
Factors that Significantly Impact the
Implementation of an Agile Software

Development Methodology

Jeffrey A. Livermore
Walsh College/Business Information Technology/Detroit, MI, USA

Email: jlivermore@walshcollege.edu

1Abstract—The Internet economy has altered the current
rules of software engineering. Traditional development
methodologies have proven too cumbersome to meet the
rapidly changing requirements and short product cycles
demanded by business today. To meet these rapidly
changing requirements, software developers have developed
agile software development methodologies (SDMs) utilizing
iterative development, prototyping, templates, and minimal
documentation requirements.

This research project investigated agile SDM
implementation using an online survey sent to software
development practitioners worldwide. This survey data was
used to identify factors related to agile SDM
implementation. The factors that significantly impacted
agile methodology implementations included training,
management involvement, access to external resources, and
corporation size. Other factors such as using models, having
an implementation plan, collocating the development team,
and developing software for Internet or intranet use did not
significantly impact the implementation of an agile software
development methodology.

A number of the factors that impact the
implementation of an agile development methodology are
completely under the control of management.
Organizations that are considering implement ting an agile
methodology are able to manipulate some of these factors to
increase the opportunities for success of their methodology.

Index Terms—agile software development, Extreme
Programming, Scrum, agile methodology implementation

I. INTRODUCTION TO AGILE METHOLOGIES

The growth of the Internet and the digital economy has
altered the profession of software engineering.
Traditional software development methodologies (SDMs)
are being replaced by new light or agile SDMs. These
agile SDMs are characterized by iterative development,
continuous code integration, and the ability to handle
changing business requirements [1].

Extreme Programming (XP) is perhaps the most
popular agile methodology. XP is based on a series of

Based on “Factors that Impact Implementing an Agile
Software Development Methodology” by J. Livermore
which appeared in Proceedings of IEEE Southeastcon

2007 Conference. © 2007 IEEE

coding and management concepts that include: having the
business customer on-site with the development team,
pair programming, collective code ownership, continuous
code integration, small releases, designing tests before
writing code, standup meetings, refactoring, and 40-hour
work weeks [2].

Other popular agile SDMs are Scrum, Crystal
Methods, and Feature Driven Development (FDD). All
of these methodologies are fundamentally different from
traditional SDMs and help organizations meet the
challenges of today’s digital economy [1].

The use of agile methodologies enable software
developers to produce higher quality software in a shorter
period of time. Agile methodologies were developed to
improve the development process by removing barriers to
accepting business requirement changes during the
development process. It is not necessary to freeze or lock
in business requirements and design details while
developing software with an agile methodology [3].
Agile SDMs all share several qualities including
prototyping, iterative development, and minimal
documentation [4].

A. Extreme Programming
Extreme Programming was developed at Chrysler by

Kent Beck while working on a payroll project as a
member of a 15 person team. Beck continued to refine
and improve the XP methodology after the project was
completed until it gained worldwide acceptance in 2000
and 2001 [5]. XP can improve software quality while
shortening functionality delivery schedules.

XP is based on a set of concepts and practices that
include having the customer collocated with the
development team, pair programming, collective code
ownership, and the use of metaphors to describe business
situations [1]. Having the customer collocated with the
development team changes the customer’s traditional role
of a remote unapproachable user to being a full member
of the development team. Other XP principles include:
designing tests before developing code, maintaining an
open workspace, daily stand-up meetings, code
refactoring, and a work week of no more than 40 hours to
minimize staff fatigue and loss of perspective.

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 31

© 2008 ACADEMY PUBLISHER

XP contains development practices that are new to
many organizations and developers. The practices of pair
programming, open workspaces, and the 40 hour
workweek may lead to resistance from developers and
management [6]. Another practice unique to XP is
holding a daily stand-up meeting. The development team
meets every morning to exchange information and the
team members stand during the entire meeting to help
keep the meetings short [7].

B. Scrum
The Scrum methodology was specifically designed to

handle rapidly changing business requirements. The
Scrum name is derived from a strategy used in the sport
of English Rugby. In a Rugby scrum, the ball is passed
back and forth between team members to move the ball
down the field. The Scrum methodology moves a project
forward by improving communication between team
members and breaking the work into a series of “sprints”
[8]. A sprint should last between one and four weeks [8].
All development sprints should be kept to less than thirty
days. Scrum focuses more on management of the
development process than software coding techniques [9].

Like XP, Scrum was designed to work with small
teams of ten or less members, however Scrum is a
methodology that can be used effectively on both small
and large projects. Individual teams can use the Scrum
techniques on small or medium projects. Large projects
can be broken into subprojects and a Scrum team
assigned to each subproject. The communication and
priority management negotiation between the subproject
teams can be managed with standard Scrum techniques.

C. Crystal Methods
Crystal Methods is an agile SDM based on the

premise that people impact software development
projects more than tools or processes [5]. Crystal
Methods is a toolkit or collection of methodology
elements that organizations combine into appropriate
methodologies to suit individual projects. Large projects
and projects that impact public safety require more
methodology elements than small non-critical projects.
With Crystal Methods, organizations only create and use
as large a methodology as their project and business
needs demand.

According to Highsmith [5], the shade of Crystal
Methods, or the amount of methodology elements used in
a development project is determined by three factors.
The first factor is the amount of communication
necessary between the members of the development
team. This factor is affected by the physical location of
development team members, the office layout, and the
personalities of the team members. The second factor is
the presence of life-threatening implications if
undiscovered software defects are present in the software
when it is released. The third factor is the presence of
corporate priorities that complicate the development
process.

D. Feature Driven Development
The FDD methodology was developed for a bank

project in Singapore [10]. The bank’s development
project required an iterative development process that
was both easy to use and provided accurate progress
reporting for management. FDD was developed by Coad
and DeLuca to meet both these needs.

FDD is a five step process that does not require
extensive training for a development team to use it [10].
The first three steps are: develop an overall model of the
desired application, develop a list of the desired features,
and prioritize that list into an implementation plan. The
fourth and fifth steps are where the development iteration
occurs. Each development iteration produces a
deliverable for the customer. As features are developed
and released, the feature list is reprioritized to keep the
development team working on the highest priority
features with the most value to the business customer.

FDD can incorporate agile development techniques
from other methodologies. For example, FDD works
very well with the XP practices of pair programming and
daily standup meetings. The iterative fourth and fifth
steps of FDD can also be time boxed to help manage the
development process [10]. Time boxing enables the
customers to maintain better control of the development
priorities and determination of which functionality gets
developed.

E. WISDOM
The Whitewater Interactive System Development

with Object modules (WISDOM) is another agile SDM.
WISDOM was developed between 1997 and 1999 for use
at small companies [11]. Small companies frequently
have different business requirements than large
companies and may not have the large financial resources
necessary to fund a large software development project.
WISDOM was designed to match the needs of small
companies by utilizing an iterative process of refining a
prototype [12]. WISDOM has no documentation
requirements outside of the use of Unified Markup
Language (UML) to specify the software architecture.

F. Traditional Software Development Methodologies
Traditional methodologies such as SDM-70 or

Method-1 were developed before current computing
technologies such as the Internet, XML, wireless
networking, or ubiquitous computing were in existence.
Traditional methodologies were both innovative and
effective within the context of existing technologies and
relatively static business requirements. Traditional
methodologies require extensive documentation, freezing
or locking in business requirements during the entire
development process, and require changes to existing
software products and documentation produced prior to
when a business requirement changes [2].

The factors that impact implementing a traditional
SDM were researched by Roberts, Gibson, Fields, and
Ranier in 1998 [13]. This early implementation study
found that having a complete organizational transition
plan for a new SDM, management involvement and
commitment, using models, and providing access to

32 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

external resources all impacted the implementation of
traditional SDMs. The Roberts study became a seminal
work that served as the inspiration for this research
project.

II. RESEARCH HYPOTHESIS REVIEW
The research survey instrument was designed to

collect data that would answer research questions
connected to eight hypotheses. The first five hypotheses
were drawn from the earlier Roberts study on traditional
methodology implementation with the remaining three
hypotheses drawn from a literature review. The eight
research hypotheses were;
H1: Training on the use of an agile SDM will have a
significant impact on implementing that methodology.
H2: Active management involvement and support will
have a significant impact on a methodology
implementation.
H3: Having a compete methodology implementation
strategy will significantly impact implementing that
methodology.
H4: Selecting an agile SDM that utilizes models and
templates will significantly impact the implementation of
that agile SDM.
H5: Providing the development team access to external
resources such as off-site training sessions, journals,
consultants, books and online resources will have a
significant impact on agile methodology implementation.
H6: Developing software for Internet or intranet
applications as opposed to traditional computing
platforms (mainframe, midrange, PC) will have a
significant impact on agile methodology implementation.
H7: The size of the corporation or software development
team will have a significant impact on agile SDM
implementation.
H8: Collocating the development team will have a
significant impact on agile methodology implementation.

III. RESEARCH METHODOLOGY

A survey instrument was developed to collect
information on the eight research hypotheses regarding
agile SDM implementations. The questions in the survey
instrument came from the research hypotheses drawn
from the Roberts et al. study and the literature review.
The survey instrument was reviewed by a panel of peers
for readability and then by a panel of agile SDM experts
for content validity. The survey instrument was placed
online for six weeks.

The survey instrument was designed to be adaptive so
the questions presented to each respondent were
determined by their answers to the initial series of
questions that inquired about the respondent’s experience
with methodology implementation. For example, XP
users were presented with questions about implementing
and using XP as opposed to Scrum users who were asked
questions about implementing and using Scrum.

Obtaining relevant response information on agile
methodology implementations required identifying a
population of software developers with SDM experience.

This population was found in the Software Engineering
Institute’s Software Process Improvement Network
(SPIN). SPIN consists of local chapters of individuals
who are dedicated to improving the processes used to
develop software [14]. An invitation to complete this
research survey with a hyperlink to the survey was sent
via e-mail to the presidents of all domestic and
international SPIN chapters and a small number of
similar organizations. The chapter presidents were asked
to complete the survey and also forward the invitation to
all of their members. The survey was also sent to authors
who had published articles on agile SDM
implementation.

IV SURVEY RESULTS

A total of 112 survey responses was received.
Incorrect e-mail addresses caused 23 of the survey e-
mails to be rejected. Six domestic SPIN chapter
presidents agreed to forward survey invitations to a
combined membership of 1,803 software professionals
interested in software development. Survey invitations
were also sent to 143 authors who had published books or
articles on agile SDM implementation or usage. There
were 58 incorrect addresses for the authors that caused
their invitations to be rejected. There were 112 survey
responses received from the 1,946 individuals who
received an invitation to participate in the survey for a
return rate of 5.76%. No incentives were offered to
complete and submit the lengthy 66 question survey
instrument. The survey instrument was placed online for
six weeks.

This survey research had a low response rate of
5.76%. A low response rate limits the applicability of the
results to the larger population. Additional research
should be conducted with a different research sample or
with modifications to the research methodology that
increase the response rate. This may be accomplished
with a shorter survey instrument or survey completion
incentives.

Agile methodology users provided 71 of the
responses. More than third (26) of those organizations
actively use XP. Responses were received from agile
methodology users, traditional methodology users, and
organizations that do not use any form of methodology to
determine the effectiveness and benefits received from
implementing agile methodologies. Scrum was
implemented at eight of the responding organizations,
Feature Driven Development at four, Dynamic System
Development Methodology at three, Adaptive Software
Development at one, and 34 organizations developed
their own agile SDM. Ten of these homegrown
methodologies were built on a foundation of XP
practices.

A. Respondent Demographics
The responses came from a diverse group of well-

educated and experienced IT professionals. The
individuals that responded to the survey had an average
of 14.02 years of professional experience. These
individuals had a wide variety of job roles within their

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 33

© 2008 ACADEMY PUBLISHER

organizations. The respondent job roles are contained in
Table 1. The respondents came from a variety of
industries with the majority coming from IT or consulting
firms. Table 2 lists the industry affiliations of the
respondents. Table 3 lists the education levels of the
survey respondents.

Table 1.
Respondent job roles

Job Role Entire
Sample

Agile
Users

Developer 34 22
IT Management 20 17
IT Senior Management 11 10
Corporate Management 13 7
Business Partner/Use 2 1
Other 11 7
No answer 21 7
Total 112 71

Table 2.
Industry demographics

Industry Entire
Sample

Agile
Users

Consulting 13 11
Education 3 2

Government 4 2
IT 31 23

Financial 14 9
Manufacturing 3 2

Retail 3 2
Telecommunications 5 1

Transportation 1 1
Utility 1 0
Other 15 11

No Answer 18 7
Total 112 71

Table 3.

Respondent education levels
Highest level of education
completed

Entire
Sample

Agile
Users

High School 6 2
Trade School 0 0
2-year degree 2 2
4-year degree 37 25
Graduate degree 49 36
No answer 21 7
Total 112 71

B. Methodology Training

The survey results established a significant correlation
between successful methodology implementation and
receiving training on the methodology. A correlation
between two variables is a statistical measurement of
their tendency to increase or decrease with each other. A
statistical correlation is considered significant if it is

unlikely to have occurred by chance. Organizations that
provided methodology training to their development
teams were more likely to have a successful
implementation of that methodology than organizations
that did not provide training. This is a common sense
result that was predicted in the literature search. Training
in a methodology enables an organization to develop
expertise and be better prepared to implement the
methodology.

C. Management Support and Involvement
There was a significant correlation between

methodology implementation success and management
support and involvement. This positive correlation was
both predicted in the literature and intuitively obvious.
Management involvement and support should improve
the success of virtually any business project.

D. Methodology Implementation Strategies
There was not a significant correlation between

developing a complete plan for implementing an agile
methodology and the successful implementation of that
methodology. The lack of a correlation may be explained
by the adaptable and flexible nature of agile
methodologies. One of the survey respondents explained
this as “Having a complete and workable plan in advance
is contrary to the spirit of XP. We started with a rough
idea of what we needed and improved it every week.”

E. The Use of Models and Templates
There was no significant correlation between agile

methodology implementation success and the use of
models or templates. A correlation existed for traditional
methodologies but did not exist with agile methodologies.
The underlying reason is likely that agile methodologies
do not rely heavily on documentation templates the way
that traditional methodologies do.

F. Access to External Resources
There was a significant positive relationship between

access to outside resources and the successful
implementation of an agile SDM. The survey instrument
collected data on external resources such as books,
journals, consultants, and attendance at methodology user
groups and conferences.

This correlation was predicted by the literature and
makes common sense. Allocating resources to almost
any IT project will increase the likelihood that the project
will be successful. Allocating resources such as
consultants, books, and journals will increase the
development team’s knowledge of the methodology and
how to exploit that methodology’s features to bring
benefits to the organization.

 G. Internet/Intranet Software Development
The literature indicated that there were differences

between developing software for Internet or intranet
usage and traditional computing platforms. The research
found that there was no significant correlation between
traditional software development and developing
software for Internet or intranet-based applications. This

34 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

result was not expected as Internet and intranet
applications both require short development schedules
and frequently changing business requirements [15].

H. Company and Team Size
There was no significant correlation between

implementation success and the size of the development
team. This result was unexpected as a number of
researchers have stated that agile methodologies do not
work effectively with large development teams [1].

There was a significant negative correlation between
implementation success and the size of the organization
attempting to implement an agile methodology. Larger
organizations have more internal inertia and find it more
difficult to implement change than smaller organizations.

I. Development Team Collocation
There was no significant correlation between

implementing an agile SDM and collocating the
development team with business customers. The
majority of the organizations surveyed had collocated
their development teams are collocated so there was no
basis for a comparison between agile and non-agile
methodology users. Collocation provides benefits to both
types of development teams and the survey results
document that collocation is a standard industry practice
regardless of SDM utilization.

Collocation is done to improve communications
within the development team. In addition to collocating
their development teams, 36 of the responding
organizations installed communication tools to improve
communications within the development team. Eleven of
the responding organizations spent more than $999 and
four of the organizations spent more than $100,000.

J. Summary of Statistical Results
All of the statistical tests were conducted with SPSS

statistical software. The correlation, number of responses
used in each test, and the statistical significance of each
correlation are listed in Table 4.

Table 4.
 Hypothesis testing results

Research
Hypothesis

Pearson
Correlation

Significance Number of
Responses

.183 .068 71/68 One

.240 .032 80/102
Two .229 .073 62/68

.224 .083 61/68 Three

.127 .232 91/102
-.180 .173 59/68 Four
.015 .894 85/102
.319 .008 68/68 Five
.228 .033 88/102
.103 .422 63/68 Six
.122 .260 87/102
.041 .375 62/68
-.117 .183 62/68
-.173 .049 93/102

Seven

.167 .055 93/102

.170 .188 62/68 Eight

.053 .614 94/102

K. Cross methodology comparison
While it is difficult to compare methodologies, the

survey results showed that different methodologies
provide more benefits than others. A satisfaction score
was computed by assigning numerical values to the
survey responses indicating agreement or disagreement
on the benefits received by methodology implementation.
Every benefit received added to the satisfaction score.
ASD received the highest benefits score but was only
implemented by one organization. XP delivered the most
benefits of all the methodologies implemented by more
than one organization. Table 5 contains the calculated
benefits score of all the methodologies implemented by te
surveyed organizations. The economics of calculating the
financial value of the benefits of implementing an agile
methodology are not proven [15].

Table 5.
Methodology Differences

Methodology Number of
Organizations

Benefits
Score

ASD 1 31
XP 26 27.8

FDD 4 26.5
Scrum 8 25.6

Homegrown agile
methodology

34 24.6

DSDM 3 23.7

V CONCLUSIONS

This research determined that there are several factors
under management’s control that impact the
implementation of an agile SDM. Training on the
methodology, active management involvement and
support, access to external resources, and company size
all significantly impact the implementation of an agile
SDM. Having a complete methodology implementation
strategy, using models and templates, developing
software for either Internet or intranet use, and
development team collocation did not significantly
impact successful implementation.

VI RECOMMENDATIONS

The organizations that are considering implementing
an agile methodology control several factors that can
impact how successful that methodology implementation
may be. Organizations committed to a successful
implementation should consider allocating the necessary
resources to help make the cultural change to agile.
Resources should be dedicated to methodology training,
journals, and user group memberships to help prepare the
staff to use the agile SDM.

Organizations committed to a successful agile
methodology implementation should also evaluate the

JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008 35

© 2008 ACADEMY PUBLISHER

different agile methodologies to determine which
methodology is the best fit for their organization.
Different methodologies require different changes to the
organization’s management and software development
cultures. Selecting the methodology that will bring the
most benefits while requiring the fewest major cultural
changes will greatly impact the methodology
implementation.

There is a need for future longitudinal studies. Agile
methodologies are too new to have a documented history
of long-term methodology usage. The evolution of agile
methodologies should also be studied and documented.

VII REFERENCES

[1] Boehm, B. & Turner, R. Management challenges to
implement agile processes in traditional development
organizations. IEEE Software. 22(5), 30-40. 2005.

[2] Theunissen, W., Boake, A., & Kourie, D. In search of the
sweet spot: Agile open collaborative corporate software
development. Proceedings of the 2005 Annual Research
Conference of the South African Institute of Computer
Scientists and information Technologists on IT Research in
Developing Countries. White River, South Africa. 268-
277.

[3] Lindstrom, L. & Jeffries, R. Extreme programming and
agile software development methodologies. Information
Systems Management. 21(13), 41-53. 2005.

[4] Holmstrom, H., Fitzgerald, B., Agerfalk, P., & Conchuir,
E. Agile practices reduce distance in global software
development. Information Systems Development. 23(3), 7-
18. 2006.

[5] Highsmith, J. Agile Software Development Ecosystems.
Addison-Wesley, Boston, MA, 2002.

[6] Jenkins] Jenkins, S.B. Musings of an “Old school
programmer. Communications of the ACM. 49(5), 124-126.
2006.

[7] Astels, D., Miller, G, & Novak, M. A Practical Guide to
eXtreme Programming. Upper Saddle River, NJ: Prentice
Hall. 2002.

[8] Schatz, B. & Abdelshafi, I. Primavera gets agile: A
successful transition to agile development. IEEE Software.
22(3). 2005

[9] Mann, C. & Maurer, F. A case study on the impact of
scrum on overtime and customer satisfaction. Proceedings
of the Agile development Conference (ADC’05). Denver,
CO. 70-79. 2005.

[10] Palmer, S. & Felsing, J. A practical guide to feature-driven
development. Prentice Hall. Upper Saddle Hill River, NJ.
2002.

[11] Nunes, N., & Cunha, J. WISDOM – A UML based
architecture for interactive systems. Lectures in Computer
Science. 1946. 191-205. 2001.

[12] Nunes, N., & Cunha, J. WISDOM: A software engineering
method for small software development companies. IEEE
Software. 17(5), 113-119. 2000.

[13] Roberts, T., Gibson, M., Fields, K., and Rainer, R. Factors
That Impact Implementing a System Development
Methodology. IEEE Transactions on Software
Engineering. 24(8), 640-649. 1998

[14] Software and Systems Process Improvement Networks.
http://www.sei.cmu.edu/collaborating/spins/

[15] Williams, L. Extreme agility. Web Techniques, 7(1), 56.
2002

Jeffrey A. Livermore received his B.S. degree in

psychology from Wayne State University in Detroit MI,
his MSA degree in software engineering administration
from Central Michigan University in Mt. Pleasant, MI,
and his Ph.D. in information systems from Nova
Southeastern University in Ft. Lauderdale, FL.

He is currently the Chair of Business Information
Technology and Information Assurance at Walsh College
in suburban Detroit, MI. Prior to working at Walsh
College, he was the Director of District Technology in
the Monroe Public Schools, the Chief Information Officer
at the Barbara Ann Karmanos Cancer Institute, and a
Staff Manager at American/SCI Inc.

Dr. Livermore is a member of the IEEE Computer
Society, ACM, ISS, and HCTIA.

36 JOURNAL OF SOFTWARE, VOL. 3, NO. 4, APRIL 2008

© 2008 ACADEMY PUBLISHER

