing University, North Bay, ON, Canada

Email: alkins.rob@gmail.com

Matthew Grenier
Department of Computer Science and Mathematics, Nipissing University, North Bay, ON, Canada

Email: matty_g07@hotmail.com

Abstract— Role-based collaboration (RBC) is proposed to

support improved human collaboration through more

usable human-computer interfaces. To satisfy the objectives

of RBC, new practical tools are required.

Role-based chatting is a typical instance of role-based

collaboration. To design a role-based chatting tool involves

almost all the fundamental problems of RBC. This paper

presents the design problems of role-based collaboration

including model, engine and interface design, illustrates the

scenario of role-based chatting, and describes the

implementation of a role-based chatting tool including its

architecture and components. The design of the chatting

tool reflects all the principles outlined by role-based

collaboration. This tool shows that role-based collaboration

is practical and feasible. It also shows the possibility of

building more complex role-based systems.

Index Terms—Roles, role-based, chatting, role-based

collaboration

I. INTRODUCTION

Computers are globally pervasive and computer-based

collaboration is becoming an expected user skill. Now,

most people complete their daily routine tasks with

computers. Emailing and surfing the Internet are now

common daily activities. However, there are still many

people who do not like using computers and resist using

the technology if at all possible. This challenges

computer scientists and engineers to create more usable

software and hardware products. If computer-based tools

can be seen as easy to use and productive, user reluctance

can be overcome.

Computer-based tools should facilitate the completion

of daily activities. They should not only support

real/virtual face-to-face collaborative environments but

also improve such collaboration by providing

mechanisms for overcoming certain drawbacks such as

the manipulation of a meeting by an aggressive person

[19, 22].

On line chatting is pervasive due to the development of

the Internet. Young people spend considerable time on

this activity. Chatting rooms provide a useful platform for

collaboration, learning and enjoyment. Designing and

improving the chatting rooms and tools for chatting are

required. Role-based chatting is one exciting way to

improve current on-line chatting tools.

Role-Based Collaboration (RBC) [21] is a

methodology to design and implement computer-based

systems. It is an approach that can be used to integrate the

theory of roles into Computer-Supported Cooperative

Work (CSCW) systems and other computer-based

systems. It consists of a set of concepts, principles,

mechanisms and methods. The properties of RBC are as

follows [21]:

Clear role specification: it is easy for human users to

specify and understand their responsibilities and

rights.

Flexible role transition: it is flexible and easy for a

human user to transfer from one role to another.

Flexible role facilitation: it is easy for role

facilitators to modify roles. Because collaborative

activities are constantly evolving, even the existing

roles might be required to adjust in correspondence

with the development of the system.

Flexible role negotiation: it is easy to negotiate a

role’s specification between a human user and a role

facilitator.

The interactions among collaborators are through

roles.

RBC imposes challenges and benefits not found in

traditional CSCW systems [22]. Role-based collaboration

can help people in both long-term and short-term

collaboration. It will provide benefits as follows:

In long-term collaboration, roles help

Identify the human user “self” [5];

Avoid interruption and conflicts [8, 15];

Enforce independency by hiding people under roles

[1];

Encourage people to contribute more [9, 17]; and

Remove ambiguities to overcome expectation

conflicts [2, 6, 21].

In short-term collaboration, roles help

Work with personalized user interfaces [13];

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 69

© 2008 ACADEMY PUBLISHER

R

O

L

E

1
R

O

L

E

2

R

O

L

E

3

R

O

L

E

4

R

O

L

E

5

Figure 1. Role-based chatting.

Concentrate on a job and decrease possibilities of

conflicts for shared resources [21];

Improve client’s satisfactions with more people

playing the same role during a period; and

Transfer roles with the requirement of a group [23].

In management and administration, roles help

Decrease the workload of system administrators;

Separate of concerns in designing;

Decrease the knowledge space of searching;

Create dynamics for components; and

Regulate ways of collaboration among agents.

From the above benefits, RBC research will bring

exciting improvements to the development and the

application of CSCW systems, and the methodologies of

collaboration. There are, however, requirements for tools

to facilitate roles and interaction among roles.

Collaboration occurs in different forms. There is no

doubt that chatting is a common form of collaboration.

Role-based chatting is a special case of RBC and

investigating role-based chatting will unveil most of the

mysteries of RBC.

This paper is arranged as follows: Section II discusses

the role-based chatting including its scenario and

benefits; Section III clarifies the design problems of

RBC; Section IV presents the implementation of a tool

for role-based chatting; Section V reviews the related

work; and Section VI concludes the paper and proposes

topics for future research.

II. ROLE-BASED CHATTING

In role-based chatting, every person plays one or more

roles and the people involved do not have to know each

other (Figure 1). Based on [21], role-based collaboration

is facilitated by role-specification, role-negotiation, role-

assignments, and role playing.

The scenario of role-based chatting is as follows:

1) A chatting room (group) is built with roles related

to a domain.

2) The roles in the chatting room are clearly specified

and presented.

3) People login the room, check the roles, and decide

to serve or be served.

4) If people want to serve, they select roles they want

to play and prepare to answer questions.

5) If people want to be served, they select roles to ask

questions.

6) In the chatting tool [20], a credit is set for each

person in his or her agent.

7) The people in chatting are evaluated with credits

by the system based on their performance in playing

roles.

8) The people’s intent to play roles is restricted by his

or her credits.

In reality, client service is widely used in technical

services of a company. Such a service is generally

facilitated by phone or email. For clients, this service is

somewhat “role-based”, because they do not care who

answers their questions, even though the person who

answers the technical questions begins by telling the

client his/her name, in fact, first name. A client’s primary

concern is service provider qualification.

In role-based chatting, we also emphasize that the

people involved do not necessarily care about who they

are talking with. From a psychological point of view, this

encourages shy people to participate in chatting,

expressing their real opinions, collaborating, helping and

seeking help.

There may be arguments in favour of naming the

participants. Specifying names can encourage service

providers to work more effectively. In fact, through role-

based chatting, service providers can be motivated by the

fact that managers can attach names to service provides

when role scheduling. Current internet-based chatting is
anonymous. Anonymity and nicknames on the Internet

protect people from being known by their real names.

However, anonymity significantly degrades the quality of

suggestions, recommendations, and decisions, avoiding

the issue of technical/professional qualification. In such

an anonymous situation, the value of chatting or

collaborating may be in doubt due to the potential for

participants to be misleading. Anonymous collaborators

have no responsibility to guarantee that what they have to

say is true. Role-based chatting could overcome these

drawbacks based on role definitions in the system.

This kind of chatting tool [20] helps form a positive

community that encourages people to help each other

without necessarily knowing each other. Eventually,

although they never know each other, they are treated

fairly by the system. People seeking service through

chatting may be comforted by knowing that providers are

well suited to the task.

Therefore, role-based chatting has the benefits in

service management and collaboration as follows:

1) It is easy for a manger to distribute tasks because it

is easier to find a technician then to find a specific

person.

2) Managers have ways to evaluate their staff.

3) Role-based chatting provides a balanced way for

anonymity and credibility.

4) Two or more people can play the same role to chat

with another person to improve the efficiency of a

specific service and make the client feel more

comfortable and more satisfactory.

70 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

5) One person can play different roles and serve

many clients at the same time period to save the

human resources of a company.

6) Role-based chatting can encourage people’s

participation by specially designing some facilities

such as credit [9, 17].

III. DESIGN PROBLEMS OF RBC

A. E-CARGO Model

The presented tool [20] is actually a simplified

instance of our E-CARGO model [21] where roles

represent a title with both responsibilities and

permissions, and agents represent human users of the

tool.

A role is defined as r ::= <n, I, Ac, Ap, Ao, Rx, Or>, where

n is the identification of the role;

I ::= < Min, Mout > denotes a set of messages, where

Min expresses the incoming messages to the

relevant agents, and Mout expresses a set of

outgoing messages or message templates to roles,

i.e., Min, Mout M;

Ac is a set of agents who are currently playing this

role;

Ap is a set of agents who have the potential to play

this role;

Ao is a set of agents who previoursly played this

role;

Rx is a set of roles interrelated with r; and

Or is a set of objects that can be accessed by the

agent playing this role.

The above definition indicates fundamental

requirements for managing roles and presenting them.

For example, I (<Min, Mout>) is definitely used in the

presentation of a role. Others must be managed in the

system and some of them should be presented with the

requirement of collaborative tasks. For a chatting user, it

is not required for them to know the internal structure of

the roles s/he is playing. However, for an administrative

user, it is required for the interface to show the internal

structure of a role and the role’s relationships with other

roles.

An agent is defined as a ::= < n, ca, s, d, rc, Rp, Ro, Ga>,

where

n is the identification of the agent;

ca is a special class that describes the common

properties of users;

s is the qualifications of the agent;

d is the credit of the agent;

rc is a role that the agent is currently playing. If it

is empty, then this agent is free;

Rp is a set of roles that the agent can potentially

play (rc a.Rp); and

Ro is a set of roles that the agent played

previously; and

Ga is a set of groups that the agent belongs to.

 In this definition, the credit d is taken as an attribute

of an agent. The credit d is a special object that can be

seen by its agent but cannot be modified by the agent. It

is unusual in software engineering for an object to be

prevented from modifying its own attributes. This may be

seen as being in conflict with the encapsulation principle

of object-orientation. However, it is acceptable in

collaboration and interaction. In reality, a person seeking

employment is usually more successful when possessing

the appropriate certification. The holder is not allowed to

modify the certificate. This at-hand certification saves a

lot of effort when searching for a qualified individual. In

role-based chatting, an agent is considered to represent a

human user. One human user corresponds to one agent. In

the following discussion, agents, people, and human users

are used interchangeably.

A message is defined as m ::= < n, v, d, dr, l, t >, where

n is the identification of the message;

v is the receiver role of the message;

d and dr express the sender agent and senders’

role;

l is the message text by the user; and

t is a tag that expresses any, some or all

message.

In E-CARGO, human users form a group by playing

roles in an environment. An environment is defined as e

::= <n, B> , where

n is the identification of the environment; and

B is a set of tuples of role, number range and an

object set, B ={< r, q, Oe>}. The number range q tells

how many users may play this role in this

environment and q is expressed by (l, u). For

example, q might be (1, 1), (2, 2), (1, 10), (3, 50), …

. It states that how many agents may play the same

role r in the group. Where l represents the minimum

number of agents required and u represents the

maximum number allowed. The object Oe expresses

the objects shared by the agents who play the

relevant role.

Compared with the Or of r, Oe is a shared resource in an

environment and Or is a resource only occupied by the

role r. The r in an e should be an instance of role, that is to

say, the Or should be instantiated in an e .

A group is defined as g = <n, e, J> , where

n is the identification of the group;

e is an environment for the group to work; and

J is a set of tuples of identifications of an agent

and role, i.e., J ={<a, r>| r, q, Oe <r, q, o> e.B}.

In role-based chatting, a chatting room is an

environment. People can enter a chatting room, play a

role in the room, and construct a group.

B. Role Engine

A role engine can be understood in the same way as a

Prolog inference machine. For example, to use a Prolog

system, people only need to write rules and facts. The

Prolog inference machine will search the result. Similarly,

to implement role-based collaboration, based on the

proposed role engine, people simply need to specify roles

and create agents based on role specifications. When

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 71

© 2008 ACADEMY PUBLISHER

agents are put into the role engine, the engine will drive

agents’ work properly to obtain their goals by

collaborating with other agents.

A role engine should do the following:

Manage roles (create, delete, and modify);

Manage agents (create, delete, and modify);

Manage the credits (d) of agents;

Assign roles to agents;

Build role relations; and

Check the consistency of the system.

A role engine is a platform for agents to collaborate.

On this platform, agents work for the system by playing

roles. Through implementation of the role engine, all

agents are driven to contribute and work diligently for a

system that offers a solution to a real-life problem. A role

engine should possess role dynamics, facilitate role

transfer, and support role assignments, interaction and

presentation.

In the presented role-based chatting tool [20], the role

engine is mainly responsible for adjusting the credits of

agents and presenting suggestions to human users.

C. Role Interaction

With a role engine, interaction and collaboration

among people are facilitated by roles. The role engine

controls the messages exchanged among roles. Based on

our E-CARGO model [21], interaction is implemented by

issuing messages. Dispatching messages to agents or

people is a highly intelligent task to be accomplished by a

role engine and its roles. It needs to consider several

properties:

Fairness: the engine should dispatch messages

evenly to peer agents. It should avoid starvation or

overloading, where starvation means that an agent

has not received messages for a time longer than a

limit while overloading means that an agent receives

too many messages in a limited time.

Consistency: the engine should check the

consistency of role hierarchies. When a new role

hierarchy is added, the system should be kept

consistent.

Completeness: periodically, the engine should

dispatch a specific message to all agents of the

targeted group.

In role-based chatting, the above functions can be

performed by the administrator in charge of a chatting

room. It is the same situation as a manager and his or her

client service staff.

D. Role Assignment

In the business world, a person is required to have

additional knowledge, skills and habits to be qualified for

a new position. Successfully finding a new job is

dependent on similarities between new roles and those

previously performed by a person [3], i.e., qualifications

are the basic requirements for possible role-related

activities.

Role assignment is the first event for RBC and is

dependent on the qualifications of agents. There are two

difficult aspects: when roles are defined as abstract

interfaces, it is necessary to match the abstract interfaces

with the concrete things (syntactically and semantically)

an agent can do; when roles are specified as concrete

processes, it is necessary to specify all the details of the

roles exactly in both syntax and semantics and roles

should be able to adapt to different agents of the system.

To address role assignment problems, it is necessary to

deal with issues arising from role definition and

specification. Clear role definition and specification helps

a person collaborate by avoiding ambiguities and

conflicts [4]. Nobody likes to work in a group lacking

clear regulations and rules. A highly efficient, productive

society is well-organized, well-regulated and well-

managed. Specifications are the key points. Initial

questions such as “how is a role defined?” and “how are

roles specified?” need to be answered.

After roles are well defined and specified, role

assignment can be made based on these specifications

and mining methodologies that extract formal

specifications from files of natural language related to the

qualifications, responsibilities, and rights of agents. Role

assignment can also be applied in knowledge extraction

from vast amounts of versatile raw data in the grid

computing world.

In RBC, agent role matching is a fundamental yet

difficult problem. Assignment of an agent to a role

requires prior evaluation of the agent’s qualifications.

However, “qualification” is a complicated criterion

comprised of many aspects. In a role engine, a role

specification methodology is taken as the solution to the

problem of appropriate agent qualification and evaluation.

Any specification language or tool encounters an initial

problem, that is, how to strictly express the semantics

with simple syntax. For human users, simple syntax

facilitates using the tool. In reality, ambiguous language

may cause problems anywhere at anytime. It requires

strict semantics matching to check whether two objects

are the same or not.

Because the assignment of roles to agents is dynamic

in a collaborative system, i.e., the roles can be re-assigned

to other agents based on the changing of the environment,

such assignment needs to consider the following

properties:

Fairness: the engine should assign roles to agents

based on a fair rule to avoid starvation or

overloading.

Service quality: the engine should assign roles to

qualified agents according to the performance of

agents. Special roles may also require many agents

to play to save time.

Least conflict: the engine should guarantee that the

roles assigned to agents create the least opportunity

for agents to have conflicts in sharing information

when they are playing roles.

E. Role Dynamics

Everything exists in the world for a special reason.

Every activity in the world is instigated for some reason.

These reasons form driving forces for the creation of new

things and actions. In society, people in an organization

72 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

Figure 2. The main user interface.
Figure 3. The architecture of the tool.

with good dynamics will work actively and

collaboratively toward the common goal of the

organization. In contrast, people in an organization

without good dynamics cannot work as effectively and

may not have a clear understanding of the goals necessary

to make the organization competitive.

Collaborative systems should encourage diversity of

behavior in a group of people [18]. People join a group

because they hope to provide assistance or obtain

assistance from others. They may hope to establish a

positive reputation through collaboration. This is one

kind of dynamics. With well-built dynamics, people will

automatically follow the regulations of an RBC system

and collaborate with each other to achieve common goals.

F. Role Presentation

Roles are finally presented to users and should be

easily understood. The specification of roles should

consider the easy implementation of role presentation.

Role presentation should consider aesthetics, intuition,

and other human factors. Similar to other human user

interface requirements, role presentation has the

following requirements: Easy to understand; Easy to

remember; Used to support personalized user interface;

and Presented in a multi-media style, such as text, image,

audio, video and animation presentations.

To meet the requirements as above, iconizing different

roles are beneficial to role presentation. Some concrete

roles can be easily expressed with icons such as a police

officer , a waiter , and a worker .

However, it is difficult to express a computer professor, a

software developer, and a system analyst. It is also very

difficult to express a generalized concept, like a “role”,

by an icon. Even further, it is a very difficult task to

design icons presenting as much information as that in a

role specification. Therefore, tables, lists, and graphs are

needed to present roles.

Evidently, it is easy to express an agent by a human

icon and every one knows it expresses an agent or a

person. In the design of this tool [20], the biggest

problem is choosing an icon to represent a role. A role

turns out to be a very general and abstract concept.

Therefore, we choose 15 icons from the clip art of the

Microsoft Word, and composed a survey question as

shown in Figure 2.

In this survey, we issued the question to more than 200

students and faculty at Nipissing University and received

182 valid responses. The data is shown in Table 1. The

interesting result is that the “Role (10)” icon is mostly

preferred (34/182). The “Mask (13)” icon is the second

(28/182) and the “Police cap (1)” icon the third (20/182).

It is observed that the human users’ preferences are

diverse. A better way is to provide a list of icons for a

user to choose when the system is installed or started. On

the other hand, it demonstrates that an abstract concept is

difficult to iconize and needs the designers’ creation,

imagination and analysis as well as the usability study

from the users’ perspectives. A survey can help in the

design and it is also a good research topic to express an

abstract concept with an icon. The most preferred icon is

the “ROLE” icon. To comply with this preference, a

similar “R” icon is designed shown in Figure 6.

In the role-based chatting tool, we present the content

of a role by a text window to list all the incoming and

outgoing messages. The roles’ relationships with other

components such as agents and objects are processed

internally and presented to a special role, i.e., the

administrator.

IV. IMPLEMENTATION

A. The Architecture

As discussed in [19-21], a role-based collaborative

system should be built on client/server architecture. In

this tool, most of the foundation concepts discussed in

Section III, such as, role, agent, message, permissions and

responsibilities, are designed as classes and the design of

server and client is based on these foundation classes.

The tool is composed of a server, many clients and an

SQL server (Figure 3).

TABLE I.
THE SURVEY RESULT FOR THE ROLE ICON PREFERENCES

Icons
Number

of votes
Icons

Number

of votes
Icons

Number

of votes

(1)
20

(6)
4

(11)
4

(2)
2

(7)
17

(12)
5

(3)
9

(8)
14

(13)
28

(4)
6

(9)
13

(14)
12

(5)
3

(10)
34

(15)
3

Others 8

Total 182

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 73

© 2008 ACADEMY PUBLISHER

Figure 6. The main user interface.

ServerDriver

MessageDispatcher

ServerConnection

ConnectionHandler

SQLInterface

1

1..*
1

1

11

Client

11

1

1 1

*

SQL Server

Figure 4. The server side classes.

Figure 5. The client side classes.

The server provides the management of information

and controls the interactions among client users. It sends

and receives information and requests, and makes calls to

SQL server in order to manage all the information of the

system including roles and agents (Figure 4).

Based on the client/server architecture, all the

information in the system is stored in an SQL server

database with associated date and time entries. In this

way, at any given moment, the state of the system is

completely specified by the information on the SQL

server which is installed in a powerful server computer.

Using this approach, there is no need to save the system

information upon the shutdown of a client, nor is there

any critical data that may be lost due to a power failure of

a client. All the updates to the system are preformed in a

single database command. For example, when a user

sends a message, the message is first stored in a database

table entitled “post office”, it remains there until the

MessageDispacher thread obtains appropriate recipients,

only then is the data moved to the recipients’ mailboxes.

In addition to the benefit of the increased stability, the

server only requires a small amount of volatile memory

(an integral commodity on large server systems).

The server contains complex components. As shown in

Figure 4, the class Server is the drive class at the server

side. The Server creates a ConnectionHandler that waits

for a socket connection request from the client and

creates one ServerConnection thread for each socket. One

ServerConnection instance is responsible for a connection

between the server and one client. The

MessageDispatcher is used to notify the client that its

incoming message box is modified. Through the

SQLInterface, the ServerDriver accesses the SQL server

database.

The client side (Figure 5) has a main class Client. This

class creates a WorkspaceWindow at the beginning when

a user logs in. In the WorkspaceWindow, a RoleList and

a RoleEditor can be opened for chatting with a specific

role and the AgentList and the AgentEditor are opened

for special roles to manage. The class ClientConnection

provides the connection between the server and the client.

The WorkspaceWindow contains a MessageList that

includes many MessageWindows. Any changes to the

state of the system are also updated immediately on the

client systems in real time such that it is not necessary for

the user to reload any interface windows. This means that

the server is not completely passive but actively sending

updates to the clients.

B. User Interfaces

The user interfaces are in window-style. A new user

can be added to the system by creating an agent.

Normally, user is used to express the real person and

agent is used to express the system entity relevant to a

user. A user’s permissions are a union of the permissions

associated with each role the user is playing. The

functionality of the interface presented to the user is

governed by the permissions of that user. Some buttons

are grayed out for those users without the permissions to

access based on the role they are playing.

The main user interface is a small window that

contains the users’ current credits and buttons to access

features such as a role list, mailbox, message window,

and dialog list. The role list allows users to view roles.

The mailbox is where any incoming messages are

displayed. The dialog list displays any dialogs that the

user is participating in. When a dialog is selected, a list of

the participants in that dialog is presented. If the user is

the creator of the dialog, s/he has access to the buttons to

add or remove roles to the dialog. Each of these interfaces

is dynamically updateable, and any changes to the users’

permissions, credits, or inbox are immediately updated on

open windows in time (Figure 6).

74 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

Figure 7. The dialogue interface.

When a user composes a new message, a drop down

list of the roles s/he is playing is presented. The user

chooses the role s/he wishes to play when sending the

message. A drop down list of all roles on the system

allows the user to select the desired receiving role. The

input fields are presented for the number of credits that

the sender wishes to award the receiver if an appropriate

reply is received, and the number of desired recipients of

the message. The user may enter the message text at any

time but the message may not be sent until all the

required information has been entered.

When the recipient of a message opens a message from

their mailbox, all of the information that the sender

supplies is displayed but un-modifiable, only a text area

for the recipient’s reply is available for modification. The

message is then marked as a reply and sent back to the

sender. Upon receiving a reply, only two options are

presented: to either pay, or to deny payment. If “Pay

Agent” is selected, a number of credits corresponding to

the value of the message are moved from the sender’s

credits to the receiver’s credits.

If the sender of a message receives a reply that the

sender deems insufficient, the sender may choose to deny

payment, in this case the message is marked “denial of

payment” and sent back to the user who initially received

the message and composed the reply. The recipient is

then presented with two options: to accept the sender’s

denial of payment, or to appeal the decision of the sender.

Appeals are a separate kind of message whose recipient

role can be chosen only from those that have the

“Appeals Manager” obligation.

When a user creates a dialog (Figure 7), s/he must

choose the role that s/he wishes to play within this dialog

and assigns a subject to that dialog. Only then can a user

compose “Dialog Invitation” messages. Dialog

invitations, composed only by the creator of a dialog,

consist of the desired recipient role, the number of agents

playing those roles whom should receive invitations and

the value of the message. A text field is supplied for the

dialog creator to outline what is expected of the

participant if they are to receive the payment that is

specified by the invitation message. Once an agent joins a

dialog, they must either be sent a denial of payment or

paid the value of their invitation message before they are

removed from the dialog or the dialog is closed. The

denial of payments is, of course, open to appeal.

The dialog window itself is also dynamically

updateable so collaboration may occur in both real time

and long term. All entries in the dialog are displayed with

the sender role displayed in bold followed by the body of

the dialog entry. It is possible for two agents to play the

same role within the same dialog, which has been argued

as a benefit in Section 2. However, an option is provided

to distinguish different agents with the same role by a

number assigned when they join the dialog displayed in

parenthesis. Any entries made by the user who is viewing

the dialog are displayed in red and have the word 'Me'

displayed in parenthesis. System messages such as an

agent joining a dialog are displayed in blue.

C. Client Interactions

Both the client and server programs are written in Java

using the Standard Widget Toolkit (SWT) widgets.

For each client connection, there is a dedicated thread

on both the server and the client. Both threads have an

outbox queue where network messages from other

threads are stored until the communications thread is

done dealing with any incoming network messages. This

approach avoids any concurrency issues with different

threads attempting to communicate simultaneously. Any

network messages that require a reply are numbered with

a distinct long integer such that message replies can be

paired with the appropriate request.

Network messages are passed as strings that are

terminated by an escape character, thus message strings

may include a new line. Each network message begins

with a message header that determines the context of the

rest of the message. For example, a login message from

the client begins with “LOGIN” header that is

immediately followed by a username, password and

request number. The client thread that initiates the login

then waits for a reply with the same request number. If

the login is successful a “LOGIN_CONFIRMED”

message consisting of the request number, an agent object

and a permissions object is sent from the server. The

login initiating thread is then notified that it may resume

execution.

Classes such as Agent, Dialog, Message, Permissions,

Responsibilities, Role and ListResource (general purpose

collection of strings) implement an interface called

Resource.

public interface Resource {

 public void receive(NetworkReader in);

 public String[] toStrings();

 public String getType();

}

This requires all objects of the above classes to

implement the receive(...), toStrings() and getType()

methods. In this manner such objects may be passed

freely over the network. Some of the above classes may

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 75

© 2008 ACADEMY PUBLISHER

Figure 8. The role management interface.

contain other classes of objects, i.e., a role instance

contains a Permissions instance and a Responsibilities

instance.

The functionality of the system is primarily driven by

the client application, objects are maintained on the

server by means of REQUEST_RESOURCE,

APPEND_RESOURCE and DELETE_RESOURCE

network messages that correspond to request, delete, and

append properties of the Permissions object. Although

this method of access control was intended to be the only

access control during early development it was noted that

there was a need for many special cases that have to be

treated in a less general manner. The above messages

apply to objects that are global to the system i.e. the

collection of roles and agents or dialog headers.

A dialog object in the system consists of: an

identification string, entry number, an agent string, a role

string, a date and time string, and the dialog text string. In

an attempt to treat dialogs in a general manner, a dialog

with an entry number 0 is treated as a dialog header. As

more functionality was built into the dialog mechanisms,

more data was needed in the dialog header. This caused a

conflict of interest between adding more data fields (to

both the dialog objects and the database representation of

them) and the wasted space that would be contained in

dialog objects that were not a header. As the system

matured, it became clear that separate object types should

have been created. Currently, a dialog header has: the

dialog subject in the role field, the agent field contains the

dialog creator and the data field contains a list of agents

and the role they are playing in that dialog on alternating

lines.

The real time updating of the client window is

accomplished by a network message that is initiated at

server side: the “RESOURCE_CHANGE” header is

followed by the type of resource that has changed and the

index of the resource. Any client window that has

dynamically updateable content implements an interface

called updateable, requiring the class to implement an

update method. It is through this interface that the client

connection thread may execute synchronized code within

the Graphical User Interface (GUI) thread by means of

the SWT Shell.asyncExec(...) method.

D. Server Management

To facilitate role-based chatting, management is an

important job. Agent management manages all the uses

profiles and relevant roles the relevant users are currently

playing and have played in the past. Role management

deals with all the roles in the system.

The main administration interface is a window that is

same as a user interface but with more features such as

role and agent management. The role list allows

administrators to manage roles. The agent list allows the

same actions to be performed on agents. The basic

administrative operations for role management are as

follows (Figure 8):

Add/view/edit/delete a role or an agent;

Approve/reject an application for role;

Assign /delete a role to/from an agent;

Adjust the credits of a person; and

Dispatch messages to people.

A new agent is created with a unique username,

password, number of credits, and an empty list of roles.

There are default roles for a new agent. Roles can then be

added to the agent. With each role that is added to an

agent, the user’s permissions and obligations grow

accordingly.

Role and agent management is implemented through

client connections. If a particular user has a role with

associated permissions such as add/delete agents, his/her

agent may make changes to the agent table in the

database. This allows for a connected client to change an

agent’s password, credits or add/remove roles to that

agent. Likewise, if a user has a role that possesses the

permission to append/delete roles, his/her agent may

change the permissions or obligations for that role.

In summary, this tool supports long term anonymous

collaboration in a dynamic, event-driven environment.

Features include the encouragement of participants’

participation with credits for contribution [9, 17], denial

76 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

of payment for insufficient contribution and an appeal

mechanism to prevent cheating. The emphasis is on two

collaboration mechanisms: messages and dialogs. A

message is a one-shot collaboration that involves only

two agents with a request and a reply. A dialog is an on-

going collaboration that includes many agents.

V. RELATED WORK

Even though roles are good mechanisms to facilitate

collaboration, there is little research and practice on

introducing roles into chatting tools. Most of the research

applies roles in CSCW systems.

In EIES (Electronic Information Exchange System)

[16], roles are built out of a subset of the primitive

privileges (such as append, link, assign and use) that are

crucial to a human communication process.

In Quilt [10], roles are introduced in the form of

predefined writers (who are allowed to change their own

work only), readers (who are not allowed to modify the

document), and commentators (who can only add

“margin notes” to it).

Patterson [12] emphasizes a role concept with the idea

of an interface between objects. Given the roles of users,

the messages understood by them are known. In [12], the

role is used to enable and disable an object’s visibility

and to act as a filter on the input events.

Edwards introduces access control policies and roles to

avoid chaos in collaborative applications [7]. A role is

described as a category of users within the user

population of a given application; and all users of a

certain role inherit a set of access control rights to objects

within the application. A role’s dynamic property can

change by mapping a role’s name to a policy.

Smith et al. built the Kansas system in 1998 and

emphasized the importance of roles [14]. People in a

group play various roles even though they may not be

well defined. They intend to support roles by special

treatments in multi-user interfaces. Roles are in general

supported by a system’s treatment of output and user

inputs, which are similar to the view of incoming

messages and outgoing messages at a more abstract level.

Looi [11] points out that on-line chatting could address

the problem of supporting different roles in a

collaboration group. In on-line chatting, various forms of

collaboration modes delineate specific roles for each

individual. Various ways can be explored to support an

individual in enacting or playing her own specific role.

VI. CONCLUSIONS AND FUTURE WORK

Role-based chatting promises many new characteristics

improving conventional online chatting.

Flexible: the users can choose the roles to play

according to preferences and the administrator can

modify roles based on the changes of the users.

Anonymous: the users do not have to present their

identities. This characteristic helps shy people

present their real ideas.

Manageable: unlike the anonymous posting in the

BBS style, the users are manageable by a group

leader. This guarantees that the presentations of

anonymous users are convincing and valuable.

Encouraging: based on special credit setting and

computing strategies, people who want to contribute

more in the community would like to play more

roles and present more to obtain more credits.

Concentrating: users can concentrate on a special

problem without interruptions.

Role-based chatting can be applied in many

applications such as client services, virtual communities,

collaborative decision making, e-learning and e-training.

As this is a prototype, more work left is to be

investigated:

More powerful role engine is needed to be provided.

The current state is to provide credits for agents and

help role assginments. Future work includes more

regulations for role assignment and more dynamics

related with roles and agents.

System security requires additional attention.

Appropriate permissions, violations and messages

are sent from the server to the client. This

information is sensitive if anonymity of the system

is preserved and a client should should be restricted

to transfer it to a potentially unsecured client.

We also need more comprehensive investigation for

the usability and affordance of this tool to evaluate its

real value in supporting people’s chatting. Before this

investigation, we should first make the prototype an

online tool that can be easily accessed from the Internet

and used in a 365/24/7 style to support collaboration

anywhere and anytime.

ACKNOWLEDGMENT

This research is supported in part by National Sciences

and Engineering Research Council of Canada (NSERC,

No. 262075-06) and the IBM Eclipse Innovation Grant

Funding. Thanks also go to Daniel Plourde for

participating in the early stage of this work, Mike Brewes

for proofreading this paper, and the anonymous reviewers

for constructive comments.

REFERENCES

[1] Bennis, W. and Biederman, P.W., Organizing Genius: The

Secret of Creative Collaboration, Basic Books, 1997.

[2] Biddle, B.J., Recent Developments in Role Theory, Social

Annual Reviews, vol. 12 (1986), pp. 67-92.

[3] Black, J.S., “Work Role Transitions”, J. of International

Business Studies, vol. 19, no. 2, 1988, pp. 277-294.

[4] Bostrom, R. P., “Role Conflict and Ambiguity: Critical

Variables in the MIS User-Designer Relationship”, Proc.

of the 17th Annual Computer Personnel Research

Conference, Miami, Florida, USA, 1980, pp. 88-115.

[5] Cardwell, J.D., Social Psychology, F.A. Davis Co., 1971.

[6] Cyert, R.M. and MacCrimmon, K.R., Organizations, in

Lindzey, G. and Aronson, E. (Ed.), The Handbook of Social

Psychology, vol. 1, Addison-Wesley, 1968.

[7] Edwards, W. K., “Policies and Roles in Collaborative

Applications”, in Proc. of ACM 1996 Conference on

JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008 77

© 2008 ACADEMY PUBLISHER

Computer-Supported Cooperative Work (CSCW’96),

Cambridge, USA, 1996, pp. 11-20.

[8] Kahn, R. L., Wolfe, D. M., Quinn, R. P., Snoek, J. D., and

Rosenthal, R. A., Organizational Stress: studies in Role
Conflict and Ambiguity, John Wiley & Sons, Inc., New

York, 1964.

[9] Koh, J., Kim, Y.G., Butler, B., and Bock, G.W.,

“Encouraging Participation in Virtual Communities”,

Communications. Of ACM, vol. 50, no. 2, Feb. 2007, pp.

69-73.

[10] Leland, M. D. P., Fish R. S. and Kraut, R. E.,

“Collaborative Document Production Using Quilt”, in Proc.

of the Conference on Computer-Supported Cooperative

Work, Portland, OR., USA, 1988, pp. 206-215.

[11] Looi, C.K., “Exploring the affordances of online chat for

learning”, Int. J. Learning Technology, vol. 1, no. 3, 2005,

pp. 322-337.

[12] Patterson, J. F., “Comparing the Programming Demands of

Single-User and Multi-User Application”, The fourth

Symposium on User Interface Software and Technology,

ACM Press, Nov. 1991, pp. 87-94.

[13] Shneiderman, B. and Plaisant, C., “The Future of Graphic

User Interfaces: Personal Role Managers”, People and
Computers IX, British Computer Society's HCI 94,

Glasgow, Scotland, Aug. 1994, pp. 3-8.

[14] Smith, R. B., Hixon, R. and Horan, B., “Supporting

Flexible Roles in a Shared Space”, The ACM 1998

Conference on Computer-Supported Cooperative Work

(CSCW’98), Seattle, Washington, USA, 1998, pp. 197-206.

[15] Turoff, M., Chumer, M., Van de Walle, B. and Yao, X.,

The Design of a Dynamic Emergency Response

Management Information System, Journal of Information

Technology Theory and Application, vol. 5, no. 4(2004),

pp. 1-35.

[16] Turoff, M. and Hiltz, S.R., “The Electronic Journal: A

progress Report”, Journal of the American Society for

Information Science, Vol. 33, No. 4, July 1982, pp. 195-

202.

[17] Zhu, H. “Encourage Participants’ Contributions by Roles”,

IEEE International Conference on Systems, Man and

Cybernetics, Oct. 2005, Hawaii, USA, pp. 1574-1579.

[18] Zhu, H., “Role as Dynamics of Agents in Multi-Agent

Systems”, System and Informatics Science Notes, vol. 1,

no. 2, July 2007, pp. 165-171.

[19] Zhu, H. “Role Mechanisms in Collaborative Systems”,

International Journal of Production Research, vol. 41, no.

1, Jan. 2006, 181-193.

[20] Zhu, H. and Alkins, R., “A Tool for Role-Based Chatting”,

Proc. of the IEEE International Conference on Systems,

Man and Cybernetics, Montreal, Canada, Oct. 7-10, 2007,

pp. 3795-3800.

[21] Zhu, H. and Zhou, M.C., “Role-Based Collaboration and

its Kernel Mechanisms”, IEEE Trans. on Systems, Man

and Cybernetics, Part C, vol. 36, no. 4, July 2006, pp. 578-

589.

[22] Zhu, H. and Zhou, M.C., “Roles in Information Systems: A

Survey”, IEEE Trans. on Systems, Man and Cybernetics,

Part C, vol. 38, no. 3, May 2008, pp. 377-396.

[23] Zhu, H. and Zhou, M.C., “The Role Transferability in

Emergency Management Systems”, Proc. of the 3rd

International Conference on Information Systems for

Crisis Response and Management, Newark, NJ, USA, May

14-17, 2006, pp. 487-496.

Haibin Zhu is an Associate Professor of the Department of

Computer Science and Mathematics, Nipissing University,

Canada. He received B.S. degree in computer engineering from

Institute of Engineering and Technology, China (1983), and

M.S. (1988) and Ph.D. (1997) degrees in computer science from

the National University of Defense Technology (NUDT),

China. He was a visiting professor and a special lecturer in the

College of Computing Sciences, New Jersey Institute of

Technology, USA (1999-2002) and a lecturer, an associate

professor and a full professor at NUDT (1988-2000). He has

published 70+ research papers, four books and one book chapter

on object-oriented programming, distributed systems,

collaborative systems and computer architecture.

He is serving and served as co-chair of the technical

committee of Distributed Intelligent Systems of IEEE SMC

Society, editor for the Int’l J. of Intelligent Control and

Systems, member of the Domain Experts Board of International

Journal of Patterns, member of the editorial board of

International Journal of Software Science and Computational

Intelligence, guest editor for the special issue of “Collaboration

Support Systems” for IEEE Trans. on SMC(A), guest associate

editor for a special issue for the Int’l Journal of Pervasive

Computing and Communications, poster co-chair and Organizer

of workshop on Role-Based Collaboration (RBC) for the

International Symposium on Collaborative Technologies and

Systems (CTS 2008), May 19-23, 2008, Irvine, California,

USA, vice program co-chair of the IEEE International

Conference on Complex Open Distributed Systems

(CODS’2007), 22-24 July 2007, Chengdu, China, publicity co-

chair, the International Symposium on Collaborative

Technologies and Systems (CTS 2007), May 21-25, 2007,

Orlando, FL, USA, organizer for the workshop on RBC of the

2006 ACM Int’l Conf. on Computer-Supported Cooperative

Work (CSCW’06), organizer of 6 special sessions on RBC for

the Int’l Conference on SMC (2003-2008), and program

committee member for more than 20 international conferences.

His current research interests include role-based collaboration,

collaborative systems, software engineering, and distributed

intelligent systems.

Dr. Zhu is a senior member of IEEE, a member of ACM, and

a life member of the Chinese Association for Science and

Technology, USA. He is the receipt of the 2006-2007 research

award from Nipissing University, the 2004 and 2005 IBM

Eclipse Innovation Grant Awards, the Best Paper Award from

the 11th ISPE Int’l Conf. on Concurrent Engineering

(ISPE/CE2004), the Educator’s Fellowship of OOPSLA’03, a

2nd Class Nation-Level Award of Education Achievement from

Ministry of Education of China (1997), a 2nd Class Nation-

Level Award of Excellent Textbook from the Ministry of

Education of China (2002), three 1st Class Ministry-level

Research Achievement Awards from The Commission of

Science Technology and Industry for National Defense of China

(1997, 1994, and 1991), and a 2nd Class Excellent Textbook

Award of the Ministry of Electronics Industry of China (1996).

Rob Alkins is a senior student of Nipissing University.

Matthew Grenier is a senior student of Nipissing University.

78 JOURNAL OF SOFTWARE, VOL. 3, NO. 6, JUNE 2008

© 2008 ACADEMY PUBLISHER

