
A Constraint-Driven Executable Model of
Dynamic System Reconfiguration

D’Arcy Walsh
Bedarra Research Labs, Ottawa, Canada

Email: jdwalsh@acm.org

Francis Bordeleau
Zeligsoft and Carleton University, Ottawa, Canada

Email: francis@zeligsoft.com

Bran Selic
Carleton University, Ottawa, Canada

Email: selic@acm.org

Abstract—Dynamic system reconfiguration techniques are
presented that can enable the systematic evolution of
software systems due to unanticipated changes in
specification or requirements. The methodological approach
is based upon a domain analysis, which identifies a set of
concepts that reflect the types of reconfigurations possible
and the system integrity characteristics that must be
maintained during such reconfigurations, a domain design,
which is expressed using the Unified Modeling Language
(UML) as a constraint-driven representation of the domain
analysis, and a domain implementation, which uses a
programming environment that supports explicit metaclass
programming to realize an executable model of the analysis
and design. It was learned that explicit metaclass
programming can effectively be used to encode the
constrained model, as a static representation, at the
metalevel. With respect to dynamic reconfiguration, it was
learned that a base-level object could be an instance of a
property metaclass that is unique to that base-level object.
Through a mixin mechanism, emergent run-time properties
could be dynamically applied just to that object. The set of
available mixins should also be adjusted dynamically. This
is the subject of future work.

Index Terms—Component-based systems, Dynamic
reconfiguration, Feature modeling, Model-driven
development, Service-oriented Architecture, Software
evolution, System integrity, UML

I. INTRODUCTION

Deployed software systems can be characterized as
being ever more complex, ever more prevalent, and ever
more critical in many ways to society as a whole.
Examples include the trend toward mobile and distributed
systems, embedded systems and embedded controlling
devices, personal digital devices, and others. Since these
systems serve increasingly useful roles in many
application domains, it is important they are engineered
for future change as the demands placed upon them vary
over time.

However, predicting future user requirements or

anticipating changing computing environment imposed
requirements is extremely difficult and error prone, often
resulting in over- or under-engineered solutions. The very
nature of these systems (and by inference the
requirements placed upon them) seems to continually
grow in levels of complexity, interdependence,
dynamism, and in other dimensions, and to continually
outpace the state-of-the-art of software engineering
capabilities required to respond to these driving concerns.

Adaptive computing through dynamic system
reconfiguration techniques can enable the systematic
evolution of software systems due to unanticipated
changes in specification or requirements. The kinds of
change are dynamic in the sense they have not necessarily
been pre-programmed as part of the current capability of
a deployed system but instead represent a realignment of
the implementation of a system. Software engineering
techniques that enable dynamic system reconfiguration
are viewed as an important basis for building software
systems that can adjust their structural and behavioral
make-up in phase with their run-time contexts.

The overall contribution of the paper is a domain
model that is useful at build time, and at run time, to
enable the process of systematically changing software
due to changes in software specification or software
requirements. The specific contributions are the
presentation of an executable model of dynamic system
reconfiguration that is encoded using explicit metaclass
programming techniques and an application-specific
example of its instantiation.

First, a description is given of the computing paradigm
that is the basis for this investigation. The domain of
dynamic reconfiguration is then presented, followed by
an example that illustrates the model. The main parts of
the paper describe the executable model in detail,
including executing an application-specific example. A
summary, conclusion, and description of future work
come at the end.

Based on “A Constrained Executable Model of Dynamic
Reconfiguration”, by D. Walsh, F. Bordelau, and B. Selic, which
appeared in the Proceedings of the 40th Hawaii International Conference
on System Sciences – 2007. Copyright 2007 IEEE.

II. BACKGROUND OVERVIEW

The component-based and service-oriented systems
paradigm is adopted as a realization platform because

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 37

© 2008 ACADEMY PUBLISHER

complex systems can be decomposed as software
components that implement services, that are units of
deployment, that can in principle be dynamically
reconfigured as distinct entities (through intra-component
dynamic reconfiguration) and/or as cooperative entities
(through inter-component dynamic reconfiguration). A
component can be realized in many ways including
through metaobjects that define its runtime properties or
as a batch-compiled entity of an embedded system.

A fundamental assumption is that a technical system
specification may be expressed as a set of constraints [1].
A global property is a functional or non-functional
constraint that requires global knowledge for
conformance. A local property is a functional or non-
functional constraint that requires local (i.e. component-
level) knowledge for conformance. Examples of global
properties include system level performance, availability,
synchronization, distribution, security, or control style
constraints. Examples of local properties include limits
on the number of service invocations or service bindings,
state element immutability, local performance, or local
availability constraints.

Importantly, since this is change to a running system,
the existing system specification may impose hard
constraints that limit the degree to which the need for
change can be addressed.

Dynamic system reconfiguration is addressed within
the context shown in Figure 1. What follows is a
description of each of the main elements that makeup this
context in order to more clearly define what is in scope
and what is out of scope for this investigation.

Component
Framework

Computing Environment

Interacting Components

Component-based
software system

Serves to encode model-
based specification and to
help govern dynamic change

Domain of
dynamic system
reconfiguration
investigated

 Figure 1. Context of Dynamic System Reconfiguration

A component-based software system comprises

Interacting Components and a Component Framework. A
Computing Environment is the run-time context of the
system. A component-based software system is deployed
and executes within this environment.

A Component Framework is the context for the
instantiation of components and for the provision of
services for coordinating those components that have
been realized within the framework. The framework
constrains how a component interacts with other
components for the component to be an independent yet
cooperative member of an overall system of components.
More specifically, a Component Framework provides
capabilities for their installation and initial configuration,
loading and instantiation, configuration and connection to
any required system artefacts, and for governing dynamic
system reconfiguration.

Interacting Components form a system that
implements required functional and non-functional
properties through provided and required services (and
associated service protocols). As a member of a greater

system, a component is a unit of deployment whose
encapsulated internal behaviour satisfies its external
interaction obligations. Its internal behaviour may be
implemented through the recursive composition of other
components.

A component is defined to have a behavioural
signature and a structural signature (See Figure 2). A
component’s behavioural signature is specific kinds of
dependencies that determine its internal behaviour within
a component-based system. The behavioural signature is
composed of (i) service to service protocol, (ii) operation
to required service, (iii) operation to provided service,
(iv) operation to operation, (v) operation to state
element, and (vi) operation to composite component
service dependencies. A component’s structural signature
is specific kinds of dependencies that determine its
external interactions within a component-based system.
The structural signature is composed of (a) component to
component and (b) required service to provided service
dependencies.

Component A Component B

Structural Signature

communication path

connectionRequired Service Provided Service

Required Service to Provided Service dependency

Component to Component dependency

Behavioral Signature

Component

Composite Component

Provided Service Required Service

Composite Component Service

Operation A () Operation B ()

State Element

Required
Service
Protocol

Provided
Service
Protocol

Operation to
Composite

Component Service
dependency

Operation to
Provided Service

dependency

Service to
Service Protocol

dependency

Service to
Service Protocol

dependency

Operation to
Required Service

dependency

Operation to
State Element
dependency

Operation to
Operation

dependency

Figure 2. Behavioral and Structural Signatures of a Component

A component framework may change just as well as

the configuration of components that it instantiated. This
paper focuses on component-level dynamic
reconfiguration. However, the model execution
environment section provides an example, through
simulation, of a component framework that does change
to support the dynamic reconfiguration models that are
presented.

Dynamic change may well lead to the need for further
dynamic change (a system may not reach an acceptable
equilibrium). Managing this kind of ‘cycle of change’ is
considered out of the scope of this paper and to be future
work. This investigation focuses on ‘discrete change
events’ and the formulation of a model-based
specification of such events.

Finally, in this context, a context-aware component-
based software system is viewed to be a system that can
continually dynamically reconfigure itself to stay in phase
with its (changing) computing environment. This
investigation describes an approach that enables context-

38 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

aware computing. However, the latter is considered future
work.

III. THE DOMAIN OF DYNAMIC
RECONFIGURATION

This section presents a summary of a domain model of
dynamic system reconfiguration first presented in [2] and
more fully reported on in [3], which reviews significant
related research work. The full analysis identifies and
categorizes the various types of change that may be
required, the relationship between those types, and the
system integrity characteristics that need to be considered
when such changes take place.

A. Summary of Domain Analysis of Dynamic System
Reconfiguration

This subsection describes the common and variable
causal flow of dynamic reconfiguration. The intent is to
provide a description of the full spectrum of architectural,
behavioural, and structural changes that could be
exhibited by a dynamically reconfigurable component-
based software system. The following nine change
groups are identified: Pure architectural change; pure
behavioural change; behaviour-driven structural change;
comprehensive behaviour-driven change; pure structural
change; structure-driven behavioural change;
comprehensive structure-driven change; pure
behavioural and structural change; and comprehensive
change.

Each change group is composed of a set of related
change sequences that describe how a particular change
group unfolds. A change sequence combines up to six
different change types.

Dynamic reconfiguration progresses according to the
activity model shown in Figure 3. The decision points
immediately after ‘Reconcile Change Properties with
Existing System Properties’ indicates this reconciliation
may lead to change rejection. The decision point
immediately after ‘Estimate Impact of Architectural
Change upon System Integrity’ indicates this impact
analysis may lead to change rejection. The parallel fork
indicates ‘Enact Change by Realigning System
Constructs’ and ‘Ensure System Integrity Characteristics’
happens concurrently. The parallel join indicates a system
has enacted dynamic change while attempting to ensure
overall system consistency.

Given the interactions implied by Figure 3, Table 1 is a
use case of the general context of dynamic
reconfiguration. This use case describes the different
levels of dynamism as alternatives based upon the change
groups.

Pure architectural change is a change group that
consists of a single change sequence involving a single
change type: architectural change. In its purest form, this
is a change to only global and/or local system properties.
By implication, the existing behavioural and structural
signatures of the system can accommodate the change
and are unaffected.

Pure behavioural change is a change group that
encompasses three change sequences, each driven by

architectural change: (i) protocol change only, (ii)
protocol change leading to interface change, or (iii)
protocol change leading to interface change leading to
internal change. By implication, pure behavioural
change means that only the behavioural signature of a
system is realigned.

Enact Change by Realigning
System Constructs

Detect Origin of Change

Represent Change through Global/Local Properties

Reconcile Change Properties with Existing System Properties

Reject Change

Estimate Impact of Change upon System Integrity

System constructs:
External interactions
Internal behavior
Dependencies
Context of change

System integrity management:
Global consistency
Local consistency
Active reference
Dependent operation
Composite operation
Constrained operation
State

Ensure System
Integrity Characteristics

Figure 3. Activity Model of General Context of Dynamic

Reconfiguration

Behaviour-driven structural change is a change group

that comprises two change sequences, each driven by
architectural change: (i) protocol change leading to
topology change or (ii) protocol change leading to
topology change leading to substitution. By implication,
behaviour-driven structural change means that, when the
behavioural signature of a system is realigned, it causes
the structural signature of the system to be realigned.

Comprehensive behaviour-driven change is a change
group that is a combination of pure behavioural change
and behaviour-driven structural change. By implication,
comprehensive behaviour-driven change means that,
when the behavioural signature of a system is realigned,
it causes the structural signature of the system to be
realigned. All combinations are possible as long as a
behavioural change leads to a structural change.

Pure structural change is a change group that
encompasses two change sequences that are each driven
by architectural change: (i) topology change only or (ii)
topology change leading to substitution. By implication,
pure structural change means the structural signature,
and only the structural signature, of a system is realigned.

Structure-driven behavioural change is a change group
that comprises three different change sequences, each
driven by architectural change: (i) topology change
leading to protocol change, (ii) topology change leading
to protocol change leading to interface change, or (iii)
topology change leading to protocol change leading to
interface change leading to internal change. By
implication, structure-driven behavioural change means
that, when the structural signature of a system is
realigned, it causes the behavioural signature of the
system to be realigned.

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 39

© 2008 ACADEMY PUBLISHER

Use Case: General Context of Dynamic Reconfiguration
Description: This use case describes the overall casual flow of
dynamically reconfiguring a component-based system.
Actors: System User and/or Processing Environment
Pre-Condition: Component-based system provides adequate
capability to respond to run time change stimuli, characterize
the nature of change required as global or local properties
(including their reconciliation), enact generic types of change
that may be required, and govern change in a manner to help
ensure overall system consistency.
Triggering Events: User-Driven Change and/or Computing
Environment Imposed Change
Sequence:
Step 1. Sense User-Driven and/or Computing Environment
Imposed Change.
Step 2. Interpret and then represent the particular Origin of
Change as Global Properties or Local Properties with an
associated Reconciliation Policy (also reconcile with existing
System Properties).
Step 3. Determine what feasible change group (if any) satisfy
the Condition Change Criteria and enact change (See
Alternatives).
Step 4. Realign Dependencies (if necessary) and therefore
possibly External Interactions and Internal Behavior.
Step 5. Validate preservation of applicable System Integrity
Characteristics during change sequence.
Post-condition: Component-based system is dynamically
reconfigured based upon a particular change groups’ change
sequence in a manner that helps to ensure overall system
integrity.
Resulting Events: Further User-Driven Change and/or
Computing Environment Imposed Change
Alternatives for Step 3:
Alternative 1 – Pure architectural change;
Alternative 2 – Pure behavioral change;
Alternative 3 – Behavior-driven structural change;
Alternative 4 – Comprehensive behavior-driven change;
Alternative 5 – Pure structural change;
Alternative 6 – Structure-driven behavioral change;
Alternative 7 – Comprehensive structure-driven change;
Alternative 8 – Pure behavioral and structural change; or
Alternative 9 – Comprehensive change.

Table 1. Common and Variable Causal Flow of Dynamic

Reconfiguration
Comprehensive structure-driven change is a change

group that is a combination of pure structural change and
structure-driven behavioural change. By implication,
comprehensive structure-driven change means that, when
the structural signature of a system is realigned, it causes
the behavioural signature of the system to be realigned.
All combinations are possible as long as a structural
change leads to a behavioural change.

Pure behavioural and structural change is a change
group that is a combination of pure behavioural change
and pure structural change. By implication, pure
behavioural and structural change means that the
behavioural signature and the structural signature of a
system are realigned but one does not drive the other to
change. All combinations are possible as long as
behavioural change does not lead to structural change nor
does structural change lead to behavioural change.

Comprehensive change is a change group that is a
combination of comprehensive behaviour-driven change
and comprehensive structure-driven change. By

implication, comprehensive change means that the
behavioural signature and the structural signature of a
system are realigned as one drives the other to change.
All combinations are possible as long as behavioural
change leads to structural change and structural change
leads to behavioural change.

B. Summary of Domain Design of Dynamic System
Reconfiguration

Figure 4 shows a UML class model of the domain
concepts of Comprehensive change. With respect to
change properties reconciliation, the classes System
Properties and Change Properties represent the current
system properties and (new) change properties,
respectively, as global and local constraints. Each
grouping of properties is internally reconciled according
to reconciliation policies. In addition, these groupings are
reconciled with respect to each other. The overall
reconciliation is modeled as a binary association linking
System Properties and Change Properties. The reconciled
change properties in turn determine which subsets of
change types are required to perform the necessary
system reconfiguration.

DynamicSystemReconfiguration

ContextOfChange

SystemModel

ConditionChangeCriteria
-globalConsistency
-localConsistency
-activeReferences
-dependentOperations
-compositeOperations
-constrainedOperations
-componentState

SystemIntegrityCharacteristics

-architectural
-topology
-substitution
-protocol
-interface
-internal

ChangeType

-userDriven
-computingEnvironment

OriginOfChange
-globalProperties
-localProperties
-reconciliationPolicy

ChangeProperties

Dependencies ExternalInteractions

-operations
-stateElements
-serviceInvocations

InternalBehavior

-emergentProperties

RunTimeEnvironment

-globalProperties
-localProperties
-reconciliationPolicy

SystemProperties

-behavioralSignature
-structuralSignature

SystemSignature
-serviceProtocol
-connections

CommunicationPath

-providedServices
-requiredServices

Component

1
1

1

1

11
1
*

1 *

1

*

1

* 1

* 1 *

1 1

*

1

*1

1
1

1

1
1

1

1

1
1

1

1

1

1

1

* *

1

1

1 1

1

*

1

*

1

1

1

1

1

*

1

*

Figure 4. Class Model of Comprehensive Change

With respect to change enactment, the classes Change

Type, System Integrity Characteristics, and System Model
specify how the required change types, as constrained by
system integrity characteristics, realign the system model.
Depending upon the types of change required, the
structural and/or behavioral signature of the system may
have to be re-aligned, which, in turn, may impact its
internal behavior or external interactions.

 With respect to further dynamic reconfiguration,
given the internal behavior or external interactions of a

40 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

system have changed, the system may reach a failure
state or require further change based upon emergent
properties. This is represented by the group of classes
External Interactions, Internal Behavior, Fault Tolerance
Mode, and Origin Of Change. External Interactions and
Internal Behavior are related to Fault Tolerance Mode
upon failure (or emergent properties). Fault Tolerance
Mode then drives Origin Of Change (which ultimately
may be user driven or computing environment imposed)
which in turn indicates needed change properties. This
completes the cycle of system dynamic reconfiguration
described by the domain model.

IV. FINANCIAL ANALYSIS SYSTEM CASE STUDY

The following is a review of a financial analysis
system case study first presented in [4] and more fully
reported on in [3]. The case study is an application-
specific example of changing global and local properties
leading to comprehensive change. The example describes
the components and the dynamic interoperation of two
initially decoupled financial systems that specialize in
maintaining knowledge and providing predictions about a
particular sector of the economy. System A’s clients are
concerned with shorter-term predictions. System B’s
clients are concerned with longer-term predictions.

The following are examples of global system
properties:

• (GP1) The control style of each system (as
depicted by use case maps);

• (GP2) The operations of different components
provide needed behavior within limited time
constraints (scenario analysis must not be
invalidated by current financial conditions); and

• (GP3) The state elements of different
components are updated in a synchronized
fashion (present value analysis, cash flow
projection, and scenario analysis reference data
is synchronized).

The following are examples of local system properties:
• (LP1) A component has an upper bound on the

number of threads that may be spawned in
response to remote service requests;

• (LP2) A provided service has at most one
required service bound to it and vice versa; and

• (LP3) The values of certain state elements may
not change (Scenario Analysis reference data,
once synchronized, remains immutable).

 Figure 5 shows the original control style of System
A. Use Case Maps (UCMs) [5] are used to illustrate the
causal flow that is required of System A’ s components to
provide shorter-term predictions. For example, for
timeliness reasons, cash flow projections and valuation
assessment are done on-line.

Scenario
Analysis

Energy Sector
Knowledge

Energy Sector
Conditions

Valuation AssessmentCash Flow Projections

a1

a2 a3 a4 a5a6
a7

a8a9

Figure 5. Original Control Style of System A

System A’s responsibilities are: (a1) generate on-line

financial conditions, (a2) provide cash flow projections,
(a3) provide valuation assessment, (a4) update on-line
financial conditions and update knowledge information
about market sector, (a5) determine current market
knowledge, (a6) current financial conditions and market
knowledge, (a7) update preferred stock and common
stock value predictions, (a8) provide knowledge
information about market sector, and (a9) update
knowledge information about market sector.

 Figure 6 shows the original control style of System
B. UCMs are used to illustrate the causal flow that is
required of System B’ s components to provide longer-
term predictions. For example, for reasons of accuracy,
cash flow projections and valuation assessment are done
off-line on demand.

Scenario
Analysis

Energy Sector
Knowledge

Energy Sector
Conditions

Valuation
Assessment

Cash Flow
Projections

b1 b2

b3b4

b5

b6 b7 b8

b9

b10b11

Figure 6. Original Control Style of System B

System B’s responsibilities are: (b1) generate on-line

financial conditions, (b2) update on-line financial
conditions and update knowledge information about
market sector, (b3) determine current knowledge about
market, (b4) provide current financial conditions and
knowledge about market, (b5) determine cash flow
projections, (b6) provide cash flow projections, (b7)
determine valuation assessment, (b8) provide valuation
assessment, (b9) update preferred stock and bond value
predictions, (b10) provide knowledge information about
market sector, and (b11) update knowledge information
about market sector.

The systems are dynamically reconfigured so that
System A can leverage System B’s preferred stock
predictions. To do this, each system’s architectural
constraints are reconciled and changes are constrained to
be backward compatible. System A is then able to
provide improved analytic results for its respective clients
based upon the new information that is available from
System B.

Figure 7 shows the new control style of System A. A
new UCM represents the causal flow linking the Scenario
Analysis component of System A to the Scenario
Analysis component of System B. This enables System A

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 41

© 2008 ACADEMY PUBLISHER

to use System B’s longer-term predictions to validate its
shorter-term predictions.

Scenario Analysis-A

Energy
Sector
Knowledge-A

a5a6

a12

Scenario
Analysis-B

a7 a10

a8

a11

a9

Figure 7. New Control Style of System A

The new responsibilities are: (a10) determine long-

term predicted values, (a11) provide long-term predicted
values, and (a12) validate short-term predictions using
long-term predictions.

System evolution happens as follows:
• Evolution is localized to the scenario analysis

component of System A
• A communication path is established between

the two systems
• System A’s external interactions evolve to

support new required service
• Internal behavior of System A’s scenario

analysis component evolves in place so that it
can process the new information that is
exchanged.

V. EXECUTABLE MODEL

 When a system’s run-time properties are realized as
instantiations of programmable metaclasses, these
properties can be dynamically changed when their
metaclasses change. This section describes the use of
explicit metaclass programming techniques to encode
certain aspects of the domain model [6]. The purpose of
constructing an executable model is: (i) to gain a more
direct understanding of the conceptual framework and (ii)
to validate, through empirical proof and simulation, that
the constrained model is applicable within application-
specific contexts.

 With this approach, metaobjects are employed to
implement the Component Framework shown in Figure
1. The Interacting Components shown in Figure 1 are
implemented by base-level objects, which are instances
of the metaobjects. In this environment metaobjects
themselves are run-time objects. As run-time objects they
can interact and change their characteristics. When they
change their characteristics they can change the run-time
properties of base-level objects that are their instances.

 Using the case study, a description is given of
representing and then dynamically changing an
application-specific global property leading to other kinds
of change. The general approach is the following. The
metaobjects of system and change properties encapsulate
system signature ‘fragments’ that are implied by their
instances. The current system signature of a system is the
composition of the system signature ‘fragments’ of its
global and local system properties. To change the
signature of a system, the system signature ‘fragments’ of
change properties are composed with the existing system

signature ‘fragments’ of system properties. In this
implementation, the global or local property metaobjects
implement a standardized protocol for setting up a system
signature ‘fragment’. A particular fragment is expressed
as a configuration of base-level objects that can be
instantiated at the time change properties are reconciled
with system properties.

A. MetaclassTalk as a Reflective Substrate
Bouraqadi-Saadani et al [6-7] describe the

MetaclassTalk computing environment that provides
direct support for meta object composition mechanisms to
enable system evolution and adaptation. These
composition mechanisms allow specific properties to be
assigned to classes in order to allow the properties of
their instances to dynamically change. They note that
from an architectural viewpoint meta class composition
allows a system to be organized into different levels of
abstraction. An example is given showing the meta class
composition “False + SoleInstance + Final” to create
composed class properties that may then be instantiated
as the sole false instance whose class may not be sub-
classed.

They describe a reflective system development
approach that utilizes safe and explicit metaclass
programming techniques and an implementation
environment that enables this that is known as
MetaclassTalk. This paradigm is based upon meta-links,
which causally connect base-level and meta-level objects,
and meta-object cooperation, which is explicitly
programmed. Examples of the kinds of relationships that
may be implemented between base-level objects and
meta-level objects include: (i) a single meta-object shared
between instances of the same class; (ii) a single specific
meta-object private to each base object; and (iii) many
meta-objects shared among many base objects [7]. This is
shown in Figure 8 below:

Meta-objects

Base-objects

o1 o2 o3 o4

mo1 mo2 mo3

mo5mo4

Meta-link Meta-cooperation
Figure 8. Base versus Meta-objects

 Figure 9 shows how MetaclassTalk can be used as a

reflective substrate of the domain model presented in
Section III. The System Model and Context of Change
classes, shown in Figure 4, are encoded as meta-objects
that cooperate to enable the dynamic reconfiguration of
base-level application-specific component interactions.
The meta-link causally connecting the base-level to
Context of Change represents emergent run-time

42 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

characteristics that are ultimately manifested as change
properties. Context of Change and the System Model
cooperate at the meta-level to reconcile change properties
with existing system properties and to realign the
behavioral and/or structural profile of the system as
required. The meta-link linking the base-level to the
System Model represents the causal connection required
to affect the realignment of the running system. This may
in turn lead to new emergent run-time characteristics,
leading to further dynamic reconfiguration, and so on.

Meta-objects

Base-objects

System Model
Meta-objects

Context of
Change

Meta-objects

Interacting
Components

Emergent
Properties

Figure 9. Using the reflective substrate

B. Using Explicit Metaclass Programming

This subsection illustrates how the domain design of
comprehensive change is represented within the reflective
substrate using explicit metaclass programming
techniques. What follows is an explanation of how
Global Properties are encoded.

 Bouraqadi-Saadani [8] explains the use of
compatibility and property metaclasses to ensure the
overall compatibility of composed metaclasses that are
explicitly programmed. This technique is employed when
encoding the constrained model and therefore
compatibility and property metaclasses are part of the
encoding. Bouraqadi-Saadani [8] also implements meta-
level support for mixins as a mechanism to augment
property metaclasses. This technique is also used when
encoding the model. As an alternative mechanism to
mixins, the use of “traits” is under review Scharli et al
[9]. Because Bouraqadi-Saadani [8] explicitly uses the
term property, property named elements of the domain
model are referenced as constraints below.

 Figure 10 shows how global and local constraints are
encoded. As discussed previously, a global constraint is a
system characteristic that requires global knowledge for
conformance. A local constraint is a system characteristic
that requires local (i.e. component-level) knowledge for
conformance. Examples of constraint characteristics that
may apply, globally or locally, include state element
immutability, cardinality (i.e. limits on the number of
service invocations or service bindings, and so on),
performance, synchronization, distribution, persistence,
security, control style, and so on. These characteristics
are represented as Constraint Characteristics Meta
Objects in Figure 10. They are ‘mixedin’ when a global
or local constraint is instantiated based upon a mixin
linearization list that determines the order of
composition.

The following is a short description of the metaobjects
shown in Figure 10 that are required to encode a global
property:

Global Constraint is defined as a concrete subclass of
Constraint. It is an instance of Global Constraint
Property Meta Object. When instantiated as a base-level
object, a global constraint represents a particular global
property of a component-based software system.
Examples of global constraints were given in Section III.

Constraint is defined as an instance of Constraint
Property Meta Object. It is the abstract superclass of
Global Constraint and Local Constraint. It implements
constraintSpec, which represents the specification of a
particular global or local constraint that is instantiated by
Global Constraint or Local Constraint. It also
implements the creation method, new: with Mixin
Linearization List, of Global Constraint and Local
Constraint. The mixin linearization list determines the
mixin properties that are composed when a global or local
constraint is created.

Constraint Property Meta Object is defined as an
instance of Composite Class (not shown). Composite
class is part of the MetaclassTalk library. It is a class
whose instances inherit from their superclass through a
set of mixins. The inheritance relationship is via implicit
subclass(es) of the ‘official superclass’ that are built by
means of the mixin mechanism. Constraint Property
Meta Object is defined as a subclass of Constraint
Compatibility Meta Object with Abstract as a mixin.
Abstract is part of the MetaclassTalk library of mixins.
When it is added as a mixin to Constraint Property Meta
Class mixins, Constraint becomes an abstract class.

Constraint Compatibility Meta Class is defined as a
subclass and as an instance of Standard Class (not
shown). Standard Class is part of the MetaclassTalk
library. This is the root class of all MetaclassTalk explicit
metaclasses. When subclassed, it enables the explicit
definition of new kinds of (meta) classes. Constraint
Compatibility Meta Class enables the compatibility
model described in [8] among the inheritance hierarchies
that underpin Constraint, Global Constraint, and Local
Constraint.

Global Constraint Property Meta Object is defined as
an instance of Composite Class to enable mixin property
composition (not shown). It is defined as a subclass of
Global Constraint Compatibility Meta Object to ensure it
complies with the meta class compatibility model. Class
With Instance Mutable Meta Objects is part of the
MetaclassTalk library of mixins (not shown). When
added as a mixin, the instances of Global Constraint
Property Meta Object (i.e. Global Constraint) have their
own metaObject, which can be changed over time.

Global Constraint Compatibility Meta Class is defined
as an instance of Standard Class (not shown). As an
explicit metaclass, it is defined as a subclass of
Constraint Compatibility Meta Object to enable the
compatibility model.

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 43

© 2008 ACADEMY PUBLISHER

Meta-meta-objects

Meta-objects

Constraint

ConstraintPropertyMetaObject

GlobalConstraint

LocalConstraint

Abstract
<<mixin>>

ConstraintCompatibilityMetaObject

LocalConstraintPropertyMetaObject GlobalConstraintPropertyMetaObject

LocalConstraintCompatibilityMetaObject GlobalConstraintCompatibilityMetaObject

inherits from

instance of

ConstraintCharacteristicsMetaObjects
{immutability,cardinality,performance,synchronization,

distribution,persistence,security,control style, ...}
<<mixin>>

new: withMixinLinearizationList

System A-GP1-Control Style Constraint System A-GP1-Change Property

Meta-objects

Base-objects

Figure 10. Encoding Global and Local Constraints

VI. EXECUTING AN APPLICATION-SPECIFIC EXAMPLE

 The requirement for System A to dynamically inter-
operate with System B is an example of emergent
properties as shown in Figure 9. In this example, the
outcome is reflected by Figure 7 with a new UCM
causally linking System A to System B. This subsection
explains how the reflective substrate affects base-level
application-specific dynamic reconfiguration, when a
global property changes. The following is described: (i)
how a global property is instantiated using the encoded
model, (ii) dynamically reconfiguring the global property,
(iii) how Architectural Change reconfigures the signature
of a system, and (iv) how a reconfigured system signature
leads to behavioral and structural change.

A. Representing a Global Property
 This subsection illustrates how the reflective

substrate, is used to create instances of GP1, which
determines the control style of System A. Figure 10
shows the base-level and meta-level interactions required.
System A - GP-1-Control Style Constraint and System A -
GP-1-Change Property are shown as instances of Global
Constraint. When System A - GP-1-Control Style
Constraint and System A - GP-1-Change Property are
created, their global constraint properties are augmented

with an appropriate control style provided by Control
Style Characteristics MetaObjects. System A – GP1 –
Control Style Constraint conforms to the control style
shown in Figure 5. System A – GP1 – Change Property
conforms to the control style shown in Figure 7.

 For example, when System A - GP-1-Control Style
Constraint is created, the mixin linearization list drives
the composition of specific control style metaobjects that
constrain the configuration of System A’s components to
ensure cash flow projections and valuation assessment are
done on-line.

 MetaclassTalk code fragments are shown below to
illustrate how this is done. In the example, gp1 is created
to represent the global property System A - GP-1-Control
Style Constraint. The specification of this property for
System A is ‘On-Line Control’. When gp1 is created, the
metalink policy Class With Instance Mutable Meta
Objects is applied that enables it to have a unique
metaclass (this was reported as “a single specific meta-
object private to each base object” earlier). In the case of
gp1 its particular properties are augmented with System A
On Line Control Style MetaObject in support of its ‘On-
Line Control’ specification:

gp1 := GlobalConstraint new.
gp1 constraintSpec: ‘Control Style of System '.
metaclass := MetaObject
subclass: #GP1AMetaClass
instanceVariableNames: ''

44 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

classVariableNames: ''
poolDictionaries: ''
category: 'Dynamic Reconfiguration-Interacting

Components-Instance Specific Property MetaObjects'
metaclass: CompositeClass.
metaclass addMixin:

ClassWithInstanceMutableMetaObjects.
metaclass addMixin:

SystemAOnLineControlStyleMetaObject.
metaclassInstance := metaclass new.
gp1 metaObject: metaclassInstance.

 When GP1AMetaClass is created, it is a metaObject

specific to gp1. Its mixins include System A On Line
Control Style Meta Object:

MetaObject subclass: #GP1AMetaClass
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Dynamic Reconfiguration-Interacting

Components-Instance Specific Property MetaObjects'
 metaclass: CompositeClass.
GP1AMetaClass mixins:

{ClassWithInstanceMutableMetaObjects.
SystemAOnLineControlStyleMetaObject}

 System A On Line Control Style Meta Object is a

mixin with instance variable ‘system Signature For
System A On Line Control’:

Mixin named:

#SystemAOnLineControlStyleMetaObject
instanceVariables:

'systemSignatureForSystemAOnLineControl '
category: 'Dynamic Reconfiguration-Mixins'

 System A On Line Control Style Meta Object

implements a standardized protocol that is used to set up
‘system Signature For System A On Line Control’. It is an
instance of System Signature, which represents the
behavioral and structural dependencies reflected by
Figure 5. Below is an example of part of the protocol
implemented by System A On Line Control Style Meta
Object:

setUpConnectedComponentDependencies
systemSignatureForSystemAOnLineControl

connectComponent: self
energySectorConditionsComponent toComponent: self
cashFlowProjectionsComponent.

systemSignatureForSystemAOnLineControl
connectComponent: self cashFlowProjectionsComponent
toComponent: self valuationAssessmentComponent.

systemSignatureForSystemAOnLineControl
connectComponent: self valuationAssessmentComponent
toComponent: self energySectorKnowledgeComponent.

systemSignatureForSystemAOnLineControl
connectComponent: self

energySectorKnowledgeComponent toComponent: self
scenarioAnalysisComponent.

 The instance specific metaObject of System A - GP-

1-Change Property also implements the standardized
protocol. In its case, its System Signature represents the
behavioral and structural dependencies reflected by
Figure 7.

B. Dynamically Reconfiguring a Global Property
 This subsection illustrates change properties

affecting existing system properties, which subsequently
drives the system signature of System A to change.

 In Figure 10 emergent system properties are
manifested as System A – GP1 – Change Property.
System A - GP-1-Control Style Constraint represents an
existing reconciled global constraint of System A before
any change. System A – GP1 – Change Property is a
global constraint that implies a change to the control style
of System A as reflected by Figure 7. Its particular
properties are augmented with System B Interoperation
MetaObject which represents its augmentation of the
‘On-Line Control’ specification:

newgp1a := GlobalConstraint new.
newgp1a constraintSpec: ‘Control Style of System '.
metaclass := MetaObject
subclass: #NewGP1AMetaClass
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'Dynamic Reconfiguration-Interacting

Components-Instance Specific Property MetaObjects'
metaclass: CompositeClass.
metaclass addMixin:

ClassWithInstanceMutableMetaObjects.
metaclass addMixin:

SystemBInteroperationMetaObject.
metaclassInstance := metaclass new.
newgp1a metaObject: metaclassInstance.

 When NewGP1AMetaClass is created, it is a

metaObject specific to newgp1. Its mixins include System
B Interoperation Meta Object:

MetaObject subclass: #NewGP1AMetaClass
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Dynamic Reconfiguration-Interacting

Components-Instance Specific Property MetaObjects'
 metaclass: CompositeClass.
NewGP1AMetaClass mixins:

{ClassWithInstanceMutableMetaObjects.
SystemBInteroperationMetaObject}

 To drive system change, the original metaclass

properties of System A - GP-1-Control Style Constraint
are dynamically augmented to reflect the new control
style of System A by adding the metaclass properties of

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 45

© 2008 ACADEMY PUBLISHER

System A – GP1 – Change Property as additional mixin
properties of System A - GP-1-Control Style Constraint:

gp1 metaObject class addAllMixins: (newgp1

metaObject class mixins).

 This is the result after adding the mixins of newgp1’s

metaclass to the mixins of gp1’s metaclass. The mixins of
GP1AMetaClass now includes System B Interoperation
Meta Object:

MetaObject subclass: #GP1AMetaClass
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Dynamic Reconfiguration-Interacting

Components-Instance Specific Property MetaObjects'
 metaclass: CompositeClass.
GP1AMetaClass mixins:

{ClassWithInstanceMutableMetaObjects.
SystemAOnLineControlStyleMetaObject.
SystemBInteroperationMetaObject}

 System A On Line Control Style Meta Object and

System B Interoperation Meta Object each encapsulate a
System Signature as described previously.

C. Architectural Change Reconfiguring the Signature of a
System

 Ultimately, a change to the global and local
properties of System A leads to the reconfiguration of its
system signature. In this implementation, Architectural
Change regenerates the overall system signature of
System A by composing the system signature 'fragments'
of property metaobjects. This drives the behavioral and
structural realignment of the system. This is shown in the
code fragment below:

Dependencies>>useSystemPropertiesToGenerateSyste

mSignature
self systemProperties systemSignatures do: [:aSysSig |

self systemSignature updateWith: aSysSig].
 The definition of SystemSignature is shown below.

Aligned with the domain model, it is composed of
StructuralSignature and BehavioralSignature.

Object subclass: #SystemSignature
 instanceVariableNames: 'structuralSignature

behavioralSignature '
 classVariableNames: ''
 poolDictionaries: ''
 category: 'Dynamic Reconfiguration-Interacting

Components'
 metaclass: SystemSignaturePropertyMetaObject

 The code fragment below shows how the existing

system signature is regenerated with a system signature
‘fragment’:

SystemSignature>>updateWith: aSystemSignature
self behavioralSignature updateWith:

aSystemSignature behavioralSignature.

self structuralSignature updateWith: aSystemSignature
structuralSignature.

 The definition of BehavioralSignature is shown

below. Aligned with the domain model (See Figure 2), it
is composed of protocol, required service, provided
service, operation, state element, and composite
component dependencies.

Object subclass: #BehavioralSignature
 instanceVariableNames: 'protocolDependencies

requiredServiceDependencies
providedServiceDependencies operationDependencies
stateElementDependencies
compositeComponentDependencies '

 classVariableNames: ''
 poolDictionaries: ''
 category: 'Dynamic Reconfiguration-Interacting

Components'
 metaclass:

BehavioralSignaturePropertyMetaObject

 When Architectural Change regenerates the

Behavioral Signature of a system it updates the existing
Behavioral Signature with a new Behavioral Signature
that reflects any changes in behavioral dependencies:

BehavioralSignature>>updateWith:

aBehavioralSignature
self updateProtocolDependenciesWith:

aBehavioralSignature protocolDependencies.
self updateRequiredServiceDependenciesWith:

aBehavioralSignature requiredServiceDependencies.
self updateProvidedServiceDependenciesWith:

aBehavioralSignature providedServiceDependencies.
self updateOperationDependenciesWith:

aBehavioralSignature operationDependencies.
self updateStateElementDependenciesWith:

aBehavioralSignature stateElementDependencies.
self updateCompositeComponentDependenciesWith:

aBehavioralSignature
compositeComponentDependencies.

 The definition of StructuralSignature is shown

below. Again, in phase with the domain model (See
Figure 2), it is composed of connected component and
connected service dependencies.

Object subclass: #StructuralSignature
 instanceVariableNames:

'connectedComponentDependencies
connectedServiceDependencies '

 classVariableNames: ''
 poolDictionaries: ''
 category: 'Dynamic Reconfiguration-Interacting

Components'
 metaclass:

StructuralSignaturePropertyMetaObject

46 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

 When Architectural Change regenerates the
Structural Signature of a system it updates the existing
Structural Signature with a new Structural Signature that
reflects any changes in structural dependencies:

StructuralSignature>>updateWith:

aStructuralSignature
self updateConnectedComponentDependenciesWith:

aStructuralSignature connectedComponentDependencies.
self updateConnectedServiceDependenciesWith:

aStructuralSignature connectedServiceDependencies.

 In the example up to now, the metaobject of System

A - GP-1-Control Style Constraint has been augmented
with the mixin properties of the metaobject of System A –
GP1 – Change Property. Each mixin of System A - GP-1-
Control Style Constraint encapsulates a system signature
‘fragment’ that Architectural Change now uses to
regenerate the overall System Signature of System A.

 In this case, it is SystemBInteroperationMetaObject,
which encapsulates the structural dependencies that
reflect a new communication path linking System A with
System B, which leads to the Topology Change of
System A.

 To do this, SystemBInteroperationMetaObject
implements the following dependency:

SystemBInteroperationMetaObject

>>setUpConnectedServiceDependencies
SystemSignatureForSystemBInteroperation

connectRequiredServiceNamed: 'Short Term Predictions
Based On Long Term Predictions'
toProvidedServiceNamed: 'Short Term Predictions Based
On Long Term Predictions'.

 SystemSignatureForSystemBInteroperation

represents the System Signature ‘fragment’ of
SystemBInteroperationMetaObject. The outcome of this
metaobject setup operation is a System Signature
‘fragment’ with a connected service dependency linking a
required service of System A to a provided service of
System B:

SystemSignature>>connectRequiredServiceNamed:

requiredName toProvidedServiceNamed: providedName
| rs ps |
rs := self behavioralSignature requiredServiceNamed:

requiredName.
ps := self behavioralSignature providedServiceNamed:

providedName.
self structuralSignature

connectedServiceDependencies at: rs put: ps.

 When Architectural Change regenerates the overall

System Signature of System A, the connected service
dependency of SystemBInteroperationMetaObject is
composed with the existing connected service
dependencies of System A when System A’s Structural
Signature is updated (See Structural

Signature>>updateWith: aStructuralSignature shown
above).

D. A Reconfigured System Signature Leading to Topology
Change

 The regeneration of System Signature drives the
behavioral and structural realignment of a system. A
change to Behavioral Signature of System Signature leads
to a behavioral realignment through Protocol, Interface,
and/or Internal Change. A change to Structural Signature
of System Signature leads to a structural realignment
through Topology Change and/or Substitution.

 In this implementation, the kind of (new)
dependency added to System Signature determines what
type of change needs to be applied. New protocol
dependencies are manifested as a change to service
protocols via Protocol Change. New required or provided
service dependencies are manifested as a change to
required or provided services via Interface Change. New
operation, state element, or composite component
dependencies are manifested as a change to operations,
state elements, or composite components via Internal
Change. New connected component dependencies are
manifested as changes to components and communication
paths via Topology Change or Substitution. New
connected service dependencies are manifested as
changes to connections via Topology Change or
Substitution.

 In this example, the topology of System A is changed
by adding a connection between the Scenario Analysis
component of System A and the Scenario Analysis
component of System B. The new connected service
dependency added to the Structural Signature of System
A results in this Topology Change, which leads to
Protocol Change, Interface Change, and Internal
Change.

 The Scenario Analysis component of System A is an
instance of Deployed Component:

Object subclass: #DeployedComponent
instanceVariableNames: 'name dependencies

requiredServices providedServices communicationPaths
compositeComponents internalBehavior '

classVariableNames: ''
poolDictionaries: ''
category: 'Dynamic Reconfiguration-Interacting
Components'
metaclass: ComponentPropertyMetaObject

 Before any change the communication paths (and

required services) of the Scenario Analysis component
conform to the original control style of System A (See
Figure 5):

CommunicationPaths: a

Dictionary('EnergySectorKnowledge-ScenarioAnalysis'-
>a CommunicationPath)
 Required Services: a Dictionary('Knowledge
Representations of Scenario Predictions'->a
ProvidedService 'Scenario Predictions of Knowledge
Representations'->a ProvidedService)

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 47

© 2008 ACADEMY PUBLISHER

 Topology Change is manifested as a new

communication path and connection added to the
communication paths of the Scenario Analysis
component. After Topology Change, the communication
paths (and subsequently, after Protocol and Interface
Change), the required services, conform to the new
control style of System A (See Figure 7):

CommunicationPaths: a

Dictionary('EnergySectorKnowledge-ScenarioAnalysis'-
>a CommunicationPath 'ScenarioAnalysis-
ScenarioAnalysis'->a CommunicationPath)
 Required Services: a Dictionary('Knowledge
Representations of Scenario Predictions'->a
ProvidedService 'Scenario Predictions of Knowledge
Representations'->a ProvidedService 'Short Term
Predictions Based On Long Term Predictions'->a
ProvidedService)

VII. SUMMARY, CONCLUSION AND FUTURE WORK

This paper explains what software evolution means in
the context of software components that interact to
implement services. Using domain analysis and design
techniques, a domain model is defined of dynamic system
reconfiguration due to user-driven or computing
environment-imposed discrete change events. The
domain model explicitly specifies the relationships that
exist among changing global or local properties, changing
behavioral or structural signatures, and intra- or inter-
component change.

A. Summary
Based on the complete feature model of the domain

analysis, Figure 11 summarizes the primary feature
interactions of dynamic system reconfiguration.

System Model

Context of Change

Origin of
Change

Change
Properties

Type of
Change

System
Integrity

System
Properties

System
Signature

External
Interactions

Internal
Behavior

reconciled
with

represented
by

determines determines

global or
local

properties

structural
signature

behavioral
signature

determines
system

constructs
realigned

constrains
system

constructs
realigned

further dynamic reconfiguration

Figure 11. Primary Feature Interactions of Dynamic Reconfiguration

 With respect to the common and variable causal flow
presented in Section III, the process of dynamic
reconfiguration progresses as follows:
• Sensing User-Driven Change and/or Computing

Environment Change;

• Interpreting and then representing the particular
Origin of Change as Global Properties or Local
Properties with an associated Reconciliation Policy
(this includes reconciliation with existing System
Properties);

• Determining what feasible subsets of Type of Change
(if any) satisfy the Condition Change Criteria;

• If necessary, realigning Dependencies and therefore
possibly also External Interactions and Internal
Behavior; and

• Ensuring System Integrity Characteristics when
enacting change to help maintain overall system
consistency.

The domain model of dynamic system reconfiguration
is a useful conceptual framework for applying systematic
techniques to engineer constrained software solutions
within this open problem space. It is a significant artifact
in the following roles:

In the role of a software architecture, it specifies a
comprehensive dynamic reconfiguration capability in a
manner that can be used to forward engineer dynamic
systems;

In the role of a metamodel encoded by a component
framework, it defines the steps of dynamic change that
must be implemented by the framework and the ‘plugin
points’ required for realization of the different aspects of
the dynamic reconfiguration of a component-based
software system; and

In the role of a reference model, it can be used to
assess how dynamic an existing implementation is, the
different levels of compliance of dynamic change, and
how interoperable systems are at different levels of
dynamism.

B. Conclusion
 In the MetaclassTalk implementation, because

executability is expressed as message passing among
(pure) objects (where everything is a runtime object
including classes), it became clear that a constraint could
be represented by a metaobject which implemented a
standardized protocol for creating a system signature
‘fragment’ specific to that constraint. It also became clear
that system signature fragments could be composed as a
system signature that represented the fragments of each
global and local property and the overall signature of a
system. This is not viewed to change the domain design
per se but instead is considered to be a utilization of the
model in a manner that only became apparent when the
model was encoded with the model execution
environment.

It was learned that the explicit metaclass programming
facility of MetaclassTalk can effectively be used to
encode the constrained model, as a static representation,
at the metalevel. Base level objects could then be
instantiated, based upon these static representations, as
application-specific interactions. With respect to dynamic
reconfiguration, it was learned that a base-level object
could be an instance of a property metaclass that is
unique to that base-level object. Through MetaclassTalk’s
mixin mechanism, emergent run-time properties could be

48 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

dynamically composed that applied just to that object.
The set of available mixins should also be adjusted
dynamically. This was not addressed in this paper but is
the subject of future work.

 As a simulator of dynamic system reconfiguration,
the MetaclassTalk programming environment is a build-
time and run-time facility that is useful for validating that
the domain design can be instantiated within an
application-specific context. In this case, it is used to
validate that the domain model is useful for dynamically
reconfiguring a financial analysis system.

 As a framework, the simulator implements 'plugin
points' for realizing the general context of dynamic
reconfiguration. In doing so, it provides the macro-level
ordering of operations and the contextual information
required at each step for a more sophisticated
implementation. Generally, there is a need for a facility
that allows backing out and restoring the configuration of
the system if dynamic change is rejected.

The reconciliation of change properties with (existing)
system properties is represented as a distinct action.
When properties are expressed as constraints this
reconciliation could be computed through a constraint
solver (such as the Alloy Analyzer [10] or a different
implementation of a similar capability). Importantly,
depending upon the context, there may not be a solution.
In this case the change may be rejected or the change
constraints re-expressed in a manner that enables a
resolution. This issue is not addressed in this paper but is
the subject of future work.

 The current implementation of the reconciliation of
change properties with system properties is based on
name matching (to associate a change property with a
system property), with the change property taking
precedence. A more sophisticated implementation would
provide a constraint solver-like capability to determine
whether multiple constraints were compatible.

Given that change constraints can be reconciled with
(existing) system constraints, the UML models
represented estimating the impact of Architectural
Change upon system integrity as a distinct action.
Computing this estimate is viewed to be an open problem
and to be highly dynamic in nature since it is a function
of the (changing) state of the system at the time the
estimate is computed. Importantly, depending upon the
context, a system may change significantly during the
time it takes to perform this computation to such a degree
that the estimate is no longer valid. This issue is not
addressed in this paper but is the subject of future work.

 This implementation simply accepts the cost of
enacting reconfiguration when estimating the impact of
change. A more sophisticated implementation would
assess this cost taking into account previous results
(through heuristics), the current configuration (through
dataflow dependency analysis), and future results
(through predictive simulation).

Given that the system will proceed with the change,
the system model constructs relevant to the change type
must change and each system integrity characteristic
relevant to the change type must be assured. The UML

models represent this in a “don’t care” order. Depending
upon the context, a particular ordering may be preferred
(for feasibility, efficiency, or other reasons). This issue is
not addressed in this paper but is the subject of future
work.

 The current implementation of the 'don't care'
ordering of the application of a change type and its
integrity characteristics is arbitrary with the change made
first. The implementation assumes integrity
characteristics can be assured. A more sophisticated
implementation would ensure system integrity including
assessing what was the optimal order of application based
on current conditions. For example, in the case of
Substitution, if possible the change could be made during
a time window when there were not any active
references. As another example, in the case of Internal
Change, when a new operation is deployed to replace an
existing operation, both operations could co-exist for a
limited time period to ensure continuity of any active
dependencies on the old operation.

 Finally, as discussed, a change to system
dependencies is manifested as realigning external
interactions or internal behavior through an appropriate
type of change. Multiple global or local properties of one
change can be represented as multiple kinds of
dependency when updating the signature of a system. A
more sophisticated implementation would establish an
optimal change strategy when there is more than one way
to dynamically reconfigure a system to achieve the same
end result.

C. Future Work
The following is future work to be undertaken:
• Determining, through simulation, statistics,

heuristics or other means, under what conditions
a system undergoes adaptation and how
continuous system evolution is interpreted as
discrete change events that can be represented as
global or local properties, including the different
forms through which system constraints are
expressed;

• Investigating the use of a SAT (satisfiability)
solver for reconciling change properties with
system properties including the reformulation of
change constraints in a manner that ensures there
is a resolution;

• Investigating dataflow dependency analysis (and
like) techniques for assessing what the impact
will be when a particular change is made
including the problem that a system may change
significantly during the time it takes to perform
this computation to such a degree that the
estimate is no longer valid;

• Investigating the preferred ordering of the
application of change types and associated
system integrity characteristics (for feasibility,
efficiency, or other reasons);

• Investigating the cross-coupling effects that can
occur because of the additive composition of
change group models, including investigating

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 49

© 2008 ACADEMY PUBLISHER

giving precedence to certain kinds of change and
the serialization of the application of change
types across change groups while maintaining
global consistency;

• Investigating different levels of control in the
context of decentralized software evolution (in
support of load-balancing, change rejection and
roll-back, fault-tolerance, state splitting and
merging, and the system’s life cycle); and

• Refining the domain model and the simulator
(including their further validation and automatic
transformation, dynamically adjusting the set of
mixins, and the use of ‘traits’) when
implementing this capability in an industrial
context.

 A key aspect enabling adaptive computing is the level
of dynamism supported by the computing environment in
which a system is running. To be fully dynamic,
emergent runtime properties must influence not just what
is computed but how a system computes what is
computed. Open-ended facilities that enable a system to
extend itself, based upon self-representation, are viewed
as mandatory characteristics of any system that can adapt
to emergent properties.

 Using the domain model, the greater intent is the
provision of a set of guiding principles, and an associated
suite of techniques, which together help to ensure that a
system, or a family of systems, can better adjust in a
systematic way to dynamically changing run-time
environments.

REFERENCES

[1] Marriott, K. and P.J. Stuckey, Programming with
Constraints: An Introduction. 1998, Cambridge, Mass.:
MIT Press.

[2] Walsh, D., F. Bordeleau, and B. Selic. “A Domain Model
for Dynamic System Reconfiguration”, in Proceedings of
ACM/IEEE 8th International Conference on Model Driven
Engineering Languages and Systems. 2005. Montego Bay,
Jamaica: Springer.

[3] Walsh, D., F. Bordeleau, and B. Selic, Domain analysis of
dynamic system reconfiguration. Published Online First in
Software and System Modeling, DOI: 10.1007/s10270-
006-0038-4, Springer-Verlag, 2006.

[4] Walsh, D., F. Bordeleau, and B. Selic. "Change Types of
Dynamic System Reconfiguration", in Proceedings of 13th
Annual IEEE International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS).
2006. Potsdam, Germany: IEEE.

[5] Buhr, R.J.A. and R.S. Casselman, Use Case Maps for
Object-Oriented Systems. 1996, New York, NY: Prentice
Hall.

[6] Bouraqadi-Saadani, N., T. Ledoux, and F. Rivard, "Safe
Metaclass Programming", in Proceedings of Object-

Oriented Programming Systems, Languages, and
Applications. 1998. Vancouver, B.C.: ACM Press.

[7] Bouraqadi-Saadani, N. and T. Ledoux, "Supporting AOP
Using Reflection", in Aspect-Oriented Software
Development. 2005, Addison-Wesley: New York, New
York. p. 261-279.

[8] Bouraqadi-Saadani, N., "Metaclass Composition Using
Mix-in-Based Inheritance" in Proceedings of 11th
Smalltalk ESUG Conference. 2003. Bled, Slovenia.

[9] Scharli, N., et al. "Traits: Composable units of behavior",
in Proceedings of ECOOP 2003. 2003: LNCS 2743,
Springer Verlag.

[10] Jackson, D., Micromodels of Software: Lightweight
Modelling and Analysis with Alloy. 2002, MIT Lab for
Computer Science: Cambridge, Mass. p. 1-58.

D’Arcy Walsh received his Honours B.A. in 1981 from
Queen’s University in Kingston, Ontario. He received his
B.C.S. in 1989, M.C.S. in 1994, and Ph.D. of Computer Science
in 2007 from Carleton University in Ottawa, Ontario.

His research interests include software engineering methods
and techniques that support the development and deployment of
dynamic systems, including dynamic languages, dynamic
reconfiguration, context-aware systems, and autonomic and
autonomous systems research work.

Francis Bordeleau holds a B.Sc. Mathematics from
University of Montreal, a B.Sc.A. Computer Science from
Université du Québec à Hull, and a Master of Computer Science
and a Ph.D. Electrical Engineering from Carleton University.

He is the Founder, President and CEO of Zeligsoft, a leading
provider of market-specific embedded software development
tools that enable the development of component-based systems.
Francis is also an Adjunct Professor at Carleton University in
Ottawa, Canada. Francis has over 13 years experience
managing, researching, teaching and defining in the domain of
Model Driven Development (MDD), software engineering,
component-based technologies and Software Defined Radio
(SDR) systems. He has worked, consulted and collaborated with
numerous companies.

Bran Selic received his Dipl.Ing degree in 1972 and his
Mag.Ing degree in 1974, both from the University of Belgrade
in Yugoslavia.

He is an IBM Distinguished Engineer at IBM Canada and an
adjunct professor of computer science at Carleton University in
Ottawa. At IBM, he is a member of the CTO team, responsible
for defining the strategic direction for Rational’s software tool
products. Bran has over 30 years of experience in designing and
implementing large-scale industrial software systems and has
pioneered the application of model-driven development
methods in real-time applications. He is currently chair of the
OMG team responsible for the UML 2 standard.

50 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

