26 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008
1

Change Prediction in Object-Oriented
Software Systems: A Probabilistic Approach

Ali R. Sharafat and Ladan Tahvildari
Dept. of Electrical and Computer Engineering
University of Waterloo, Ontario, Canada, N2L 3G1
{arsharaf, ltahvill@uwaterloo.ca

Abstract— An estimation of change-proneness of parts of a This research work aims to address the problem of
software system is an active topic in the area of software correctly predicting changes in a software system. Cor-
engineering. Such estimates can be used to predict changesrect prediction of changes can help managers to allocate
to different classes of a system from one release to the next. . o . .

They can also be used to estimate and possibly reduce the ef-/ESOUICES more appr_oprlately, this results in a reduc_tlon
fort required during the deve|opment and maintenance phase Of costs aSSOC|ated W|th SOftWare deVeIOpment and mainte-
by balancing the amount of developers’ time assigned to nance, as well as more evenly distributed workload among
each part of a software system. This research work proposes the developers and testers. Correct prediction of changes
a novel approach to predict changes in an object-oriented 5154 pyrings some insight on the design of the software. For

software system. The rationale behind this approach is that le if ch g dule h iderabl
in a well-designed software system, feature enhancement or X@MpI€, I changes in oné module have a consideranle

corrective maintenance should affect a limited amount of €ffect on other parts of the system, then the coupling
existing code. Our goal is to quantify this aspect of quality between the modules may need to be reduced. We aim to
by assessing the probability that each class will change in a determine the probabilities of change of classes within a
future generation. Our proposed probabilistic approach uses system, which can also be used to assist maintenance and

the dependencies obtained from the UML diagrams, as well to ob th uti f stability th h .
as other code metrics extracted from source code of several (0 OPS€Ive the evolution ol stability through successive

releases of a software system using reverse engineeringde€nerations.
techniques. These measures, combined with the change log The goal of this research is to predict the probability
of the software system and the expected time of next release,that each class will change in a future generation. Our
are used in an automated manner to predict whether a class proposed probabilistic approach can be applied when a
will change in the next release of the software system. The . . L .
proposed systematic approach has been evaluated on a multi- few successive versions of an qp_phcatlo_n are available. In
version medium sized open source project namely JFlex, order to calculate these probabilities, axis of time, tigtou
the Fast Scanner Generator for Java. The obtained results which a change in one class can affect another class of
indicate the simplicity and accuracy of our approach in the the design, is identified. We apply our technique on an
comparison with existing methods referred in the literature. object-oriented open source project, JFlex [3]. Obtained
Index Terms—measurement applied to SQA and V&V, results validate that the proposed analysis offers immrove
reverse engineering, software maintenance, probability and prediction accuracy compared to a model that simply
statistics, software change prediction considers information from changes in past generations. It
should also be noted that our proposed model provides the
|. INTRODUCTION prediction in an automated manner. This is a considerable
Software engineering deals with “the construction dmprovement over the related work, as discussed later in
multi-version software” which will undergo a number ofthe paper.
revisions either to enhance functionality or to fix bugs [1]. This paper is organized as follows. Section Il discusses
The modularity of object-oriented programs aims to redugeevious approaches which directly or indirectly address
the impact of addition of new functionality or bug fixeshe same problem in the literature. The analysis process
in such systems. If the modification of a class methddr predicting source code changes along with some back-
imposes code changes to a number of existing classggund information about the probability theory and the
the object-oriented design will be of limited value [2]. Innotation used in this paper are presented in Section Ill. A
a nutshell, predicting source code changes has becomeasae study and its statistical analysis results are disduss
crucial factor, since a number of studies conclude that tireSection IV. Finally, Section V provides conclusions and
largest percentage of software development effort is spesection VI gives some insight into future work.
on rework and maintenance.

Based on “A Probabilistic Approach to Predict Changes ine®tj II. RELATED WORK
Oriented Software Systems,” by Ali R. Sharafat and Ladan iledn,))
which appeared in the Proceedings of the 11th European @uwfe Several researchers have proposed the use of historical

mtr?;mz;e &";,‘Q,ﬁi”@g?e and Reengineering (CSMR), Amsterdagatq related to a software system to assist developers gain
This Work’ was funded by the Natural Sciences and Engineerir% better underStandmg of their software system and its

Research Council (NSERC) of Canada. evolution. Zimmermanret al. [4] and Ying et al. [5] use

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 27

data gathered from logs of version control systems that model, Gravest al. assign weights to the perceived
order to predict changes in several open source softwalganges, with the most recent receiving the most. These
systems. Their goal is very similar to ours, but they exploiteighted values provide a trend that is used to predict the
a much larger set of input data than we do. Due to thimimber of faults in an upcoming period.
fundamental difference, we do not compare our methodsMockus and Weiss [15] attempt to predict faults in
with [4] or [5] a software system based on information extracted from
Arnold and Bohner give an overview of several formathanges to the system (e.g., lines of code modified, the
models of change propagation [6]. The models proposbanged components, etc.). This approach differs from
several tools and techniques that are based on code h@ny of other the related work in the respect that it uses
pendencies and algorithms such as slicing and transitieleanges to the state of the system, rather than the state
closure to assist in code propagation. itself. The authors apply their method on several updates to
In [7], a change impact model has been proposed farsoftware system to predict likely faults in future updates
changeability assessment with primary goal to investigateKagdi and Maletic [16] propose combining results from
the relationship between existing design metrics (e.gmpact analysis with those from mining source reposito-
Weighted Methods per Class) and the impact of changées [4] to achieve a better accuracy in prediction of future
Although it is useful to know which classes would behanges. A case study has not been presented in that work,
impacted by a given change, one has to know the actdmit the foundations of the framework are described there.
changes that have occurred in a system to assess e use a similar method and combine the metric-based
probability of change for a certain class. The relationshgnd history-based probabilities to predict changes.
between metrics and maintainability has also been studiedThe work of Basiliet al. [17], which focuses on vali-
in [8]. In [9], a set of algorithms that determine whatlation of a software metrics suite [18], gives correlations
classes are affected by a given change is proposed. Hetween values of a software metric suite and the number
methodology represents a system as a set of data depsfrbugs and fixes that appear in a software system. While
dency graphs, which is an effective approach for objedhis study is not directly related to prediction of changes,
oriented designs. However, as in any change impact modeloes provide useful information as to which metrics are
reports about the potential impact of a given change cgood indicators of a change due to a software bug.
be generated only after the user explicitly specifies the A recent work of Girbaet al.[19] proposes an approach
changes. to summarize the changes in the history of a system that
Briand et al. [10] empirically investigate whether cou-can offer a solid basis for starting a reverse engineering
pling measures are related to ripple effects, using a coeffort. The methodology consists of identifying the classe
mercial OO system. The aim is to rank classes accordititat were changed the most in the recent history and
to their probability of containing ripple effects, whileeth at the same time checking whether the same classes are
approach proposed in this paper aims at identifying classesiong the most changed ones in the successive versions.
that are highly probable to change in a future generatiodpwever, only the addition or removal of methods is
regardless of whether the change is internal or due tocansidered as changes. Arishok al. [20] investigate
ripple effect. An advantage of using coupling measurese use of dynamic coupling measures as indicators of
is that they are inherently related to ripple effects sinashange proneness. Their approach is based on correlating
common changes are usually due to relationships betwehs number of changes to each class (a continuous vari-
classes. However, ripple effect-prone classes cannot digle which represents change proneness) with dynamic
used for predicting whether they will change in a futureoupling measures and other class-level size and static
release since changes originating in the class itself ayeupling measures. Consequently, it cannot be considered
neglected. a prediction model since no attempt is made to correlate
Hassan and Holt [11] tackle this problem in a differerthe proposed measures with changes/no changes in the
manner. They devise a technique in which a stand-alonext generation. In addition, requirement changes have
system learns from changes to a software product, bgen factored out since they are not driven by design
associating the files that change in one commit [12] &haracteristics.
a version control system. As developers modify the codeOur research was inspired by the work of Tsantalis
in parts of that product, their proposed learning systeal. [21], in which they propose a technique for prediction
suggests other files which may need to be modified duedbchanges in an object-oriented system. Their underlying
the propagation of changes. Kiet al. [13] use a similar principles are very similar to that of our work. Tsantadis
method by caching classes that have recently causedl. divide changes to a class into two categories: internal
changes and faults. These classes along with theaeby and external. Internal changes to a class are those that are
them are considered prime candidates for causing fauititiated within that class, and external changes are those
soon. that occur due to changes in neighboring classes. Thus,
Graveset al. [14] have a slightly different goal of the probability of change of a class is the probability of
predictingfaults, which are a subset of changes, in agethe union of internal and external changes.
software systems. They find the change-history of the The values ofprobability of internal change of a class
system to be a better predictor than code metrics. im [21] are defined as the percentage of past releases

© 2008 ACADEMY PUBLISHER

28 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

in which there was an internal change in that clasmodified due to changes originating from the class itself.
Classification of changes into internal and external is doiBeich an estimation can be obtained based on a metrics
by manual inspection of the source code from previowslite that can measure the relevant features of the source
releases of the software product which limits extensipilitcode. We call this value therobability of internal change
of that model. In Section IlI-A, we discuss a techniquef theith classi = 1,2,..., N, denoted byP,(IC), where
that estimates the probabilities of internal change, basedthe subscript indicates that the probability value is based
OO metrics that can readily be extracted from the souroa the source code. At the second stage of the process,
code. Our proposed approach automates the processwvefextract the dependencies between classes using UML
calculating the probability values. diagrams representing the design of the system. Based on
External changes to a clast depend on two events: the extracted data, we approximate the probabilities that a
i) a neighboring class ofi changing, and ii) that changechange would propagate from one clagst¢ another class
propagating to classl. Thus, to calculate the probability (i). This value is refereed as thpopagation probability
of an external change in clasd due to a change in a;;.
its neighbor B, the probability of a change propagating Ideally, we would like to map each kind of dependency
from B to A has to be known. Tsantalist al. assign to a unique propagation probability value, but when we
a uniform probability value for propagation of changehave multiple dependencies between classes, we need to
between all pairs of classes that are dependent on eacle alternative methods to obtain a single propagation
other (two classes are defined to be dependent, if thgn@bability between pairs of classes. As shown in Fig. 1
exists a direct dependency between them in the UMt the third stage of the process, the values offa(lC)
diagram of the software system). That probability valuand «;; are used to find the total probability of change
is defined as the percentage of changes in the past 6€the class obtained from source code nanflyTC;).
leases of the system that have propagated, and is obtaiféis probability represents the likelihood of a class being
by manual inspection of changes. In Section IlI-B, wenodified due to changes originating from itself, and those
propose methods to estimate the propagation probabilitiwhich propagate from the neighboring classes. It is as-
between pairs of classes, based on the number and typasied that internal and propagated changes are two inde-
of dependencies between them. Our methods not omgndent events. Furthermore, we assume that propagation
automate the process of obtaining these probabilities, ftchanges from different classes are independent as well.
also yield more accurate predictions about changes in thkese assumptions simplify the calculation of intersectio
next release of the system. and union of those events. Using Bayes’ theorBpiTC;)
The construction presented in [21] leads to solvingan be calculated as follows:
a nonlinear system of equations to get the probabilities
of change. Solving that system of equations becomes P,(TC;) =P [IC; U UC' ATC.
difficult, if there exists a set of classes which form a cycle R ’ il !
in the dependency graph of the software system. Tsantalis
et al. present an approximation method to bypass thathere IG represents an internal change in classvith
difficulty. We propose additional techniques in Section 11IPs(IC;) representing the probability of that event;,C
C to deal with cyclic dependencies. We also bring intéepresents the propagation of a change from cjatsi,
the picture the axis of time, where we consider the tim#ith a;; representing its probability; and TGepresents
between consecutive releases as a parameter that Wif total change (internal or propagated) in claswith
affect the probabilities of change (see Section 11I-D). W&s(TC;) as its probability. Again, the subscript s indicates
observe through empirical evaluation, that the inclusidhat the probability values are based on the source code.
of time as a parameter results in better predictions aboutAs an example, consider a simple system consisting
changes in future releases. of three classesAd, B, and C indexed by:i = 1,2,3,
Prior to [21], Xia and Srikanth [22] introduced thewhich form a chain of acyclic dependencies between
idea that a change initiate in a class and thigplesto them namelyC inherits B, which inherits Aas shown in
that class’s neighbors with a probability Thus, as we Fig. 2. We denote classes by circles and dependencies with
get further from the changed class, the probability of @rows which point in the direction of change propagation.
propagated change reduces by factors.oThe value of Assume that all classes have a probability of internal
 mirrors the conditional probabilities defined in [21]. change of 0.5 and that the the propagation probabilities

, @
i

IIl. THE PROPOSEDPROBABILISTIC APPROACH i=1

i=2 i=3
In order to determine which classes will change in the next as an
release of a software system, we propose a probabilistic
approach which uses the change history as well as the
source code of the system. For notational consistency,
we will use P(F) to denote the probability of everf
throughout this paper. As shown in Fig. 1, the first stagggure 2. An example of a simple system with three classes farmin

of the process estimates the likelihood that a class will lgkain of dependencies.

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 29

(Element-wise calculation,
Normalization of dependencies,
OR Merging dependencies)

(Element-wise calculation .
OR Dependengies from UML (Bayes’ law + cyclic dependencies)

Class based calculation)

Source code Estimating time-normalized Ps(IC) : - P4(IC) & dependencies | Calculating probabilities
——»——— probabilities of internal change > Redseol\él:dger:;glsle » of change, based on
(Ps(IC)) P source code (Ps(TC))
History changelog|Normalization of probabilities of Py(TC) P(TC)
—»——— change, based on history »- Predicting changes |«
(Pn(TC)) with respect to time

(Axis of Time)
Change/No Change

Figure 1. The Block Diagram of the Proposed ProbabilisticcBss to Predict Changes

are given byas; = azo = 0.25. Thus, assuming that theindicates that the probability value is based on the history
events G, and TG are independent for all and j, the of the system.

probabilities of change are calculated as follows: Note that neither?;(TC;) nor P,(TC;) can provide
reliable information alone. This is because the former only

Po(TC1) = Pi(IC1) =05 considers the structure of the source code, and the latter
Py(TCy) = P(IC2U (CouNTCy)) is only based on the nature of the source code by using
= P,(ICy) + ag; - P,(TCy) — the history change log. Thus, after calculating the values
P,(ICs) - azy - Py(TCy) of P4(TC;) andIP,?(TC,») for all classes, we average those.
values and predict as to whether or not each class will
0-5625 change in the future release.
Py(TCs) = P (IC3U (C32NTCy)) Our approach also uses several other measurements to
= Py(IC3) + ase - Ps(TCy) — provide a comparison with other solutions. While the list
P,(IC3) - azz - Py (TCy) is as_follows, it shoulc_i be noted thavera!l Accuracyis
05703 considered the most important measure :

« False Positive Ratio (FPR) The percentage of cases
Note that the calculations were done in a top-down fashion where a class was predicted to change, but in fact it
(we calculated probabilities of change in a serial manner, did not.
starting with A and finishing withC). This can be done . False Negative Ratio (FNR) The percentage of
as long as the dependency graph is acyclic. We present cases where a class was predicted not to change, but
methods in Section III-C to calculate the probabilitis when in fact it did.
the graph contains cycles. « Sensitivity: The percentage of changes correctly pre-
dicted. It is equal tal — FFNR.
Overall Accuracy: The weighted percentage of
changes and no-changes correctly predicted. It is

As shown in Fig. 1, the history change-log of the
software system can be used to get another measure of the
probability of change. In order to make use of this infor- . FNRAFPR

X . given byl — &880
mation, we convert the raw probabilities of change into ; 2
time-normalized values. The raw probability of chang The Qeta|ls of the prOF"?SEd methods are elaborated
of a class is defined as the percentage of past releaﬁggher in the following sections.
in which that class was changed. The time-normalized o
probability provides the probability of change of a clasd- Estimation off(IC)
in a future release by using the raw probability valuén [21] the probabilities of internal change are obtained by
and taking into account the length of the Time Betweemanual inspection of the source code from one revision
Releases (TBR) of the past revisions and the expectidthe next. While this procedure is applicable to small
Time To Release of the next version of the system (TTRJoftware systems, it becomes very time consuming as the
In other words, we first attempt to estimate the probabilitsize of the system increases. In this section, we propose
of change of a class innit time and then use the TTR methods that will automate this procudure and will use the
value to estimate the probability of change of that class aode metrics and the history-log of the system to provide
the next release; larger values of TTR imply that a changstimates of the abovementioned probability values. Later
is more probable. We refer to this history-based timeve will show that these methods give prediction that are
normalized probability a®;, (TC;), where the subscript very close to those obtained by manual inspection.

4
© 2008 ACADEMY PUBLISHER

30 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

The nature of the source code provides useful infoand (4) to get
mation regarding the stability of the software system. In Py(IC;) = 1 — e—Moit (5)
order to find an estimate fdP;(IC), we use a suite of s\ ’
metrics along with a method similar to that bfazard wherex; is the metric value of class We can definer;

Rate Functionslescribed in [23]. as a combinatin of OO metrics that are good indicators of

Assume that we have a real valued metric functiton change-proneness of a class. A simple way of doing so,
S + [0,+00), whereS is the set of all theelementsn is by lettingz; to be a linear combination of code metrics
the source code (methods, variable, classes, etc.). Assutagesponding to clasg with each metric weighted ac-
that we can extract probabilities of internal changes of @@rding to its correlation with past changes. We can find
element, from its corresponding metric valixe a suitable value for\ by using some sample values and

Let us partition the axis corresponding to the valudhen predicting change; in the past releases for each value.
of X into small (non-overlapping) segments of length d¥/& choose the value gives predictions that correleate best
and compute the probability that we have a change wh¥ff the occured changes. _
the value ofX falls in (z,z + dz] while there has been !N our approach, we need to select a set of object-
no change forX = z. To do this, letF(z) denote the oriented metrics that will b_e used to assess the changes.
probability of change if the value of the metd¢ is equal " order to mgke a selection, we first need to establish
to z. Expressing?(z) as the sum of the probabilities with@ Set of criteria that should guide the selection process.

values f(z)dz (union of disjoint events), we have _Estat_)lishing these criteria_ requires us to consider and
. identify which of the metrics can be successfully used

F(z) :/ f(z)da in order to assess the changes and to collect proper

0 information from the source code features at the method

or class level (depending on our choice of the level of

We also have, . . o
granularity). In this respect, we focus on two criteria hi¢ t

P(change forX € (z,z + dz]|no change forX = x) theoretical evaluation of the definition of the metric, and
P(change forX € (z,z + dz] Nno change forX = =) jj) the aspects of changes that we plan to predict.
P(no change forX =) Table | illustrates our selected metrics at method level
~ @ which will be used in the proposed approach. Note that
1 - F(z) as the value of the metrics in Table | increases, so does
the probability of change of the methods [5], [21]. Metrics
Now, Let in Table | can be extracted using Borland Together [26].
F(z) We have chosen to use metrics at method and data-member
Az) = 1—7}?(9@) level, as they provide more detail about the structure of the

code. We can also easily define the corresponding class-

d (o
— i £'(2)) level metrics by aggregating the lower level metrics.
1— F(x)
Integrating both sides gives B. Resolving Multiple Dependencies
z The propagation probabilities are dependent on the type
Flz) =1—exp _/0 Az) dx). @) of the relationship between two classes. For the sake

of simplicity, we wish to assign a single propagation
It is assumed thai\(z) is a constant-value function. probability to each kind of dependency. Furthermore, we
This would simplify the integration in (2) to want to combine multiple dependencies between classes
Flz)=1—e, 3) to extract a single propagation probability between them
and exploit (1) to find the probabilities of change. Re-
The probability functionF, does not need to be time-lationships between classes and their respective elements
normalized as its input only depends on the structure 8f€ extracted using an Eclipse plug-in, called Creole [27].
the code. Therefore, we can assume thatgives the A list of extracted relationships is presented in Table II.

probability of change of a class in unit time if a suitabld hese relationships are exported using the Rigi Standard
value for \ is chosen. Format (RSF) [28], which is a set of tuples that take

the following format: FromElement, ToElement, Type of
Relatior).

Assigning propagation probabilities becomes problem-
atic when we have more than one dependency between
IC; = U ICi,r) two classes and their elements, as the above notation is
only defined for single dependencies. In order to make the
where IG is an internal change to clagsover a period most use of the available data, we seek to incorporate all
of length¢ unit times, and I¢, is an internal change in dependencies between any two classes when estimating
the jth unity period. Assuming that internal changes ithe propagation probability between them. We propose
different periods are independent events, we combine {Byee techniques to bypass this problem: two rely on

Assuming that there arée units of time until the next
release (i.e., TTR %), we have

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 31

TABLE .

A METRIC SUITE USED AT METHOD LEVEL

Metric Name [Description | Definition \

AID Access of Import Data Number of data members accessed in a method directly or via
accessor-methods, from which the definition-class of théhate
is not derived.

ALD Access of Local Data Number of the data members accessed in the given methodj whic
are local to the class where the method is defined.

CC [24] Cyclomatic Complexity Number of possible paths through an algorithm by countirgg|th
number of distinct regions on a flowgraph, meaning the number
of i f, for, andwhi | e statements in the method’s body.

LOC Lines of Code Number of lines of code in a method, including comments and
white-lines.

MNOB Maximum Number of| Maximum number ofi f - el se and/orcase branches in the

Branches method.

MPC [25] Message Passing Coupling | Number of method call expressions made into body of |the
measured method.

NIC Number of Import Classes | Number of external classes from which the given method uses
data.

NOLV Number of Local Variables | Number of local variables are declared within a method.

NOP Number of Parameters Number of parameters that build the signature of a method.

TABLE II.

EXTRACTED RELATIONS USINGCREOLE This approach provides a very simple technique for

obtaining conditional probability values from the rela-

] Relation \Type \ tionships. On the other hand, the number of depen-
accesses method to attributé dencies between two classes rarely gets even close to
Ca”s method to method n(ElementS OfA) X n(ElementS OfB)
casts to type method to class
contains package to class 2) Element-wise Calculationtn this method, the focus
creates method to class moves to theelementsof a class which means instead

extended by class to class

of calculating the probability of change of a class, the

has parameter typ

e method to class

implemented by

class to class

is of type

attribute to class

overridden by

method to method

probabilities of change of the elements of that class are
calculated. Then, the probability of change of a class is
the probability of the union of changes in the elements
of that class. Note that there is at most one dependency

(i.e., call, access, and overriding) from one element to

another in a software system. Thus, moving the focus from
keeping the probability calculations at the class leved class to its elements removes the problem with multiple
while the other suggests performing calculations at thEependencies.
method and data-member level. Using this method, we keep the simple framework of

assigning uniform propagation probabilities to each type

1) Normalization of Dependenciesin this method, of dependency. In order to represent the structure of an

a mapping functionm is used to map the number ofobject-oriented system, we consider dependencies between
dependencies between classes to a conditional probabitgments of one class to be stronger than that between
value; since dependencies are fromed@ment(i.e., data- elements of different classes. For example, changes to
member and method) to afementm takes the following a method would probably affect the dependent elements
form: within the same class more than those in other classes.
Thus, we assign a larger propagation probability value to
a dependency between two elements of the same class,
than the same type of dependency between elements of
different classes.

m:{0,1,2,...,n(Elements of4) x n(Elements ofB)}

—{zeRl0<z<1}

where A and B are two classes withc dependencies) o

probability is to normalize the number of dependencies ?owns in the non-linear system of equations that needs
definingm as to be solved by 20 to 30 times. This increase, in turn,

" results in more complexity.

- n(Elements ofA) x n(Elements ofB)’

m(x)

(6)

© 2008 ACADEMY PUBLISHER

32 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

3) Merging DependenciesMultiple dependencies be-

tween classes can be treated as independent conditional =1 =2
probabilities and thus can be merged by simply finding
the union of those events. Therefore, fordependencies
between classed and B, with conditional probabilities
a1, e, ..., ap, the equivalent probability of propagation
is
B=1-(1—-a1)(1—az)...(1—ay,). (7)

Figure 3. An example of circular dependencies.

This method allows us to collapse multiple depen-
dencies between classes into one and to compute the
probabilities of change at the class level as opposed to
the more fine grained analysis in element-wise calculationdependent events. Assuming that events of change in
While the computational complexity is reduced due to théifferent classes are independent, (1) can be negated and
smaller size of the system of equations, we lose sorwgitten as:
accuracy when we merge dependencies compared to usi
element)—/wise calculatio%. P i BB,(TC) = (1 - By(IC) XH(l_a“PS(TCj))' (8)

Note that all the above methods rely solely on the .
dependencies that are obtained from the UML diagram Osting (8), a system of nonlinear equations can be

the system. The proposed methods use these dependengi@structed whose solution is the set of probabilities of
in a systematic way to provide an estimate of propagati@hange of the classes. Note that due to the nonlinearity
probabilities; hence, these methods do not require agy the system, it is more difficult to solve than linear
human intervention and can be fully automated. This i§/stems. We use an implementation of Newton-Raphson
a considerable improvement with respect to [21] whefigethod [30] to solve a nonlinear system of equations in
a single propagation probability was used to descrigs+ given in [31].

all dependencies; that value was obtained by manual

inspection of all the change logs of the system.

2) Linear System of Equation&imilar to the previous

C. Calculation ofP,(TC;) and Cyclic Dependencies method, this approach is based on (1). In this approach,
however, it is assumed that changes in a class due to

As explained in Section Ill, we use (1) to. calculate th'c:iifferent sources arenutually exclusive Based on this
values of P4(TC;) for all classes. Assuming that that fumption (1) can be written as

changes in different classes are independent, we can 6&
into a nonlinear equation. Note however, that we cannot P,(TC;) = P4(IC;) + Zaij]P’s(TCj). 9)
necessarily compute these values in a top-down fashion j#i

due to cyclic dependencies in the UML diagram.

Tsantaliset al. [21] use an approximation technique to Note that (9) is linear and is fairly easy to solve. Nev-
get around this problem. They identify the cycles in thertheless, the simplifying assumption makes the solution
graph using a spanning tree [29], and temporarily remot@ the linear system of equations an approximation to the
edges from the graph until there are no cycles left. Thegplution of (8).
the probabilities of change can be easily computed. After
this stage, the removed edges are restored, one by one, and] .
the probabilities of change of the nodes adjacent to those3) Depth First Search Graphs:A problem that is
edges are updated. This method provides a close appr@gPlicable to both of the previous methods is that they
mation to the true probabilities of change, but the resulf@lculate probabilities for the steady state. For example
seemed to be biased; during few test runs, the estimaf@'sider a simple program with two classes with cyclic
probabilities were always smaller than the true values. figPendencies, as shown in Fig. 3.

order to get a better approximation, our approach considersciasses 4 and B indexed byi = 1,2 have in-
three techniques. While all of them rely on solving gernal probabilities of change oP,(IC;) = 0.1 and
system of equations to get the probabilities, two techréque _(1C,) = 0, respectively. The probabilities of propaga-
use simplifying assumptions to reduce the complexity @fon areay, = as; = 1.0. Intuitively, we would expect
the calculations by making the system of equations linegy have P,(TC,) = P,(TC,) = 0.1, because the only
or by making the dependency graph acyclic. The detaiguse of change in the system can come from an internal
of the three techniques are elaborated further as followghange in4, which has a probability of 0.1. However, the
linear system of equations becomes degenerate and gives
1) Nonlinear System of EquationsThis approach no answers, and the nonlinear system gigsC,) = 1.0
uses (1) with no major simplification to calculate thendP,(TC;) = 1.0; these values are out of our range of
probabilities of change. The only assumption associatédl. Therefore, both the linear and the nonlinear systems
with this approach is that changes in different classes agize incorrect probability values.

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 33

critical roles in determining the probabilities of change

GET-ALL-PROBABILITIES() based on history log. When time between consecutive

1 for each vertex € V(G) releases is very short, an overestimation can be observed;
2 do setvisited[i] = WHITE Vi € V(G) the opposite is also true when this period is longer than
3 prob[v] = GET-PROBABILITY (v) the average. Note the proportionality between TBR and
4 return prob False Negative Ratio (FNR), and the inverse relationship

between TBR and False Positive Ratio (FPR). In order

GET-PROBABILITY
(v) to find P,(TC;) in a unit time (e.g., one day), several

; i Utﬁé;ecf([;tr:n BLACK methods were considered.
3 wisitedlv] — RE]; [v] A key assumption associated with all of these methods
4 visy E {U} . ; I is that internal changes made in two different time periods
plv] =1 —internallv] are independent of each other. The following sections
5 for each vertexu € V(G) : ;
PR elaborate further how our approach can deal with the axis
6 do if visited[u] # RED :
of time.
7 then plv] = plv] x (1 — dep[v, u]x
N GET-PROBABILITY (u)) 1) Simple Conditional Estimation:This estimation
8 wisited[v] = BLACK method uses Bayes' law to find a mean probability of
9 plv] =1-p[v] change
10 return p[v] -
p=)_ P(Changél = t)P(T = 1), (10)
Figure 4. The Depth First Search algorithm (DFS) is used doutating =1

probability values, wheré; is a directed dependency graph with(G) . .)
as its vertices (classeshternal[v] denotes the probability of internal Wherep denotes the average probability of change in unit
chag[gc]e_om depbisb_? tj—iin;]ensionél ar:jay V_\;hzr[@?za[v,ﬂt = ﬁv?h; time, andP(Chang¢l’ = t) indicates the probability of
prob|v| IS tne probabllity or cChange al, andvisitea|v| denotes wnetner
classv has or has not been visitedL(ACK and WHITE respectively), or change_ In-unit tlme’_ 9_'Ve” tha_t time between releases
if it is being visited RED). (TBR) is equal tot unit times. Using Bayes’ theorem and
. o (10) to calculate the probability of no-change gives

This overestimation is due to the fact that we are -
!mpI|C|t_Iy taklng_lnto account the possibility that a chang 1—p= Z P(No Changl’ = t)P(T = t). (11)
in A will affect it, through B, over and over. We counter

this, by constructing a depth-first search subgraph whenIf the probability of a class not changing in one unit

Caf“'?‘“”g the probgbl_lltles of change_. . time is P(No Changél’ = ¢) and assuming that changes
n informal description of the algorithm is as follows:. " . 7 .
. . in different time periods are independent events, the prob-
consider a classli whose probability of change we are bility of that cl t chanaing i iod of lendth
computing. We start constructing our tree by addiag abiiity of that class not changing in a period o eng
as a node. Then, we add all classes whithdepends
on as children ofA. We repeat this procedure until there P(No Changél’ = t) = P(No Changél’ = t)t, (12)
are no additional classes to be added to the tree. Then
we calculate the probability of change df using only
the nodes and dependencies in the constructed subgraph, i
starting from the leaf nodes of the graph (those that do not 7 = 1 — Y /P(No Changél’ =)P(T' =t). ~ (13)
depend on any other nodes). Calculation of probabilities t=1
should be straightforward as the constructed graph isUsing this method, the probabilities of change in unit
acyclic by nature. A detailed description of the algorithrtime are fairly easy to compute. However, in order to get a
is given in Fig. 4; probabilities of change are obtained bgood estimate we need at least two releases for each time
calling the GET-ALL-PROBABILITIES procedure. interval (otherwiseP(No Changél’ = t) will be either 0
Using the DFS method, for each classwve eliminate or 1); this means that quite a large number of samples are
the cycles from the dependency graphs that are connectegded.
to 7. This makes the portion of the graph that is relevant
to finding the probability of change of acyclic, and 2) Logarithmic Estimation:This technique attempts to
hence, the system of equations that gives the probabilgdiculate the probability of no-change in unit time using

t=1

Simplifying (11) using (12) gives

of change ofi can be solved in a top-down fashion. the observedprobability of no-change between consecu-
tive releases. The observed probability is the probability
D. Axis of Time of no-change in a given time interval and can be extracted

A lained earli dt lize th bfrom the change history of classes. The observed proba-
S eXplained earlier, we need to hormalize th€ raw pro 8|'Iity of no-changey,, for a class with a TBR of length
bility values from the change history with respect to tlmet. is

These raw probability values refer to the percentage o{ (t) = ¢ (14)
releases in which a class is changed. The values of Time LW =9
Between Releases (TBR) and Time To Release (TTR) plashereq is the probability of no-change in unit time and

© 2008 ACADEMY PUBLISHER

34 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

TABLE III.
PROPAGATION PROBABILITY RESULTSUSING THE PIECEWISE PDF

Simple Conditional Logarithmic Estimation | Root of Polynomial

Estimation
p Pest std DPest std Pest std
0.1 0.1191 0.0656 0.1033 0.0464 0.1055 0.0485
0.2 | 0.2432 0.0972 0.2050 0.0612 0.2125 0.0655
0.4 | 0.5313 0.1628 0.3873 0.1078 0.4144 0.1174
0.8 | 0.9579 0.0702 0.8481 0.2019 0.8751 0.1700

is assumed to be constant for all periods. Assume th@0) a polynomial whose degree is equal to the longest
the TBRs have taken values &f, o, .. ., t,, over the past TBR; thusp can be obtained by finding the roots of (20).
releases. Taking the logarithm of both sides of (14) arl possible problem with (20) is that it may seem not to

summing them over all periods gives have any real roots, or to have more than one real root.
n n However, by Theorem 3.1, it has exactly one root between
Zm Go(ts) = Zti Ing, (15) zero and one.
i=1 i=1 Theorem 3.1: Consider the functiogp(xz) defined by

v pix; —C, where0 < C <1,0<p <1
nd >" , u; = 1. Then,g(z) has exactly one
(16) non-negative real root and it lies between 0 and 1.
Proof: Since the polynomial(z) has non-negative

Note thatln g, cannot be efficiently computed when thecoefficients, it is non-decreasing when> 0. Thus, g
number of past releases is small. In that casé,;) may has at most one real non-negative root. We note that
be zero for some;. However, these values are non-zersubstitutingz = 0 yields —C' which is less than or equal to
when we have a large number of past releases, and if #teyo, and substituting = 1 yields 1 — C', which is non-
system is stable enough, most of the valueg,0f;) will negative. Therefore, by the Intermediate Value Theorem

wheren is the number of periods. A simple averaging of(m) ”: _Z
(15) yields o onnegat
Ing, =tlng.

be close to 1. (IVT) [30], the polynomial has at least one root between
For large values of;,, we have 0 and 1. Thus, it follows from the above thatz) has
exactly one non-negative root and that it lies between 0
Ing, = go — 1. and 1. (]
Thus, the following estimation can be used: One drawback of this method is that it becomes very
o complex when the polynomial is of a high degree. We
Ing, ~ Ings. (17) can bypass this issue by reducing the time resolution used

to define a unit time (e.g., changing the unit time from 2
days to 8 days, makes the values of TBRs 4 times smaller,
which results in a lower degree polynomial).

Sinceq, = 1 — P(Changg, it can be easily computed
from the given data. Thug;, is

Ing,
g=exp|—|. (18)
t 4) A Comparison:We set up a controlled experiment

This method involves very simple calculations and itysing generated data to compare the abovementioned
complexity does not increase much as the periods deghniques. We generate values for TBRs using two

longer or the number of revisions increases. pdfs namely, an exponential distribution with = 50,
and a piecewise uniform distribution shown in Table

IV. Changes in each unit of time occur according to a
Bernoulli trial scheme [23] with a probability op. If

the total probability of change over a period is greater
than 0.5, we designate it as a “change”; otherwise it is a
“no change”. This data is then used by each of the above
methods to estimate the value pf We compare these

Assuming that the probability of change in unit time isstimates with the true values pfto determine the most
constant across all releases, the conditional probalgitity 5ccurate method.

the right-hand side of (19) can be decomposed and written

3) Root of Polynomial:The average probability of no-
change is
P(NC) = Y "P(No Changél' = t)P(T'=t). (19)

t=1

. . - . TABLE IV.
using the daily probability of change. This gives THE PIECEWISE PROBABILITY DENSITY FUNCTION
= T 1 2 3 4
(Z qP(T = t)> —P(NC) =0, (20) f(x) [01]02]04]03
t=1

whereg = 1 — p. The values of?(NC) andP(T" = t) for
all ts can be easily extracted from the given data, makingEach run of the experiment consisted of generated

© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 35

TABLE V.
PROPAGATION PROBABILITY RESULTSUSING THE EXPONENTIAL PDF
Simple Conditional Logarithmic Estimation | Root of Polynomial
Estimation
p Pest std Pest std DPest std
0.1 | 0.4928 0.1446 0.0778 0.0267 0.1131 0.0560
0.2 | 0.6733 0.1414 0.1336 0.0968 0.2161 0.1189
0.4 | 0.8833 0.0945 0.3674 0.3406 0.5241 0.2722
0.8 | 0.9874 0.0317 0.8857 0.2742 0.9342 0.1616
TABLE VI.
REPEAT OF THE EARLIER EXPERIMENTBUT WITH 200 PERIODS IN EACH RUN
Simple Conditional Logarithmic Estimation | Root of Polynomial
Estimation
P Pest std DPest std Pest std
0.3 | 0.6433 0.0537 0.1553 0.0120 0.2972 0.0304
0.7 | 0.9425 0.0238 0.2945 0.0778 0.7112 0.0754

information about change of a class in 15 periods of understanding of how our approach will perform on
random lengths (according to the above pdfs). Results of larger software tools.

100 runs of the experiment are shown in Tables Ill and « The number of merges and splits of classes in the
V. It is evident that Simple Conditional Estimation does history of JFlex were quite low, which streamlined
not provide reliable results, as estimates are mostly far the development of our simulations.

from the real value ofp. While Logarithmic Estimation Tsantaliset al. [21] use JFlex in their work as a case
and Root of Polynomial provide similar estimates and study as well. Thus, we can easily benchmark our
standard deviations, only the estimate provided by the model relative to theirs, using the results obtained
latter converges to the real value pfas the number from simulations.

of periods gets large (see Table VI). Thus, the Root of We use our model to predict changes in versions 1.2.2 to
Polynomial method provides a more reliable estimate af4. In order to benchmark our model, we use the provided
the daily probability of change. data for each release of JFlex, and predict changes in
the succeeding release. We then compare our predictions
against the actual changes from the change history and
compute the Overall Accuracy, Sensitivity, FPR, and FNR

We now apply the proposed probabilistic approackorresponding to our predictions.
on a medium-size system. First, the case study will be

described, and then we present and discuss the result®8. Evaluation Environment

IV. EMPIRICAL EVALUATION

Our procedure of evaluating our proposed methods in-

A. Case Study: JFlex volved several software tools and some small programs
]) _ that we wrote in Java, C++ and MATLAB. We describe

JFlex [3] is a Lexical Analyzer Generator for Java, writteQ ;r environment here to show how our results can be

in Java, which takes a specially formatted specification ﬁl‘éproduced for future research on a different software
containing the details of a lexical analyzer as input and,ciem.
creates a Java file whose source code simulates the lexicaboge metrics were extracted from each release of JFlex,
analyzer. The source code for JFlex is publicly availablgsing Borland Together, and exported in plain text format,
while the latest version that we examined consists Qfith each line containing an element and its corresponding
58 Java classes; more detailed statistics regarding JFgXtric.
are presented in Fig. 5. Twelve subsequent versions haV@ependencies between classes were extracted using
been analyzed using the proposed probabilistic approagheple and exported in RSF format. This output was then
to predict changes. JFlex has been selected for analy&iﬁsed into am x n matrix, wheren is the number
for several reasons. of classes or that of elements, depending on our level
« JFlex is small enough that we can easily visualize araf granularity, and each element of the matrix contains
understand the relationships between different pattse dependency between two classes/element3. (This
of software. This helps testing our framework duringnatrix was then exported in plain text format, where each
the development cycle, as inefficiencies within theow of the output represents elements in a row of the
model can easily be spotted. obtained matrix.
o JFlex is large enough to qualify as an ordinary Information regarding the actual changes to classes can
software tool. This characteristic provides a goobe extracted byi f f ing classes from consecutive releases

10
© 2008 ACADEMY PUBLISHER

36 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

600 20

18 4
500 16 1

14 4
400

12 4

300 A 104

200 4

100

—&—Number of Methods ——kSLOC
0 T
121 122 13 131 132 133 134 135 14.pl 14.p3 14.ps 14p5 121 122 13 131 132 133 134 135 14.pl 14.p3 14.p4 1405
() (b)
70 25
—e—Number of Classes —o— Number of Changes

60 -

20
50 -
40 4 151

30

20 4

121 122 13 131 132 133 134 135 14.pl 14.p3 14p4 1.4.p5 121 122 13 131 132 133 134 135 14pl 14p3 14.ps 1405

(c) (d)

Figure 5. Some statistical information about JFl@): Number of methods in consecutive releases of JRlexGrowth of JFlex in terms oL OC.
(c) Number of classes in 12 versior(sl) Number of changes to classes in different releases.

or by examining the logs of the code repository. Changélsat in order to have an unbiased comparison, we have
due to copyright or licensing updates should be ignoredsed the same probabilities of internal change and propa-
as they do not have any effect on the functionality cfation probabilities that Tsantaks al. applied. Results are
the software tool. We did not use the above methods poesented in Table VII. Note that values relatedHistory
extract this information about the changes, as this data wasTable VIl are taken directly from [21], and therefore,
already available, courtesy of Tsantadisal. no comments about the complexity of that method can
The above information was passed to a MATLAB probe made. WhildLinear System of Equatio&SE) is the
gram, which estimated the probability of internal changsjmplest technique, it provides the least overall accuracy
based on the given metrics, and then using the lifer predicting changes. Some of the probability values
ear/nonlinear system of equations or the depth first seaidiculated by this method are sometimes larger than unity.
graph to determine the probability of change of classes.This is due to the assumption that propagated changes are
the calculations were done at element level, the probgbilinutually exclusive, which therefore, is not true.
of change of each class is calculated as the union of those'he approximation method presented in [21], NLSE,
of its elements. The MATLAB program also calculates thand the depth first search method (DFS) seem to have the
time-normalized probability of change using the Root afame level of prediction, but a closer look at the calculated
Polynomial method. It then averages the metric-based gnebbabilities reveals that there are indeed differentesd
the history-based probabilities using predefined weighdifferences do not seem to have much effect on the overall
ings. These probabilities were first rounded to 0 and accuracy, because probability values need to be rounded
using a threshold of 0.5, and then compared against ttee 0 or 1 for predicting future changes. In terms of
actual changes in a release of JFlex. This process wasnplexity, Non-Linear System of Equatiof§LSE) and
repeated for all releases of JFlex. DFS seem complex in comparison with LSE, which is the
We see that all the above steps are designed so that teegplest method. The complexity of NLSE also seems to
can be performed without any human intervention. Thugrow faster than that of DFS with the size of the software
we can extend our methods to larger software systesystem. Thus, DFS looks to be a better alternative when
given that the input data is supplied. dealing with large software systems.

C. Calculation ofP4(TC;) and Cyclic Dependencies D. Estimation ofP,(IC) and Resolving Multiple Depen-

Nonlinear and linear systems equations, the depth fig@ncies

search graph (as presented in Section IlI-C), and tes mentioned earlier, the probability values provided by

history change logs were used to compute the probabilitirermalization of dependencies using a simple mapping
of change of classes in versions 1.2.2 to 1.4 of JFlefynction were too small to be able to predict any change
we use information only from previous versions for thipropagation. One solution considered to resolve this prob-
purpose. For example to compute probabilities for versidem was magnifying the probability values. Although mag-

1.3, we use data only from releases 1.2.1 and 1.2.2. Naoiification improves the prediction of propagated changes,

11
© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 37

TABLE VII.
COMPARISONBETWEEN FIVE APPROACHESDEALING WITH CycCLIC DEPENDENCIES
| Used Approach | Overall Accuracy | Sensitivity | FPR | FNR |
Nonlinear System of Equations (NLSH) 0.6875 0.4786 | 0.1036| 0.5214
Linear System of Equations (LSE) 0.6765 0.4701 | 0.1171| 0.5299
Depth First Search Graphs (DFS) 0.6844 0.4701 | 0.1014| 0.5299
Binary Dependencies 0.6844 0.4701 | 0.1014| 0.5299
History [21] 0.6576 0.4188 | 0.1036| 0.5812

it requires some manual searching to identify the besdsults in no need for resolving multiple dependencies, as
magnifying factor so that the magnified values are larghere exists at most one relationship between any pair of
enough to predict propagations, but not so large that thelements. The non-linear system of equations was used
exceed their maximum limit. As this search needs to tie find the values ofP;(TC;). The resulting values of
done for each case study, it would reduce the automatiBn(TC;) were averaged with the correspondifig(TC;)
and increase the complexity of the model. Therefore, whilalues calculated by using tiRoot of Polynomial Methad
this approach provided some improvements over binaffhese average values were rounded to 0 or 1 using a cut-
treatment of the dependencies, it was deemed not vaf§ value of 0.5, with 1 predicting a change and 0 predict-
suitable for calculation of conditional probabilities. ing no change. These predictions were then compared with
We examined many linear combinations of metrics fdhe actual changes and the Overall Accuracy, Sensitivity,
the value ofz for estimatingP,(IC). Our results indicate FPR, and FNR that were calculated by our approach. The
thatz = LOC vyields the best results in terms of overalresults, shown in Table VIII, indicate a 3.5% improvement
accuracy. This reflects one of the conclusions of [21fver [21] and 6.2% improvement over the use of history
where LOC was found to be a very capable indicatochange logs.
of the probability of change of a class. We ran several We computed values dP,(TC;) again, but using the
simulations to show that dependencies correlate with thlepth first search algorithm in conjunction witerg-
actual propagated changes. From simulation results, it wag Dependencieso resolve multiple dependencies. The
concluded thatall and accessrelationships correlate the history-based probabilities were calculated by the above-
best with the actual changes. Therefore, only these refaentioned method and the same weighting coefficients
tions were taken into account to estimate the conditionakre used to combing,(TC;) andP;,(TC;). Results are
probabilities. This resulted in a modification to (6) sinceimilar to those fromElement-wise Calculatiomwith 3%
dependencies were from methods to elements only. improvement over [21] and just shy of 5.8% improvement
After several tests to find the best suiting values faver use of history change logs.
Element-wise Calculatignconditional probability values
of 0.9 and 0.4 were assigned to access and call depé&n-Lessons Learned
dencies between elements in the same class. The comiir experimental studies show that the solution to the
tional probability values for inter-class dependencieseweset of nonlinear probability equations and our depth first
60% of those for intra-class relationships. Note that graph based method yield more accurate values for the
higher probability value was associated with access, pfobability of change of the classes, compared with other
any change in an attribute will most probably propagai@ethods. The use of nonlinear system of equations elimi-
to its users (e.g., change of type or name of the attributltes the approximation errors when calculating the steady
The lower values associated with call is due to the fagtate probabilities (this is a problem with the linear syste
that sometimes changes in a body of a method do nsttequations, as the probability values may exceed unity).
propagate to users of that method. The depth first search method does not calculate the steady
We followed a similar procedure to find best suitingtate probabilities, and assumes that a class cannot cause
values for conditional dependencies corresponding to calchange to itself through the external axis. We deem DFS
and access for class-level calculations using the depthbe theoretically more valid (see Section 11I-C.3 for an
first search graph algorithm and merged dependenciegample), but NLSE and DFS yield similar results, so we
We found that values of 0.1 and 0.05 correspondingbnsider both to be practical approaches.
to call and access provide fairly accurate results. Note,An elementary analysis of the frequency of change of
that the considerable difference between these values afukses in JFlex reveals that the time between releases is an
those used for Element-wise Calculation are due to ti@portant factor to determine the probability of changes in
difference in the probability of change of classes and thaibde. We found that the Root of Polynomial method best
elements. incorporates time into our calculations. This is due to the
For a final comparison, we usellement-wise Cal- fact that the Root of Polynomial approach provides a better
culation with the above parameters for computing thepproximation of time-normalized probabilities compared
probabilities of internal change for each release of JFl&ith Simple Conditional Estimation and Logarithmic Esti-
between 1.2.2 and 1.4 (12 releases in total). This methodtion. The complexity of the Root of Polynomial method

12
© 2008 ACADEMY PUBLISHER

38 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

TABLE VIII.
COMPARISONBETWEEN FOUR APPROACHES FORPREDICTING CHANGES
| Used Approach | Overall Accuracy | Sensitivity | FPR | FNR |
NLSE + Element-wise Calculatior 0.7197 0.5385 | 0.0991| 0.4615
DFS + Merged Dependencies 0.7154 0.5299 | 0.0991| 0.4701
Binary Dependencies 0.6844 0.4701 | 0.1014| 0.5299
History [21] 0.6576 0.4188 | 0.1036| 0.5812
can also be easily reduced by increasing the length of the VI. FUTURE WORK

defined time unit.

. We made several simplifying assumptions regarding the
Propagation probabilities are more accurately calculat plifying P g g

. . ﬁgdependency of events while describing our approach
based on the relationships between the elements of clas %J independency of the changes in different time inter-

T_h|s change Incorporates the depenqlem_:les n t.he U_ Is). These assumption did not seem to have any negative
diagram more appropriately than considering relatloresh|8ﬁect on the accuracy of our method, compared to other

betwegn clgsses as a binary effect. However, therells gested methods, but relaxing those assumptions may
associated increase in complexity due to the larger size.

th ¢ f fi h lculat babilit improve our prediction. For example, it can be assumed
€ system of equations, when we calculate probabilities gl ,q change history of classes is not memoryless (i.e.,

method and parameter level. We can alternatively Calcwactﬁanges are dependent). A Markov model can be used to
probabilities at the class level by merging multiple dEpe'i]éke into account such eﬁect

dencies between classes. While this method has a lowe
complexity compared with element-wise calculations, {}

h?S a Iovlvertaccuracy because of the difference in the Ie@i and the weights assigned to different dependencies).
ot granuarity. In future work, these parameters should be directly deter-

In order to increase the automation of the modelyineq from the source code, the application domain, or
the method used in [21] to extract the mternal-chan%t;-ny other related data.

probabilities needs to be changed. We found that LOC gg, 05 possible solutions were discarded due to the

was the best indicator of internal changes, as it correlat%q;k of resources (e.g., CVS change logs for JFlex). These

be_st with mtgrnal changes in JFlex. A more thOrou_gjo:'olutions can be reconsidered when new case studies are
suite of metrics may be used for larger case StUd'eﬁnalyzed

Since use of LOC only provides structural data about the
software system, it should not be used as the only source
of predicting changes (e.g., consider a small method that ACKNOWLEDGEMENT

is modified often). Thus, the total probability of change 0fs 4thors gratefully acknowledge the contributions from

a class is calculated as a weighted average of probabilitisgfessor Amir K. Khandani for useful discussions and for
extracted from the source code (i.e., based on code metii€s .;ments on the first draft of this work

and dependencies from the UML diagram) and those based
on the time-normalized change history.

e used several parameters in our calculations, whose
ues were determined empirically (e.g., parameatén

REFERENCES

[1] D. Parnas, “Some software engineering principlétjuc-
V. CONCLUSIONS tured Analysis and Desigipp. 237-247, 1978.

) o [2] A. J. Riel, Object-Oriented Design Heuristics Addison-
This paper proposes a probabilistic approach to predict wesley, 1996.

changes in object-oriented systems. The proposed af8] “JFlex — The Fast Scanner Generator for Java,” 2007,

proach uses the axis of time to define and guide the http://www.jflex.der. _ _
prediction process [4] T. Zimmermann, A. Zeller, P. Weigerber, and S. Diehl,

. . . “Mining Version Histories to Guide Software Changes,”
We believe that this approach is noteworthy for two |EEE Trans. on Soft. Engvol. 31, no. 6, pp. 429-445,

main reasons. First, it attempts to address a problem that 2005.

has challenged the research community for several year$] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Pre-
namely the maintenance of object-oriented mission ctitica ~ dicting Source Code Changes by Mining Change History,"
systems. Second, it aims to devise a workbench in which Iz%EoE_ Trans. on Soft. Engvol. 30, no. 9, pp. 574-586,
the changes to the source code do not occur in a vacuu R. Amold and S. Bohner, “Impact Analysis - Toward
but can be evaluated and fine-tuned in order to address a Framework for Comparison,” ifProceedings of the
specific quality requirements for the new target system IEEE International Conference on Software Maintenance
such as enhancements in maintainability. (ICSM), 1993, pp. 292-301.

Wi | t v the d | d del . 47] M. Chaumun, H. Kabaili, R. Keller, and F. Lustman,
€ plan 10 apply the developed model on variou “Change Impact Model for Changeability Assessment in

other software systems in a larger scale to ensure the Opject-Oriented Software SystemStience of Computer
extensibility of the proposed approach. Programming vol. 45, no. 2-3, pp. 155-174, 2002.

13
© 2008 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 39

[8] L. Tahvildari and K. Kontogiannis, “Improving Design [29] B. Bollobas,Graph Theory: An Introduction Springer-
Quality Using Meta-Pattern Transformations: A Metric- Verlag New York, 1979.
Based Approach,Journal of Software Maintenance and[30] G. James, D. Burley, D. Clements, P. Dyke, J. Searl,

Evolution: Research and Practice (JSMEpI. 16, no. 4— and J. Wright,Modern Engineering Mathematic8rd ed.
5, pp. 331-361, 2004. Pearson Education Ltd, 2001.

[9] L. Li and A. Offutt, “Algorithmic Analysis of the Impact [31] W. H. PressNumerical Recipes in C: The Art of Scientific
of Changes to Object-Oriented Software,” Rmoceedings Computing 2nd ed. Cambridge University Press, 1992.

of the IEEE International Conference on Software Mainte-
nance (ICSM)1996, pp. 171-184. . . .

[10] L. Briand, J. Wust, and L. Lounis, “Using cOup”ng Mea_A“ R. Sharafat is a third year Undergraduate student
surement for Impact Analysis in Object-Oriented Systems(expected graduation in 2009) at the Faculty of Mathe-
in Proceedings of the IEEE International Conference ofnatics majoring in Computer Science and Combinatorics

Software Maintenance (ICSIM1999, pp. 475-482. it ; ; ;
[11] A. E. Hassan and R. C. Holt. “Predicting Change Propagg‘- Optimization at the University of Waterloo in Canada.

tion in Software Systems,” iProceedings of the IEEE In- He has completed internship work terms at Research In

ternational Conference on Software Maintenance (IcCSMMotion a DSP Firmware Developer and the University of
2004, pp. 284-293. Waterloo as a Research Assistant. His research interests

[12] “Version ~ Management with CVS for CVS include software evolution and testing.

1.11.21" 2005, free Software Foundation InC., \y Sharafat was a Member of the Canadian National
http://ximbiot.com/cvs/manual/. - - . . .

[13] S. Kim, T. Zimmermann, E. J. W. Jr., and A. ZeIIer,Tea}m in 2004 Interna_tlonal Physics _Olymp'ad’ is the
“Predicting faults from cached history,” iRroceedings of recipient of Natural Sciences and Engineering Research
the 29th International Conference on Software Engineeringouncil of Canada (NSERC) Fellowship, was awarded the
(ICSE) 2007, pp. 489-498. Fessenden-Trott Scholarship, and has consistently ranked

[14] T. L. Graves, A. F. Karr, J. S. Marron, and H. S.ag the top student in his class at the University of Waterloo.
Predicting fault incidence using software change history,

IEEE Trans. on Soft. Engvol. 26, no. 7, pp. 653-661, 1€ IS @ student member of IEEE.
2000.

[15] A. Mockus and D. M. Weiss, “Predicting risk of softwarepr, Ladan Tahvildari is an Assistant Professor in the

changes,"Bell Labs Technical Journalvol. 5, no. 2, pp. ; ; ;
169 — 180, April 2000, Department of Electrical and Computer Engineering at the

[16] H. Kagdi and J. |. Maletic, “Software-change prediction.UniverSity of Waterl_oo, a Visiting Scientist with Centre
Estimated+actual,” ilsecond International IEEE Workshopfor Advanced Studies at the IBM Toronto Laboratory,
on Software Evolvability (SER006, pp. 38—43. and the founder of the Software Technologies Applied

[17] V. Basili, L. Briand, and W. Melo, “A Validation of Object- Research Laboratory. She received her BASc from Iran

Oriented Design Metrics as Quality IndicatordEEE ; ; ;
Trans. on Soft. Engvol. 22, no. 10, pp. 751-761, 1996, University of Science and Technology, and her MASc

[18] S. Chidamber and C. Kemerer, “A Metrics Suite for Objec@‘_nd P_hD from University_of Waterloo in SOftWE_‘re Eh-
Oriented Design,1EEE Trans. on Soft. Engvol. 20, no. 7, gineering. She has established the area of Quality-Driven
pp. 476-493, 1994. Object-Oriented Re-engineering which is a novel approach

[19] T. Girba, S. Ducasse, and M. Lanza, “Yesterdays Weathgr improving maintainability and performance of object-

Guiding Early Reverse Engineering Efforts by Summas . ;
rizing the Evolution of Changes.” iProceedings of theaorlented legacy systems. Her research has appeared in over

IEEE International Conference on Software Maintenancg0 peer-reviewed pUblicatiO_nS' _Dr. Tahv"_dari has been
(ICSM), 2004, pp. 284—293. on the program and organization committees of many
[20] E. Arisholm, L. Briand, and A. Foyen, “Dynamic Couplinginternational IEEE/ACM conferences. She is Program Co-
Measurement for Object-Oriented SoftwartEEE Trans. Chair of IEEE ICSM2007 in Paris, Working Sessions and

on Soft. Eng.vol. 30, no. 8, pp. 491-506, 2004. ; ; _
[21] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “PrTOOIS Chair of IEEE ICPC2006 in Greece, Program Co

dicting the Probability of Change in Object-Oriented Sys‘-&ha?r of IEEE STEP2004 i.n Chicago, and Workshops
tems"’|EEE Trans. on Soft. Engv0|_ 3]_7 no. 7’ pp. 601— Cha|r Of IEEE WCRE2004 n the Netherlands. She haS
614, 2005. served as Chair of the Computer Society (CS) in the
[22] F. Xia, “A Change Impact Dependency Measure for PrqEEE Local Chapter since 2004. Her accomplishments

dicting the Maintainability of Source Code,” Proceedings ; ;
of the Annual International Computer Software and Applihave been recognized by various awards. Recently she

cations Conference (COMPSAG)l. 2, 2004, pp. 23-24. has been honored with the prestigious Ontario’§ Early
[23] S. RossA First Course in Probability Macmillan College Researcher Award (ERA) to recognize her work in self-
Pusblishing, Inc., 1994. adaptive software.
[24] T. J. McCabe, “A complexity measurelEEE Trans. on
Soft. Eng. vol. 2, no. 4, pp. 308-320, 1976.
[25] W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability,” Journal of Systems and Softwarel. 23,
no. 2, pp. 111 — 122, November 1993.
[26] “Software Architecture Design, Visual UML &
Business Process Modeling - from Borland,” 2007,
http://www.borland.com/us/products/together/index.html.

[27] “Creole - The CHISEL Group,” 2007,
http://www.thechiselgroup.org/creole/.
[28] “Rigi Group Home Page/,” 2007,

http://www.rigi.csc.uvic.ca/.

14
© 2008 ACADEMY PUBLISHER

