
1

Change Prediction in Object-Oriented
Software Systems: A Probabilistic Approach

Ali R. Sharafat and Ladan Tahvildari
Dept. of Electrical and Computer Engineering

University of Waterloo, Ontario, Canada, N2L 3G1
{arsharaf, ltahvild}@uwaterloo.ca

Abstract— An estimation of change-proneness of parts of a
software system is an active topic in the area of software
engineering. Such estimates can be used to predict changes
to different classes of a system from one release to the next.
They can also be used to estimate and possibly reduce the ef-
fort required during the development and maintenance phase
by balancing the amount of developers’ time assigned to
each part of a software system. This research work proposes
a novel approach to predict changes in an object-oriented
software system. The rationale behind this approach is that
in a well-designed software system, feature enhancement or
corrective maintenance should affect a limited amount of
existing code. Our goal is to quantify this aspect of quality
by assessing the probability that each class will change in a
future generation. Our proposed probabilistic approach uses
the dependencies obtained from the UML diagrams, as well
as other code metrics extracted from source code of several
releases of a software system using reverse engineering
techniques. These measures, combined with the change log
of the software system and the expected time of next release,
are used in an automated manner to predict whether a class
will change in the next release of the software system. The
proposed systematic approach has been evaluated on a multi-
version medium sized open source project namely JFlex,
the Fast Scanner Generator for Java. The obtained results
indicate the simplicity and accuracy of our approach in the
comparison with existing methods referred in the literature.

Index Terms— measurement applied to SQA and V&V,
reverse engineering, software maintenance, probability and
statistics, software change prediction

I. I NTRODUCTION

Software engineering deals with “the construction of
multi-version software” which will undergo a number of
revisions either to enhance functionality or to fix bugs [1].
The modularity of object-oriented programs aims to reduce
the impact of addition of new functionality or bug fixes
in such systems. If the modification of a class method
imposes code changes to a number of existing classes,
the object-oriented design will be of limited value [2]. In
a nutshell, predicting source code changes has become a
crucial factor, since a number of studies conclude that the
largest percentage of software development effort is spent
on rework and maintenance.

Based on “A Probabilistic Approach to Predict Changes in Object-
Oriented Software Systems,” by Ali R. Sharafat and Ladan Tahvildari,
which appeared in the Proceedings of the 11th European Conference
on Software Maintenance and Reengineering (CSMR), Amsterdam,
Netherlands, March 2007.

This work was funded by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

This research work aims to address the problem of
correctly predicting changes in a software system. Cor-
rect prediction of changes can help managers to allocate
resources more appropriately; this results in a reduction
of costs associated with software development and mainte-
nance, as well as more evenly distributed workload among
the developers and testers. Correct prediction of changes
also brings some insight on the design of the software. For
example, if changes in one module have a considerable
effect on other parts of the system, then the coupling
between the modules may need to be reduced. We aim to
determine the probabilities of change of classes within a
system, which can also be used to assist maintenance and
to observe the evolution of stability through successive
generations.

The goal of this research is to predict the probability
that each class will change in a future generation. Our
proposed probabilistic approach can be applied when a
few successive versions of an application are available. In
order to calculate these probabilities, axis of time, through
which a change in one class can affect another class of
the design, is identified. We apply our technique on an
object-oriented open source project, JFlex [3]. Obtained
results validate that the proposed analysis offers improved
prediction accuracy compared to a model that simply
considers information from changes in past generations. It
should also be noted that our proposed model provides the
prediction in an automated manner. This is a considerable
improvement over the related work, as discussed later in
the paper.

This paper is organized as follows. Section II discusses
previous approaches which directly or indirectly address
the same problem in the literature. The analysis process
for predicting source code changes along with some back-
ground information about the probability theory and the
notation used in this paper are presented in Section III. A
case study and its statistical analysis results are discussed
in Section IV. Finally, Section V provides conclusions and
Section VI gives some insight into future work.

II. RELATED WORK

Several researchers have proposed the use of historical
data related to a software system to assist developers gain
a better understanding of their software system and its
evolution. Zimmermannet al. [4] and Ying et al. [5] use

26 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

data gathered from logs of version control systems in
order to predict changes in several open source software
systems. Their goal is very similar to ours, but they exploit
a much larger set of input data than we do. Due to this
fundamental difference, we do not compare our methods
with [4] or [5]

Arnold and Bohner give an overview of several formal
models of change propagation [6]. The models propose
several tools and techniques that are based on code de-
pendencies and algorithms such as slicing and transitive
closure to assist in code propagation.

In [7], a change impact model has been proposed for
changeability assessment with primary goal to investigate
the relationship between existing design metrics (e.g.,
Weighted Methods per Class) and the impact of change.
Although it is useful to know which classes would be
impacted by a given change, one has to know the actual
changes that have occurred in a system to assess the
probability of change for a certain class. The relationship
between metrics and maintainability has also been studied
in [8]. In [9], a set of algorithms that determine what
classes are affected by a given change is proposed. The
methodology represents a system as a set of data depen-
dency graphs, which is an effective approach for object-
oriented designs. However, as in any change impact model,
reports about the potential impact of a given change can
be generated only after the user explicitly specifies the
changes.

Briand et al. [10] empirically investigate whether cou-
pling measures are related to ripple effects, using a com-
mercial OO system. The aim is to rank classes according
to their probability of containing ripple effects, while the
approach proposed in this paper aims at identifying classes
that are highly probable to change in a future generation,
regardless of whether the change is internal or due to a
ripple effect. An advantage of using coupling measures
is that they are inherently related to ripple effects since
common changes are usually due to relationships between
classes. However, ripple effect-prone classes cannot be
used for predicting whether they will change in a future
release since changes originating in the class itself are
neglected.

Hassan and Holt [11] tackle this problem in a different
manner. They devise a technique in which a stand-alone
system learns from changes to a software product, by
associating the files that change in one commit [12] to
a version control system. As developers modify the code
in parts of that product, their proposed learning system
suggests other files which may need to be modified due to
the propagation of changes. Kimet al. [13] use a similar
method by caching classes that have recently caused
changes and faults. These classes along with thosenearby
them are considered prime candidates for causing faults
soon.

Graves et al. [14] have a slightly different goal of
predicting faults, which are a subset of changes, in aged
software systems. They find the change-history of the
system to be a better predictor than code metrics. In

that model, Graveset al. assign weights to the perceived
changes, with the most recent receiving the most. These
weighted values provide a trend that is used to predict the
number of faults in an upcoming period.

Mockus and Weiss [15] attempt to predict faults in
a software system based on information extracted from
changes to the system (e.g., lines of code modified, the
changed components, etc.). This approach differs from
many of other the related work in the respect that it uses
changes to the state of the system, rather than the state
itself. The authors apply their method on several updates to
a software system to predict likely faults in future updates.

Kagdi and Maletic [16] propose combining results from
impact analysis with those from mining source reposito-
ries [4] to achieve a better accuracy in prediction of future
changes. A case study has not been presented in that work,
but the foundations of the framework are described there.
We use a similar method and combine the metric-based
and history-based probabilities to predict changes.

The work of Basiliet al. [17], which focuses on vali-
dation of a software metrics suite [18], gives correlations
between values of a software metric suite and the number
of bugs and fixes that appear in a software system. While
this study is not directly related to prediction of changes,
it does provide useful information as to which metrics are
good indicators of a change due to a software bug.

A recent work of Girbaet al. [19] proposes an approach
to summarize the changes in the history of a system that
can offer a solid basis for starting a reverse engineering
effort. The methodology consists of identifying the classes
that were changed the most in the recent history and
at the same time checking whether the same classes are
among the most changed ones in the successive versions.
However, only the addition or removal of methods is
considered as changes. Arisholmet al. [20] investigate
the use of dynamic coupling measures as indicators of
change proneness. Their approach is based on correlating
the number of changes to each class (a continuous vari-
able which represents change proneness) with dynamic
coupling measures and other class-level size and static
coupling measures. Consequently, it cannot be considered
a prediction model since no attempt is made to correlate
the proposed measures with changes/no changes in the
next generation. In addition, requirement changes have
been factored out since they are not driven by design
characteristics.

Our research was inspired by the work of Tsantaliset
al. [21], in which they propose a technique for prediction
of changes in an object-oriented system. Their underlying
principles are very similar to that of our work. Tsantaliset
al. divide changes to a class into two categories: internal
and external. Internal changes to a class are those that are
initiated within that class, and external changes are those
that occur due to changes in neighboring classes. Thus,
the probability of change of a class is the probability of
the union of internal and external changes.

The values ofprobability of internal change of a class
in [21] are defined as the percentage of past releases

2

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 27

© 2008 ACADEMY PUBLISHER

in which there was an internal change in that class.
Classification of changes into internal and external is done
by manual inspection of the source code from previous
releases of the software product which limits extensibility
of that model. In Section III-A, we discuss a technique
that estimates the probabilities of internal change, basedon
OO metrics that can readily be extracted from the source
code. Our proposed approach automates the process of
calculating the probability values.

External changes to a classA depend on two events:
i) a neighboring class ofA changing, and ii) that change
propagating to classA. Thus, to calculate the probability
of an external change in classA due to a change in
its neighborB, the probability of a change propagating
from B to A has to be known. Tsantaliset al. assign
a uniform probability value for propagation of changes
between all pairs of classes that are dependent on each
other (two classes are defined to be dependent, if there
exists a direct dependency between them in the UML
diagram of the software system). That probability value
is defined as the percentage of changes in the past re-
leases of the system that have propagated, and is obtained
by manual inspection of changes. In Section III-B, we
propose methods to estimate the propagation probabilities
between pairs of classes, based on the number and types
of dependencies between them. Our methods not only
automate the process of obtaining these probabilities, but
also yield more accurate predictions about changes in the
next release of the system.

The construction presented in [21] leads to solving
a nonlinear system of equations to get the probabilities
of change. Solving that system of equations becomes
difficult, if there exists a set of classes which form a cycle
in the dependency graph of the software system. Tsantalis
et al. present an approximation method to bypass that
difficulty. We propose additional techniques in Section III-
C to deal with cyclic dependencies. We also bring into
the picture the axis of time, where we consider the time
between consecutive releases as a parameter that will
affect the probabilities of change (see Section III-D). We
observe through empirical evaluation, that the inclusion
of time as a parameter results in better predictions about
changes in future releases.

Prior to [21], Xia and Srikanth [22] introduced the
idea that a change initiate in a class and thenripples to
that class’s neighbors with a probabilityr. Thus, as we
get further from the changed class, the probability of a
propagated change reduces by factors ofr. The value of
r mirrors the conditional probabilities defined in [21].

III. T HE PROPOSEDPROBABILISTIC APPROACH

In order to determine which classes will change in the next
release of a software system, we propose a probabilistic
approach which uses the change history as well as the
source code of the system. For notational consistency,
we will use P(E) to denote the probability of eventE
throughout this paper. As shown in Fig. 1, the first stage
of the process estimates the likelihood that a class will be

modified due to changes originating from the class itself.
Such an estimation can be obtained based on a metrics
suite that can measure the relevant features of the source
code. We call this value theprobability of internal change
of theith class, i = 1, 2, . . . , N , denoted byPs(IC), where
the subscripts indicates that the probability value is based
on the source code. At the second stage of the process,
we extract the dependencies between classes using UML
diagrams representing the design of the system. Based on
the extracted data, we approximate the probabilities that a
change would propagate from one class (j) to another class
(i). This value is refereed as thepropagation probability,
αij .

Ideally, we would like to map each kind of dependency
to a unique propagation probability value, but when we
have multiple dependencies between classes, we need to
use alternative methods to obtain a single propagation
probability between pairs of classes. As shown in Fig. 1
at the third stage of the process, the values of allPs(IC)
and αij are used to find the total probability of change
of the class obtained from source code namelyPs(TCi).
This probability represents the likelihood of a class being
modified due to changes originating from itself, and those
which propagate from the neighboring classes. It is as-
sumed that internal and propagated changes are two inde-
pendent events. Furthermore, we assume that propagation
of changes from different classes are independent as well.
These assumptions simplify the calculation of intersection
and union of those events. Using Bayes’ theorem,Ps(TCi)
can be calculated as follows :

Ps(TCi) = P

ICi ∪

⋃

j 6=i

Ci|j ∩TCj

 , (1)

where ICi represents an internal change in classi, with
Ps(ICi) representing the probability of that event; Ci|j

represents the propagation of a change from classj to i,
with αij representing its probability; and TCi represents
the total change (internal or propagated) in classi, with
Ps(TCi) as its probability. Again, the subscript s indicates
that the probability values are based on the source code.

As an example, consider a simple system consisting
of three classes,A, B, and C indexed byi = 1, 2, 3,
which form a chain of acyclic dependencies between
them namelyC inherits B, which inherits A, as shown in
Fig. 2. We denote classes by circles and dependencies with
arrows which point in the direction of change propagation.
Assume that all classes have a probability of internal
change of 0.5 and that the the propagation probabilities

Figure 2. An example of a simple system with three classes forming a
chain of dependencies.

3

28 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

Normalization of probabilities of
change, based on history

(Ph(TC)) with respect to time

Estimating time-normalized

probabilities of internal change

(Ps(IC))

Source code

History changelog

Resolving multiple

dependencies

Ps(IC)

Dependencies from UML

Ph(TC)

Calculating probabilities

of change, based on

source code (Ps(TC))

Ps(IC) & dependencies

Predicting changes
Ps(TC)

Change/No Change
(Axis of Time)

(Element-wise calculation

OR

Class based calculation)

(Element-wise calculation,

Normalization of dependencies,

 OR Merging dependencies)

(Bayes’ law + cyclic dependencies)

Figure 1. The Block Diagram of the Proposed Probabilistic Process to Predict Changes

are given byα21 = α32 = 0.25. Thus, assuming that the
events Ci|j and TCj are independent for alli and j, the
probabilities of change are calculated as follows :

Ps(TC1) = Ps(IC1) = 0.5

Ps(TC2) = P
(

IC2 ∪
(

C2|1∩TC1

))

= Ps(IC2) + α21 · Ps(TC1) −

Ps(IC2) · α21 · Ps(TC1)

= 0.5625

Ps(TC3) = P
(

IC3 ∪
(

C3|2∩TC2

))

= Ps(IC3) + α32 · Ps(TC2) −

Ps(IC3) · α32 · Ps(TC2)

= 0.5703

Note that the calculations were done in a top-down fashion
(we calculated probabilities of change in a serial manner,
starting withA and finishing withC). This can be done
as long as the dependency graph is acyclic. We present
methods in Section III-C to calculate the probabilitis when
the graph contains cycles.

As shown in Fig. 1, the history change-log of the
software system can be used to get another measure of the
probability of change. In order to make use of this infor-
mation, we convert the raw probabilities of change into
time-normalized values. The raw probability of change
of a class is defined as the percentage of past releases
in which that class was changed. The time-normalized
probability provides the probability of change of a class
in a future release by using the raw probability value
and taking into account the length of the Time Between
Releases (TBR) of the past revisions and the expected
Time To Release of the next version of the system (TTR).
In other words, we first attempt to estimate the probability
of change of a class inunit time and then use the TTR
value to estimate the probability of change of that class in
the next release; larger values of TTR imply that a change
is more probable. We refer to this history-based time-
normalized probability asPh(TCi), where the subscripth

indicates that the probability value is based on the history
of the system.

Note that neitherPs(TCi) nor Ph(TCi) can provide
reliable information alone. This is because the former only
considers the structure of the source code, and the latter
is only based on the nature of the source code by using
the history change log. Thus, after calculating the values
of Ps(TCi) andPh(TCi) for all classes, we average those
values and predict as to whether or not each class will
change in the future release.

Our approach also uses several other measurements to
provide a comparison with other solutions. While the list
is as follows, it should be noted thatOverall Accuracyis
considered the most important measure :

• False Positive Ratio (FPR): The percentage of cases
where a class was predicted to change, but in fact it
did not.

• False Negative Ratio (FNR): The percentage of
cases where a class was predicted not to change, but
in fact it did.

• Sensitivity: The percentage of changes correctly pre-
dicted. It is equal to1 − FNR.

• Overall Accuracy: The weighted percentage of
changes and no-changes correctly predicted. It is
given by1 − FNR+FPR

2
.

The details of the proposed methods are elaborated
further in the following sections.

A. Estimation ofPs(IC)

In [21] the probabilities of internal change are obtained by
manual inspection of the source code from one revision
to the next. While this procedure is applicable to small
software systems, it becomes very time consuming as the
size of the system increases. In this section, we propose
methods that will automate this procudure and will use the
code metrics and the history-log of the system to provide
estimates of the abovementioned probability values. Later,
we will show that these methods give prediction that are
very close to those obtained by manual inspection.

4

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 29

© 2008 ACADEMY PUBLISHER

The nature of the source code provides useful infor-
mation regarding the stability of the software system. In
order to find an estimate forPs(IC), we use a suite of
metrics along with a method similar to that ofHazard
Rate Functionsdescribed in [23].

Assume that we have a real valued metric functionX :
S 7→ [0,+∞), whereS is the set of all theelementsin
the source code (methods, variable, classes, etc.). Assume
that we can extract probabilities of internal changes of an
element, from its corresponding metric valueX.

Let us partition the axis corresponding to the values
of X into small (non-overlapping) segments of length dx
and compute the probability that we have a change when
the value ofX falls in (x, x + dx] while there has been
no change forX = x. To do this, letF (x) denote the
probability of change if the value of the metricX is equal
to x. ExpressingF (x) as the sum of the probabilities with
valuesf(x)dx (union of disjoint events), we have

F (x) =

∫ x

0

f(x)dx

We also have,

P(change forX ∈ (x, x + dx]|no change forX = x)

=
P(change forX ∈ (x, x + dx] ∩ no change forX = x)

P(no change forX = x)

≈
f(x)

1 − F (x)
dx

Now, Let

λ(x) =
f(x)

1 − F (x)

=
d
dx

F (x)

1 − F (x)
.

Integrating both sides gives

F (x) = 1 − exp

(

−

∫ x

0

λ(x) dx

)

. (2)

It is assumed thatλ(x) is a constant-value function.
This would simplify the integration in (2) to

F (x) = 1 − e−λx. (3)

The probability function,F , does not need to be time-
normalized as its input only depends on the structure of
the code. Therefore, we can assume thatF gives the
probability of change of a class in unit time if a suitable
value forλ is chosen.

Assuming that there aret units of time until the next
release (i.e., TTR =t), we have

ICi =

t
⋃

τ=1

ICi,τ , (4)

where ICi is an internal change to classi over a period
of length t unit times, and ICi,τ is an internal change in
the jth unity period. Assuming that internal changes in
different periods are independent events, we combine (3)

and (4) to get

Ps(ICi) = 1 − e−λxit, (5)

wherexi is the metric value of classi. We can definexi

as a combinatin of OO metrics that are good indicators of
change-proneness of a class. A simple way of doing so,
is by lettingxi to be a linear combination of code metrics
corresponding to classi, with each metric weighted ac-
cording to its correlation with past changes. We can find
a suitable value forλ by using some sample values and
then predicting changes in the past releases for each value.
We choose the value gives predictions that correleate best
with the occured changes.

In our approach, we need to select a set of object-
oriented metrics that will be used to assess the changes.
In order to make a selection, we first need to establish
a set of criteria that should guide the selection process.
Establishing these criteria requires us to consider and
identify which of the metrics can be successfully used
in order to assess the changes and to collect proper
information from the source code features at the method
or class level (depending on our choice of the level of
granularity). In this respect, we focus on two criteria : i) the
theoretical evaluation of the definition of the metric, and
ii) the aspects of changes that we plan to predict.

Table I illustrates our selected metrics at method level
which will be used in the proposed approach. Note that
as the value of the metrics in Table I increases, so does
the probability of change of the methods [5], [21]. Metrics
in Table I can be extracted using Borland Together [26].
We have chosen to use metrics at method and data-member
level, as they provide more detail about the structure of the
code. We can also easily define the corresponding class-
level metrics by aggregating the lower level metrics.

B. Resolving Multiple Dependencies

The propagation probabilities are dependent on the type
of the relationship between two classes. For the sake
of simplicity, we wish to assign a single propagation
probability to each kind of dependency. Furthermore, we
want to combine multiple dependencies between classes
to extract a single propagation probability between them
and exploit (1) to find the probabilities of change. Re-
lationships between classes and their respective elements
are extracted using an Eclipse plug-in, called Creole [27].
A list of extracted relationships is presented in Table II.
These relationships are exported using the Rigi Standard
Format (RSF) [28], which is a set of tuples that take
the following format: (FromElement, ToElement, Type of
Relation).

Assigning propagation probabilities becomes problem-
atic when we have more than one dependency between
two classes and their elements, as the above notation is
only defined for single dependencies. In order to make the
most use of the available data, we seek to incorporate all
dependencies between any two classes when estimating
the propagation probability between them. We propose
three techniques to bypass this problem: two rely on

5

30 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

TABLE I.
A M ETRIC SUITE USED AT METHOD LEVEL

Metric Name Description Definition
AID Access of Import Data Number of data members accessed in a method directly or via

accessor-methods, from which the definition-class of the method
is not derived.

ALD Access of Local Data Number of the data members accessed in the given method, which
are local to the class where the method is defined.

CC [24] Cyclomatic Complexity Number of possible paths through an algorithm by counting the
number of distinct regions on a flowgraph, meaning the number
of if, for, andwhile statements in the method’s body.

LOC Lines of Code Number of lines of code in a method, including comments and
white-lines.

MNOB Maximum Number of
Branches

Maximum number ofif-else and/or case branches in the
method.

MPC [25] Message Passing Coupling Number of method call expressions made into body of the
measured method.

NIC Number of Import Classes Number of external classes from which the given method uses
data.

NOLV Number of Local Variables Number of local variables are declared within a method.
NOP Number of Parameters Number of parameters that build the signature of a method.

TABLE II.
EXTRACTED RELATIONS USINGCREOLE

Relation Type
accesses method to attribute
calls method to method
casts to type method to class
contains package to class
creates method to class
extended by class to class
has parameter type method to class
implemented by class to class
is of type attribute to class
overridden by method to method

keeping the probability calculations at the class level,
while the other suggests performing calculations at the
method and data-member level.

1) Normalization of Dependencies:In this method,
a mapping functionm is used to map the number of
dependencies between classes to a conditional probability
value; since dependencies are from anelement(i.e., data-
member and method) to anelement, m takes the following
form :

m : {0, 1, 2, . . . , n(Elements ofA) × n(Elements ofB)}

7→ {z ∈ R| 0 ≤ z ≤ 1}

where A and B are two classes withx dependencies
between them. One simple way of finding a propagation
probability is to normalize the number of dependencies by
definingm as

m(x) =
x

n(Elements ofA) × n(Elements ofB)
. (6)

This approach provides a very simple technique for
obtaining conditional probability values from the rela-
tionships. On the other hand, the number of depen-
dencies between two classes rarely gets even close to
n(Elements ofA) × n(Elements ofB).

2) Element-wise Calculation:In this method, the focus
moves to theelementsof a class which means instead
of calculating the probability of change of a class, the
probabilities of change of the elements of that class are
calculated. Then, the probability of change of a class is
the probability of the union of changes in the elements
of that class. Note that there is at most one dependency
(i.e., call, access, and overriding) from one element to
another in a software system. Thus, moving the focus from
a class to its elements removes the problem with multiple
dependencies.

Using this method, we keep the simple framework of
assigning uniform propagation probabilities to each type
of dependency. In order to represent the structure of an
object-oriented system, we consider dependencies between
elements of one class to be stronger than that between
elements of different classes. For example, changes to
a method would probably affect the dependent elements
within the same class more than those in other classes.
Thus, we assign a larger propagation probability value to
a dependency between two elements of the same class,
than the same type of dependency between elements of
different classes.

Element-wise calculation increases the number of un-
knowns in the non-linear system of equations that needs
to be solved by 20 to 30 times. This increase, in turn,
results in more complexity.

6

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 31

© 2008 ACADEMY PUBLISHER

3) Merging Dependencies:Multiple dependencies be-
tween classes can be treated as independent conditional
probabilities and thus can be merged by simply finding
the union of those events. Therefore, forn dependencies
between classesA and B, with conditional probabilities
α1, α2, . . . , αn, the equivalent probability of propagation
is

β = 1 − (1 − α1)(1 − α2) . . . (1 − αn). (7)

This method allows us to collapse multiple depen-
dencies between classes into one and to compute the
probabilities of change at the class level as opposed to
the more fine grained analysis in element-wise calculation.
While the computational complexity is reduced due to the
smaller size of the system of equations, we lose some
accuracy when we merge dependencies compared to using
element-wise calculation.

Note that all the above methods rely solely on the
dependencies that are obtained from the UML diagram of
the system. The proposed methods use these dependencies
in a systematic way to provide an estimate of propagation
probabilities; hence, these methods do not require any
human intervention and can be fully automated. This is
a considerable improvement with respect to [21] where
a single propagation probability was used to describe
all dependencies; that value was obtained by manual
inspection of all the change logs of the system.

C. Calculation ofPs(TCi) and Cyclic Dependencies

As explained in Section III, we use (1) to calculate the
values of Ps(TCi) for all classes. Assuming that that
changes in different classes are independent, we can (1)
into a nonlinear equation. Note however, that we cannot
necessarily compute these values in a top-down fashion
due to cyclic dependencies in the UML diagram.

Tsantaliset al. [21] use an approximation technique to
get around this problem. They identify the cycles in the
graph using a spanning tree [29], and temporarily remove
edges from the graph until there are no cycles left. Then,
the probabilities of change can be easily computed. After
this stage, the removed edges are restored, one by one, and
the probabilities of change of the nodes adjacent to those
edges are updated. This method provides a close approxi-
mation to the true probabilities of change, but the results
seemed to be biased; during few test runs, the estimated
probabilities were always smaller than the true values. In
order to get a better approximation, our approach considers
three techniques. While all of them rely on solving a
system of equations to get the probabilities, two techniques
use simplifying assumptions to reduce the complexity of
the calculations by making the system of equations linear
or by making the dependency graph acyclic. The details
of the three techniques are elaborated further as follows.

1) Nonlinear System of Equations:This approach
uses (1) with no major simplification to calculate the
probabilities of change. The only assumption associated
with this approach is that changes in different classes are

Figure 3. An example of circular dependencies.

independent events. Assuming that events of change in
different classes are independent, (1) can be negated and
written as :

1−Ps(TCi) = (1 − Ps(ICi))×
∏

j 6=i

(1−αijPs(TCj)). (8)

Using (8), a system of nonlinear equations can be
constructed whose solution is the set of probabilities of
change of the classes. Note that due to the nonlinearity
of the system, it is more difficult to solve than linear
systems. We use an implementation of Newton-Raphson
Method [30] to solve a nonlinear system of equations in
C++ given in [31].

2) Linear System of Equations:Similar to the previous
method, this approach is based on (1). In this approach,
however, it is assumed that changes in a class due to
different sources aremutually exclusive. Based on this
assumption, (1) can be written as

Ps(TCi) = Ps(ICi) +
∑

j 6=i

αijPs(TCj). (9)

Note that (9) is linear and is fairly easy to solve. Nev-
ertheless, the simplifying assumption makes the solution
to the linear system of equations an approximation to the
solution of (8).

3) Depth First Search Graphs:A problem that is
applicable to both of the previous methods is that they
calculate probabilities for the steady state. For example
consider a simple program with two classes with cyclic
dependencies, as shown in Fig. 3.

ClassesA and B indexed by i = 1, 2 have in-
ternal probabilities of change ofPs(IC1) = 0.1 and
Ps(IC2) = 0, respectively. The probabilities of propaga-
tion areα12 = α21 = 1.0. Intuitively, we would expect
to have Ps(TC1) = Ps(TC2) = 0.1, because the only
cause of change in the system can come from an internal
change inA, which has a probability of 0.1. However, the
linear system of equations becomes degenerate and gives
no answers, and the nonlinear system givesPs(TC1) = 1.0
and Ps(TC2) = 1.0; these values are out of our range of
0.1. Therefore, both the linear and the nonlinear systems
give incorrect probability values.

7

32 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

GET-ALL -PROBABILITIES()

1 for each vertexv ∈ V (G)
2 do setvisited[i] = WHITE ∀i ∈ V (G)
3 prob[v] = GET-PROBABILITY (v)
4 return prob

GET-PROBABILITY (v)

1 if visited[v] = BLACK

2 then return p[v]
3 visited[v] = RED

4 p[v] = 1 − internal[v]
5 for each vertexu ∈ V (G)
6 do if visited[u] 6= RED

7 then p[v] = p[v] × (1 − dep[v, u]×
GET-PROBABILITY (u))

8 visited[v] = BLACK

9 p[v] = 1 − p[v]
10 return p[v]

Figure 4. The Depth First Search algorithm (DFS) is used for calculating
probability values, whereG is a directed dependency graph withV (G)
as its vertices (classes);internal[v] denotes the probability of internal
change ofv; dep is a 2-dimensional array wheredep[v, u] = αvu;
prob[v] is the probability of change ofv, andvisited[v] denotes whether
classv has or has not been visited (BLACK and WHITE respectively), or
if it is being visited (RED).

This overestimation is due to the fact that we are
implicitly taking into account the possibility that a change
in A will affect it, throughB, over and over. We counter
this, by constructing a depth-first search subgraph when
calculating the probabilities of change.

An informal description of the algorithm is as follows:
consider a classA whose probability of change we are
computing. We start constructing our tree by addingA

as a node. Then, we add all classes whichA depends
on as children ofA. We repeat this procedure until there
are no additional classes to be added to the tree. Then,
we calculate the probability of change ofA using only
the nodes and dependencies in the constructed subgraph,
starting from the leaf nodes of the graph (those that do not
depend on any other nodes). Calculation of probabilities
should be straightforward as the constructed graph is
acyclic by nature. A detailed description of the algorithm
is given in Fig. 4; probabilities of change are obtained by
calling the GET-ALL -PROBABILITIES procedure.

Using the DFS method, for each classi, we eliminate
the cycles from the dependency graphs that are connected
to i. This makes the portion of the graph that is relevant
to finding the probability of change ofi acyclic, and
hence, the system of equations that gives the probability
of change ofi can be solved in a top-down fashion.

D. Axis of Time

As explained earlier, we need to normalize the raw proba-
bility values from the change history with respect to time.
These raw probability values refer to the percentage of
releases in which a class is changed. The values of Time
Between Releases (TBR) and Time To Release (TTR) play

critical roles in determining the probabilities of change
based on history log. When time between consecutive
releases is very short, an overestimation can be observed;
the opposite is also true when this period is longer than
the average. Note the proportionality between TBR and
False Negative Ratio (FNR), and the inverse relationship
between TBR and False Positive Ratio (FPR). In order
to find Ph(TCi) in a unit time (e.g., one day), several
methods were considered.

A key assumption associated with all of these methods
is that internal changes made in two different time periods
are independent of each other. The following sections
elaborate further how our approach can deal with the axis
of time.

1) Simple Conditional Estimation:This estimation
method uses Bayes’ law to find a mean probability of
change

p =

∞
∑

t=1

P(Change|T = t)P(T = t), (10)

wherep denotes the average probability of change in unit
time, andP(Change|T = t) indicates the probability of
change in unit time, given that time between releases
(TBR) is equal tot unit times. Using Bayes’ theorem and
(10) to calculate the probability of no-change gives

1 − p =

∞
∑

t=1

P(No Change|T = t)P(T = t). (11)

If the probability of a class not changing in one unit
time is P(No Change|T = t) and assuming that changes
in different time periods are independent events, the prob-
ability of that class not changing in a period of lengtht

is

P(No Change|T = t) = P(No Change|T = t)
t
. (12)

Simplifying (11) using (12) gives

p = 1 −
∞
∑

t=1

t

√

P(No Change|T = t)P(T = t). (13)

Using this method, the probabilities of change in unit
time are fairly easy to compute. However, in order to get a
good estimate we need at least two releases for each time
interval (otherwiseP(No Change|T = t) will be either 0
or 1); this means that quite a large number of samples are
needed.

2) Logarithmic Estimation:This technique attempts to
calculate the probability of no-change in unit time using
the observedprobability of no-change between consecu-
tive releases. The observed probability is the probability
of no-change in a given time interval and can be extracted
from the change history of classes. The observed proba-
bility of no-change,qo, for a class with a TBR of length
t is

qo(t) = qt, (14)

whereq is the probability of no-change in unit time and

8

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 33

© 2008 ACADEMY PUBLISHER

TABLE III.
PROPAGATION PROBABILITY RESULTSUSING THE PIECEWISE PDF

Simple Conditional
Estimation

Logarithmic Estimation Root of Polynomial

p pest std pest std pest std
0.1 0.1191 0.0656 0.1033 0.0464 0.1055 0.0485
0.2 0.2432 0.0972 0.2050 0.0612 0.2125 0.0655
0.4 0.5313 0.1628 0.3873 0.1078 0.4144 0.1174
0.8 0.9579 0.0702 0.8481 0.2019 0.8751 0.1700

is assumed to be constant for all periods. Assume that
the TBRs have taken values oft1, t2, . . . , tn over the past
releases. Taking the logarithm of both sides of (14) and
summing them over all periods gives

n
∑

i=1

ln qo(ti) =

n
∑

i=1

ti ln q, (15)

wheren is the number of periods. A simple averaging of
(15) yields

ln qo = t ln q. (16)

Note thatln qo cannot be efficiently computed when the
number of past releases is small. In that case,qo(ti) may
be zero for someti. However, these values are non-zero
when we have a large number of past releases, and if the
system is stable enough, most of the values ofqo(ti) will
be close to 1.

For large values ofqo, we have

ln qo ≈ qo − 1.

Thus, the following estimation can be used :

ln qo ≈ ln qo. (17)

Sinceqo = 1 − P(Change), it can be easily computed
from the given data. Thus,q is

q = exp

(

ln qo

t

)

. (18)

This method involves very simple calculations and its
complexity does not increase much as the periods get
longer or the number of revisions increases.

3) Root of Polynomial:The average probability of no-
change is

P(NC) =

∞
∑

t=1

P(No Change|T = t)P(T = t). (19)

Assuming that the probability of change in unit time is
constant across all releases, the conditional probabilityon
the right-hand side of (19) can be decomposed and written
using the daily probability of change. This gives

(

∞
∑

t=1

qt
P(T = t)

)

− P(NC) = 0, (20)

whereq = 1 − p. The values ofP(NC) andP(T = t) for
all ts can be easily extracted from the given data, making

(20) a polynomial whose degree is equal to the longest
TBR; thusp can be obtained by finding the roots of (20).
A possible problem with (20) is that it may seem not to
have any real roots, or to have more than one real root.
However, by Theorem 3.1, it has exactly one root between
zero and one.

Theorem 3.1: Consider the functiong(x) defined by
g(x) =

∑n

i=1
µixi − C, where0 ≤ C ≤ 1, 0 ≤ µi ≤ 1

for all i and
∑n

i=1
µi = 1. Then,g(x) has exactly one

non-negative real root and it lies between 0 and 1.
Proof: Since the polynomialg(x) has non-negative

coefficients, it is non-decreasing whenx ≥ 0. Thus, g
has at most one real non-negative root. We note that
substitutingx = 0 yields−C which is less than or equal to
zero, and substitutingx = 1 yields 1 − C, which is non-
negative. Therefore, by the Intermediate Value Theorem
(IVT) [30], the polynomial has at least one root between
0 and 1. Thus, it follows from the above thatg(x) has
exactly one non-negative root and that it lies between 0
and 1.

One drawback of this method is that it becomes very
complex when the polynomial is of a high degree. We
can bypass this issue by reducing the time resolution used
to define a unit time (e.g., changing the unit time from 2
days to 8 days, makes the values of TBRs 4 times smaller,
which results in a lower degree polynomial).

4) A Comparison:We set up a controlled experiment
using generated data to compare the abovementioned
techniques. We generate values for TBRs using two
pdfs namely, an exponential distribution withµ = 50,
and a piecewise uniform distribution shown in Table
IV. Changes in each unit of time occur according to a
Bernoulli trial scheme [23] with a probability ofp. If
the total probability of change over a period is greater
than 0.5, we designate it as a “change”; otherwise it is a
“no change”. This data is then used by each of the above
methods to estimate the value ofp. We compare these
estimates with the true values ofp to determine the most
accurate method.

TABLE IV.
THE PIECEWISEPROBABILITY DENSITY FUNCTION

x 1 2 3 4
f(x) 0.1 0.2 0.4 0.3

Each run of the experiment consisted of generated

9

34 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

TABLE V.
PROPAGATION PROBABILITY RESULTSUSING THE EXPONENTIAL PDF

Simple Conditional
Estimation

Logarithmic Estimation Root of Polynomial

p pest std pest std pest std
0.1 0.4928 0.1446 0.0778 0.0267 0.1131 0.0560
0.2 0.6733 0.1414 0.1336 0.0968 0.2161 0.1189
0.4 0.8833 0.0945 0.3674 0.3406 0.5241 0.2722
0.8 0.9874 0.0317 0.8857 0.2742 0.9342 0.1616

TABLE VI.
REPEAT OF THE EARLIER EXPERIMENT, BUT WITH 200 PERIODS IN EACH RUN

Simple Conditional
Estimation

Logarithmic Estimation Root of Polynomial

p pest std pest std pest std
0.3 0.6433 0.0537 0.1553 0.0120 0.2972 0.0304
0.7 0.9425 0.0238 0.2945 0.0778 0.7112 0.0754

information about change of a class in 15 periods of
random lengths (according to the above pdfs). Results of
100 runs of the experiment are shown in Tables III and
V. It is evident that Simple Conditional Estimation does
not provide reliable results, as estimates are mostly far
from the real value ofp. While Logarithmic Estimation
and Root of Polynomial provide similar estimates and
standard deviations, only the estimate provided by the
latter converges to the real value ofp as the number
of periods gets large (see Table VI). Thus, the Root of
Polynomial method provides a more reliable estimate of
the daily probability of change.

IV. EMPIRICAL EVALUATION

We now apply the proposed probabilistic approach
on a medium-size system. First, the case study will be
described, and then we present and discuss the results.

A. Case Study: JFlex

JFlex [3] is a Lexical Analyzer Generator for Java, written
in Java, which takes a specially formatted specification file
containing the details of a lexical analyzer as input and
creates a Java file whose source code simulates the lexical
analyzer. The source code for JFlex is publicly available,
while the latest version that we examined consists of
58 Java classes; more detailed statistics regarding JFlex
are presented in Fig. 5. Twelve subsequent versions have
been analyzed using the proposed probabilistic approach
to predict changes. JFlex has been selected for analysis
for several reasons.

• JFlex is small enough that we can easily visualize and
understand the relationships between different parts
of software. This helps testing our framework during
the development cycle, as inefficiencies within the
model can easily be spotted.

• JFlex is large enough to qualify as an ordinary
software tool. This characteristic provides a good

understanding of how our approach will perform on
larger software tools.

• The number of merges and splits of classes in the
history of JFlex were quite low, which streamlined
the development of our simulations.

• Tsantaliset al. [21] use JFlex in their work as a case
study as well. Thus, we can easily benchmark our
model relative to theirs, using the results obtained
from simulations.

We use our model to predict changes in versions 1.2.2 to
1.4. In order to benchmark our model, we use the provided
data for each release of JFlex, and predict changes in
the succeeding release. We then compare our predictions
against the actual changes from the change history and
compute the Overall Accuracy, Sensitivity, FPR, and FNR
corresponding to our predictions.

B. Evaluation Environment

Our procedure of evaluating our proposed methods in-
volved several software tools and some small programs
that we wrote in Java, C++ and MATLAB. We describe
our environment here to show how our results can be
reproduced for future research on a different software
system.

Code metrics were extracted from each release of JFlex,
using Borland Together, and exported in plain text format,
with each line containing an element and its corresponding
metric.

Dependencies between classes were extracted using
Creole and exported in RSF format. This output was then
parsed into ann × n matrix, wheren is the number
of classes or that of elements, depending on our level
of granularity, and each element of the matrix contains
the dependency between two classes/elements (αij). This
matrix was then exported in plain text format, where each
row of the output represents elements in a row of the
obtained matrix.

Information regarding the actual changes to classes can
be extracted bydiffing classes from consecutive releases

10

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 35

© 2008 ACADEMY PUBLISHER

(a) (b)

(c) (d)

Figure 5. Some statistical information about JFlex:(a) Number of methods in consecutive releases of JFlex.(b) Growth of JFlex in terms ofLOC.
(c) Number of classes in 12 versions.(d) Number of changes to classes in different releases.

or by examining the logs of the code repository. Changes
due to copyright or licensing updates should be ignored,
as they do not have any effect on the functionality of
the software tool. We did not use the above methods to
extract this information about the changes, as this data was
already available, courtesy of Tsantaliset al..

The above information was passed to a MATLAB pro-
gram, which estimated the probability of internal change,
based on the given metrics, and then using the lin-
ear/nonlinear system of equations or the depth first search
graph to determine the probability of change of classes. If
the calculations were done at element level, the probability
of change of each class is calculated as the union of those
of its elements. The MATLAB program also calculates the
time-normalized probability of change using the Root of
Polynomial method. It then averages the metric-based and
the history-based probabilities using predefined weight-
ings. These probabilities were first rounded to 0 and 1,
using a threshold of 0.5, and then compared against the
actual changes in a release of JFlex. This process was
repeated for all releases of JFlex.

We see that all the above steps are designed so that they
can be performed without any human intervention. Thus,
we can extend our methods to larger software system,
given that the input data is supplied.

C. Calculation ofPs(TCi) and Cyclic Dependencies

Nonlinear and linear systems equations, the depth first
search graph (as presented in Section III-C), and the
history change logs were used to compute the probabilities
of change of classes in versions 1.2.2 to 1.4 of JFlex;
we use information only from previous versions for this
purpose. For example to compute probabilities for version
1.3, we use data only from releases 1.2.1 and 1.2.2. Note

that in order to have an unbiased comparison, we have
used the same probabilities of internal change and propa-
gation probabilities that Tsantaliset al.applied. Results are
presented in Table VII. Note that values related toHistory
in Table VII are taken directly from [21], and therefore,
no comments about the complexity of that method can
be made. WhileLinear System of Equations(LSE) is the
simplest technique, it provides the least overall accuracy
for predicting changes. Some of the probability values
calculated by this method are sometimes larger than unity.
This is due to the assumption that propagated changes are
mutually exclusive, which therefore, is not true.

The approximation method presented in [21], NLSE,
and the depth first search method (DFS) seem to have the
same level of prediction, but a closer look at the calculated
probabilities reveals that there are indeed differences; these
differences do not seem to have much effect on the overall
accuracy, because probability values need to be rounded
to 0 or 1 for predicting future changes. In terms of
complexity,Non-Linear System of Equations(NLSE) and
DFS seem complex in comparison with LSE, which is the
simplest method. The complexity of NLSE also seems to
grow faster than that of DFS with the size of the software
system. Thus, DFS looks to be a better alternative when
dealing with large software systems.

D. Estimation ofPs(IC) and Resolving Multiple Depen-
dencies

As mentioned earlier, the probability values provided by
normalization of dependencies using a simple mapping
function were too small to be able to predict any change
propagation. One solution considered to resolve this prob-
lem was magnifying the probability values. Although mag-
nification improves the prediction of propagated changes,

11

36 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

TABLE VII.
COMPARISONBETWEEN FIVE APPROACHESDEALING WITH CYCLIC DEPENDENCIES

Used Approach Overall Accuracy Sensitivity FPR FNR
Nonlinear System of Equations (NLSE) 0.6875 0.4786 0.1036 0.5214
Linear System of Equations (LSE) 0.6765 0.4701 0.1171 0.5299
Depth First Search Graphs (DFS) 0.6844 0.4701 0.1014 0.5299
Binary Dependencies 0.6844 0.4701 0.1014 0.5299
History [21] 0.6576 0.4188 0.1036 0.5812

it requires some manual searching to identify the best
magnifying factor so that the magnified values are large
enough to predict propagations, but not so large that they
exceed their maximum limit. As this search needs to be
done for each case study, it would reduce the automation
and increase the complexity of the model. Therefore, while
this approach provided some improvements over binary
treatment of the dependencies, it was deemed not very
suitable for calculation of conditional probabilities.

We examined many linear combinations of metrics for
the value ofx for estimatingPs(IC). Our results indicate
that x = LOC yields the best results in terms of overall
accuracy. This reflects one of the conclusions of [21],
where LOC was found to be a very capable indicator
of the probability of change of a class. We ran several
simulations to show that dependencies correlate with the
actual propagated changes. From simulation results, it was
concluded thatcall and accessrelationships correlate the
best with the actual changes. Therefore, only these rela-
tions were taken into account to estimate the conditional
probabilities. This resulted in a modification to (6) since
dependencies were from methods to elements only.

After several tests to find the best suiting values for
Element-wise Calculation, conditional probability values
of 0.9 and 0.4 were assigned to access and call depen-
dencies between elements in the same class. The condi-
tional probability values for inter-class dependencies were
60% of those for intra-class relationships. Note that a
higher probability value was associated with access, as
any change in an attribute will most probably propagate
to its users (e.g., change of type or name of the attribute).
The lower values associated with call is due to the fact
that sometimes changes in a body of a method do not
propagate to users of that method.

We followed a similar procedure to find best suiting
values for conditional dependencies corresponding to call
and access for class-level calculations using the depth
first search graph algorithm and merged dependencies.
We found that values of 0.1 and 0.05 corresponding
to call and access provide fairly accurate results. Note,
that the considerable difference between these values and
those used for Element-wise Calculation are due to the
difference in the probability of change of classes and their
elements.

For a final comparison, we usedElement-wise Cal-
culation with the above parameters for computing the
probabilities of internal change for each release of JFlex
between 1.2.2 and 1.4 (12 releases in total). This method

results in no need for resolving multiple dependencies, as
there exists at most one relationship between any pair of
elements. The non-linear system of equations was used
to find the values ofPs(TCi). The resulting values of
Ps(TCi) were averaged with the correspondingPh(TCi)
values calculated by using theRoot of Polynomial Method.
These average values were rounded to 0 or 1 using a cut-
off value of 0.5, with 1 predicting a change and 0 predict-
ing no change. These predictions were then compared with
the actual changes and the Overall Accuracy, Sensitivity,
FPR, and FNR that were calculated by our approach. The
results, shown in Table VIII, indicate a 3.5% improvement
over [21] and 6.2% improvement over the use of history
change logs.

We computed values ofPs(TCi) again, but using the
depth first search algorithm in conjunction withMerg-
ing Dependenciesto resolve multiple dependencies. The
history-based probabilities were calculated by the above-
mentioned method and the same weighting coefficients
were used to combinePs(TCi) andPh(TCi). Results are
similar to those fromElement-wise Calculationwith 3%
improvement over [21] and just shy of 5.8% improvement
over use of history change logs.

E. Lessons Learned

Our experimental studies show that the solution to the
set of nonlinear probability equations and our depth first
graph based method yield more accurate values for the
probability of change of the classes, compared with other
methods. The use of nonlinear system of equations elimi-
nates the approximation errors when calculating the steady
state probabilities (this is a problem with the linear system
of equations, as the probability values may exceed unity).
The depth first search method does not calculate the steady
state probabilities, and assumes that a class cannot cause
a change to itself through the external axis. We deem DFS
to be theoretically more valid (see Section III-C.3 for an
example), but NLSE and DFS yield similar results, so we
consider both to be practical approaches.

An elementary analysis of the frequency of change of
classes in JFlex reveals that the time between releases is an
important factor to determine the probability of changes in
code. We found that the Root of Polynomial method best
incorporates time into our calculations. This is due to the
fact that the Root of Polynomial approach provides a better
approximation of time-normalized probabilities compared
with Simple Conditional Estimation and Logarithmic Esti-
mation. The complexity of the Root of Polynomial method

12

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 37

© 2008 ACADEMY PUBLISHER

TABLE VIII.
COMPARISONBETWEEN FOUR APPROACHES FORPREDICTING CHANGES

Used Approach Overall Accuracy Sensitivity FPR FNR
NLSE + Element-wise Calculation 0.7197 0.5385 0.0991 0.4615
DFS + Merged Dependencies 0.7154 0.5299 0.0991 0.4701
Binary Dependencies 0.6844 0.4701 0.1014 0.5299
History [21] 0.6576 0.4188 0.1036 0.5812

can also be easily reduced by increasing the length of the
defined time unit.

Propagation probabilities are more accurately calculated
based on the relationships between the elements of classes.
This change incorporates the dependencies in the UML
diagram more appropriately than considering relationships
between classes as a binary effect. However, there is an
associated increase in complexity due to the larger size of
the system of equations, when we calculate probabilities at
method and parameter level. We can alternatively calculate
probabilities at the class level by merging multiple depen-
dencies between classes. While this method has a lower
complexity compared with element-wise calculations, it
has a lower accuracy because of the difference in the level
of granularity.

In order to increase the automation of the model,
the method used in [21] to extract the internal-change
probabilities needs to be changed. We found that LOC
was the best indicator of internal changes, as it correlated
best with internal changes in JFlex. A more thorough
suite of metrics may be used for larger case studies.
Since use of LOC only provides structural data about the
software system, it should not be used as the only source
of predicting changes (e.g., consider a small method that
is modified often). Thus, the total probability of change of
a class is calculated as a weighted average of probabilities
extracted from the source code (i.e., based on code metrics
and dependencies from the UML diagram) and those based
on the time-normalized change history.

V. CONCLUSIONS

This paper proposes a probabilistic approach to predict
changes in object-oriented systems. The proposed ap-
proach uses the axis of time to define and guide the
prediction process.

We believe that this approach is noteworthy for two
main reasons. First, it attempts to address a problem that
has challenged the research community for several years,
namely the maintenance of object-oriented mission critical
systems. Second, it aims to devise a workbench in which
the changes to the source code do not occur in a vacuum,
but can be evaluated and fine-tuned in order to address
specific quality requirements for the new target system
such as enhancements in maintainability.

We plan to apply the developed model on various
other software systems in a larger scale to ensure the
extensibility of the proposed approach.

VI. FUTURE WORK

We made several simplifying assumptions regarding the
independency of events while describing our approach
(e.g., independency of the changes in different time inter-
vals). These assumption did not seem to have any negative
effect on the accuracy of our method, compared to other
suggested methods, but relaxing those assumptions may
improve our prediction. For example, it can be assumed
that the change history of classes is not memoryless (i.e.,
changes are dependent). A Markov model can be used to
take into account such effect.

We used several parameters in our calculations, whose
values were determined empirically (e.g., parameterλ in
(5) and the weights assigned to different dependencies).
In future work, these parameters should be directly deter-
mined from the source code, the application domain, or
any other related data.

Several possible solutions were discarded due to the
lack of resources (e.g., CVS change logs for JFlex). These
solutions can be reconsidered when new case studies are
analyzed.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the contributions from
Professor Amir K. Khandani for useful discussions and for
his comments on the first draft of this work.

REFERENCES

[1] D. Parnas, “Some software engineering principles,”Struc-
tured Analysis and Design, pp. 237–247, 1978.

[2] A. J. Riel, Object-Oriented Design Heuristics. Addison-
Wesley, 1996.

[3] “JFlex – The Fast Scanner Generator for Java,” 2007,
http://www.jflex.de/.

[4] T. Zimmermann, A. Zeller, P. Weigerber, and S. Diehl,
“Mining Version Histories to Guide Software Changes,”
IEEE Trans. on Soft. Eng., vol. 31, no. 6, pp. 429–445,
2005.

[5] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Pre-
dicting Source Code Changes by Mining Change History,”
IEEE Trans. on Soft. Eng., vol. 30, no. 9, pp. 574–586,
2004.

[6] R. Arnold and S. Bohner, “Impact Analysis - Toward
a Framework for Comparison,” inProceedings of the
IEEE International Conference on Software Maintenance
(ICSM), 1993, pp. 292–301.

[7] M. Chaumun, H. Kabaili, R. Keller, and F. Lustman,
“Change Impact Model for Changeability Assessment in
Object-Oriented Software Systems,”Science of Computer
Programming, vol. 45, no. 2–3, pp. 155–174, 2002.

13

38 JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008

© 2008 ACADEMY PUBLISHER

[8] L. Tahvildari and K. Kontogiannis, “Improving Design
Quality Using Meta-Pattern Transformations: A Metric-
Based Approach,”Journal of Software Maintenance and
Evolution: Research and Practice (JSME), vol. 16, no. 4–
5, pp. 331–361, 2004.

[9] L. Li and A. Offutt, “Algorithmic Analysis of the Impact
of Changes to Object-Oriented Software,” inProceedings
of the IEEE International Conference on Software Mainte-
nance (ICSM), 1996, pp. 171–184.

[10] L. Briand, J. Wust, and L. Lounis, “Using Coupling Mea-
surement for Impact Analysis in Object-Oriented Systems,”
in Proceedings of the IEEE International Conference on
Software Maintenance (ICSM), 1999, pp. 475–482.

[11] A. E. Hassan and R. C. Holt, “Predicting Change Propaga-
tion in Software Systems,” inProceedings of the IEEE In-
ternational Conference on Software Maintenance (ICSM),
2004, pp. 284–293.

[12] “Version Management with CVS for CVS
1.11.21,” 2005, free Software Foundation Inc.,
http://ximbiot.com/cvs/manual/.

[13] S. Kim, T. Zimmermann, E. J. W. Jr., and A. Zeller,
“Predicting faults from cached history,” inProceedings of
the 29th International Conference on Software Engineering
(ICSE), 2007, pp. 489–498.

[14] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,
“Predicting fault incidence using software change history,”
IEEE Trans. on Soft. Eng., vol. 26, no. 7, pp. 653–661,
2000.

[15] A. Mockus and D. M. Weiss, “Predicting risk of software
changes,”Bell Labs Technical Journal, vol. 5, no. 2, pp.
169 – 180, April 2000.

[16] H. Kagdi and J. I. Maletic, “Software-change prediction:
Estimated+actual,” inSecond International IEEE Workshop
on Software Evolvability (SE), 2006, pp. 38–43.

[17] V. Basili, L. Briand, and W. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators,”IEEE
Trans. on Soft. Eng., vol. 22, no. 10, pp. 751–761, 1996.

[18] S. Chidamber and C. Kemerer, “A Metrics Suite for Object
Oriented Design,”IEEE Trans. on Soft. Eng., vol. 20, no. 7,
pp. 476–493, 1994.

[19] T. Girba, S. Ducasse, and M. Lanza, “Yesterdays Weather:
Guiding Early Reverse Engineering Efforts by Summa-
rizing the Evolution of Changes,” inProceedings of the
IEEE International Conference on Software Maintenance
(ICSM), 2004, pp. 284–293.

[20] E. Arisholm, L. Briand, and A. Foyen, “Dynamic Coupling
Measurement for Object-Oriented Software,”IEEE Trans.
on Soft. Eng., vol. 30, no. 8, pp. 491–506, 2004.

[21] N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Pre-
dicting the Probability of Change in Object-Oriented Sys-
tems,” IEEE Trans. on Soft. Eng., vol. 31, no. 7, pp. 601–
614, 2005.

[22] F. Xia, “A Change Impact Dependency Measure for Pre-
dicting the Maintainability of Source Code,” inProceedings
of the Annual International Computer Software and Appli-
cations Conference (COMPSAC), vol. 2, 2004, pp. 23–24.

[23] S. Ross,A First Course in Probability. Macmillan College
Pusblishing, Inc., 1994.

[24] T. J. McCabe, “A complexity measure,”IEEE Trans. on
Soft. Eng., vol. 2, no. 4, pp. 308–320, 1976.

[25] W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability,” Journal of Systems and Software, vol. 23,
no. 2, pp. 111 – 122, November 1993.

[26] “Software Architecture Design, Visual UML &
Business Process Modeling - from Borland,” 2007,
http://www.borland.com/us/products/together/index.html.

[27] “Creole – The CHISEL Group,” 2007,
http://www.thechiselgroup.org/creole/.

[28] “Rigi Group Home Page,” 2007,
http://www.rigi.csc.uvic.ca/.

[29] B. Bollobas,Graph Theory: An Introduction. Springer-
Verlag New York, 1979.

[30] G. James, D. Burley, D. Clements, P. Dyke, J. Searl,
and J. Wright,Modern Engineering Mathematics, 3rd ed.
Pearson Education Ltd, 2001.

[31] W. H. Press,Numerical Recipes in C: The Art of Scientific
Computing, 2nd ed. Cambridge University Press, 1992.

Ali R. Sharafat is a third year undergraduate student
(expected graduation in 2009) at the Faculty of Mathe-
matics majoring in Computer Science and Combinatorics
& Optimization at the University of Waterloo in Canada.

He has completed internship work terms at Research In
Motion a DSP Firmware Developer and the University of
Waterloo as a Research Assistant. His research interests
include software evolution and testing.

Mr. Sharafat was a Member of the Canadian National
Team in 2004 International Physics Olympiad, is the
recipient of Natural Sciences and Engineering Research
Council of Canada (NSERC) Fellowship, was awarded the
Fessenden-Trott Scholarship, and has consistently ranked
as the top student in his class at the University of Waterloo.
He is a student member of IEEE.

Dr. Ladan Tahvildari is an Assistant Professor in the
Department of Electrical and Computer Engineering at the
University of Waterloo, a Visiting Scientist with Centre
for Advanced Studies at the IBM Toronto Laboratory,
and the founder of the Software Technologies Applied
Research Laboratory. She received her BASc from Iran
University of Science and Technology, and her MASc
and PhD from University of Waterloo in Software En-
gineering. She has established the area of Quality-Driven
Object-Oriented Re-engineering which is a novel approach
for improving maintainability and performance of object-
oriented legacy systems. Her research has appeared in over
50 peer-reviewed publications. Dr. Tahvildari has been
on the program and organization committees of many
international IEEE/ACM conferences. She is Program Co-
Chair of IEEE ICSM2007 in Paris, Working Sessions and
Tools Chair of IEEE ICPC2006 in Greece, Program Co-
Chair of IEEE STEP2004 in Chicago, and Workshops
Chair of IEEE WCRE2004 in the Netherlands. She has
served as Chair of the Computer Society (CS) in the
IEEE Local Chapter since 2004. Her accomplishments
have been recognized by various awards. Recently she
has been honored with the prestigious Ontario’s Early
Researcher Award (ERA) to recognize her work in self-
adaptive software.

14

JOURNAL OF SOFTWARE, VOL. 3, NO. 5, MAY 2008 39

© 2008 ACADEMY PUBLISHER

