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Abstract— Increasing traffic density enforces development of
Advanced Driver Assistance Systems to cope with safety
aspects. Such systems require serious amount of sensor
data to deduce spatial relationships. Not only car mounted
sensors, but the combination with environmental tracking
systems can fulfill the demand for obstacle surveillance.

Fusion of sensor data, federation to environmental models
and reasoning about that data allows for a broad spectrum
of new in-car systems. From collaborative and informing
systems up to part or fully automated driving, various
assistance systems generate a demand for such spatial
knowledge. With an integrated system, dependable data
can be delivered to any user-related assistance system, and
as side effect, reduce workload in already loaded in-car
computer systems.

To face these data aggregation and analysis issues, we
developed SCORE, a Spatial Context Ontology Reasoning
Environment. We illustrate our approach of a distributed
ad-hoc infrastructure that collects and disseminates tracking
data of environmental objects and thus allows for vehicle-
and ontology-based reasoning.

In extend, we illustrate how such systems can gather data
and where such a system can help in spatially related driver
assistance systems.

Index Terms: Advanced Driver Assistance Systems,
Ontology-based Knowledge Acquisition, Spatial Context,
Augmented Reality, Time-Critical Systems

I. INTRODUCTION

Driver inattention is a major reason for vehicle colli-
sions, contributing to 78% of crashes and 65% of near-
crashes [1]. Reasons can be attributed to driver absent-
mindedness, driver distraction due to interaction with an
in-car information system, and to increasing amount of
traffic on the road. Traffic density becomes higher and
drivers have to cope with more unexpected situations.

Advanced Driver Assistance Systems (ADAS) aim at
supporting drivers with their driving task [2]. One of
these, for instance, is the Adaptive Cruise Control (ACC,
[3]), that automatically senses cars in front and controls

This paper is based on “Ontology-Based Pervasive Spatial Knowledge
for Car Driver Assistance”, by M. Tonnis, J. Fischer and G. Klinker,
which appeared in the Proceedings of the 15th Annual IEEE Interna-
tional Conference on Pervasive Computing and Communications Work-
shops, PerCom Workshops 07, White Plains, New York, USA, March
2007; The First International Workshop on Pervasive Transportation
Systems, PerTrans 2007. (© 2007 IEEE.
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speed such that a safe braking distance is maintained.
Yet, ACC is only allowed to operate within carefully set
safety margins. Extreme braking operations are excluded,
causing ACC to turn itself off and alert the driver that
there is no more longitudinal support. One common
reason for such behavior occurs when a neighboring car
switches lanes just in front, thereby being temporarily in
very close range. Such switch-offs could be avoided by
more sophisticated ADAS systems. If they could monitor
the car’s wider environment and thus could deduce traffic
situations or other drivers’ behavior. These systems then
could provide a wider range of information for the driver
about timely and accurate safety-related information, use
in automatic course adjustment or even intervene in
emergency situations. We are exploring such concepts in
a system that supervises location, speed and trajectory
of other vehicles and deduces relevant behavioral traffic
data to be used within a vehicle-centric service-oriented
architecture.

Mandatory basis for the analysis of traffic behavior is
a rich sensing system. GPS, Galileo as well as in-car
dead-reckoning systems indicate that car motion will be
trackable within individual lanes of a road. We assume
that stationary systems along the road will be available to
gather such data from passing cars and integrate it into
local traffic models. For the area of pervasive computing,
challenges of a highly dynamic environment in conjunc-
tion with dynamic short range network connections are
addressed. It is the responsibility of the individual cars
to gather and interpret accumulated traffic data from such
stationary providers along the road — enhanced by data
from on-board sensors such as radar, near and far infrared
and range scanning devices [4].

ADAS systems then need to infer critical events from
such traffic data and provide appropriate feedback to the
driver. Among other types of feedback, those systems
have to provide intuitive and minimally distractive in-
formation to the driver of a car. To focus on the user
interface, such systems require underlying deduction of a
car’s spatial context. To enable ADAS systems to receive
such spatially related information about traffic situations,
we designed and implemented a distributed system to
meet the general issues of such systems.
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Our context deduction system, SCORE, a Spatial Con-
text Ontology Reasoning Environment, constitutes, what
pervasive distributed systems need: a peer to peer middle-
ware in conjunction with an applied contextual deduction
system. The system consists of separate autonomous
components which federate and reason about contextual
data that is related to spatial properties [5], [6]. With
SCORE we show that Semantic Web technologies and
logic/rule-based systems are applicable to a spatial con-
text. Federation components collect explicit spatial data
coming from distributed information sources. To support
applications that access structured information, reasoning
systems deduce spatial knowledge by querying data from
the federation components. Multiple instances of this
system can set up short range ad-hoc networks and can
thereby maintain up-to-date models of moving cars in the
vicinity.

As part of an continuing research project towards
creating and evaluating novel assistance systems for car
drivers, the SCORE system has helped us overcome the
limitations of sensory equipment in current cars and
look a few years ahead. In this article, we illustrate
the approach of our context deduction system and the
underlying middleware. We illustrate our system in the
context of its own dependencies. Our groups work in
underlying sensor systems is presented together with other
approaches on top level ADAS systems for future use
in intelligent transportation systems. Especially the way
from sensor data to ADAS systems, that use Augmented
Reality for egocentric and therefore minimally distractive
information presentation is described. We close with a
description of the implementation, results from applying
and testing SCORE, and end with an outlook of future
work.

II. RELATED WORK

Research projects as the project INVENT [7] deal,
among other things, with the subject of car to car com-
munication. Stationary sensors as well as mobile sensors
mounted to cars acquire data for use in a traffic routing
system. Diverse and heterogeneous sources of data are
combined to obtain a prognosis of traffic state. In this
manner, a comprehensive knowledge base is built up to
support optimal individual route guidance. To reconstruct
the traffic state based on fused data coming from different
sources methods such as computer simulation of traffic
flows are used. Route planning then is performed using
a roadway network with dynamic attributes. The network
combines criteria from a static digital map with attributes
obtained from a reconstruction of the current traffic state,
from a forecast of the future traffic state, from knowledge
of traffic management and control strategies. Waypoint-
and graph-theory algorithms are used in a in-car computer
system. Here each car deduces its own relevant informa-
tion for use in 3rd generation navigation systems.

The goal of the work of Kosch [8] is to provide precise
and up-to-date information to car drivers, according to
the needs of their individual situation. The developed
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CARISMA system independently and autonomously self-
organizes direct wireless transfer of sensor data between
automobiles. Varying system analysis and simulations
clarify the behavior of the resulting vehicle ad-hoc net-
work and provide insight to its characteristics. By adding
new protocols below and besides the TCP/IP stack, the
used protocol design takes special network properties
and very dynamic topology into account. The developed
methods allow targeted exchange of information between
vehicles on the road. The system assesses the situation-
dependent benefit of information and decentrally controls
the communication with its distributed components.

III. TRACKING AND GENERA SYSTEM
ARCHITECTURE

To reason about the current traffic situation, cars need
a long-ranging detailed overview of cars in their sur-
roundings. Many sensors, such as GPS, radar, infrared,
range and ultrasound sensors, are integrated into next
generations’ cars [4]. Thus valuable information about
the immediate surroundings becomes available to on-
board automatic analysis and reasoning. Yet, we expect
such tracking data not to be sufficient since directly
adjacent cars may be occluding further cars that contribute
significantly to the total traffic conditions.

In our approach, we use a hybrid concept towards
gathering and maintaining up-to-date traffic models. The
approach involves continuous communication between
car-based (“inside-out”) mobile tracking equipment in
cars and road-based (“outside-in”) stationary tracking
equipment along the road.

To provide ubiquitous support along the road, the street
network is separated into road sections, with each of them
containing a number of vehicles at a certain point in time
(see Figure 8). For each road section, a logically related
tracking system observes the explicit spatial context states
of all vehicles within that area. When a car crosses
an areal border, it becomes associated (based on its
GPS-based position) with the next road section. These
components serve as spatial context providers.

Bearing the prerequisites of such ubiquitous informa-
tion management [9], [10] and high dynamics of spatial
data in associated scenarios in mind, SCORE was de-
signed to support applications on two separate layers that
set up on the observed reality. In the federation layer,
all data of a certain area is federated in a spatial context
model. Components of the federation layer intentionally
are associated to certain road sections. From the next layer
above, ontology-based reasoning components can access
the spatial context model. The reasoning components then
intentionally reside in each car so that each car can deduce
its own view. Figure 1 shows a sketch of this architecture.
This approach is based on work by [11] and supports
the combination of spatial context models for efficiently
processing low-level spatial data with ontological context
representations for information deduction as top layer.

The two layers clearly separate highly dynamic asser-
tional knowledge in traditional coordinate-based models
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Figure 1. Combining Spatial Context Models and Contextual Ontologies

and terminological information of real world concepts
within interpretable ontology spaces [12]. Multiple in-
stances of software components are allowed to run on
each layer to warrant high availability of the system and
avoid single points of failure.

In the federation layer explicit context data is aggre-
gated in spatial context models as attributes of entities.
Implicit information is deduced in the reasoning layer
by ontology-based interpretation modules. Here high-level
spatial context is represented by binary relations between
the entity classes of the relation’s domain and range. The
decision whether such a relation is executed in partic-
ular situations is based on information observed at this
moment. We strictly distinguish between the continuous
acquisition of context and its usage by aware applications.
This enables facilitated access to context data and also its
sharing between applications [13].

Applications, such as advanced driver assistance sys-
tems, can access the components of the reasoning layer
by querying for certain information (pull) or by being
automatically notified (push). All components of the ar-
chitecture act as autonomous services. Figure 2 illustrates
the general architecture.

Our approach combines advantages of coordinate-based
models with those of ontological knowledge representa-
tion. Therefore SCORE profits on the one hand from the
flexibility regarding spatial scope, an extensible spatial
detail. On the other hand, SCORE profits from scala-
bility with respect to dynamics of context acquisition
[14]. Additionally, it provides ontology-based reasoning
capability, information sharing and reuse.

IV. FEDERATION

In SCORE’s layered architecture a federation com-
ponent mediates between various information sources
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Figure 2. SCORE’s Architectural Overview: Trackers define Spatial
Context Providers that update Spatial Context Federation components.
These are queried by components for Spatial Context Reasoning. ADAS
Applications on top specify the user interface for the driver

and reasoning components and beyond that, the ADAS
systems. Regarding the volume of communication traffic,
several stationary computers — each logically related to
one road section — run federation components that collect
spatial data within the respective areas. Trackers act as
spatial context providers (see figure 2). These inform
the federation layer about spatial data with frequencies
high enough to permit real time use in safety-relevant
applications in ubiquitous computing and in Augmented
Reality-based applications in general [15] and for visual
support in cars in particular.

When the so-called broker of the federation subsystem
(see Fig. 3) is notified, it instantly accesses the warehouse
to aggregate attributed data items. Such items are each
linked to a unique entity within the real world.

Each data item describes exactly one entity and con-
tains information about its primary and secondary spatial
context. An entity’s primary context covers its unique
name and its positional and orientational values at a
particular time. The federation component uses this in-
formation with the entity’s class membership to iden-
tify each entity. The secondary context depends on this
identification and — among other things — includes a
number of valid spatial context attributes such as po-
sition, orientation, velocity, acceleration, distances and
trajectory angles. Since a federation component may serve
multiple applications at a time, namespace statements
are supported to uniquely name entities and their class
memberships.

The warehouse organizes an efficient volatile data
structure to continuously index and cache those data items
to optimize query response times and to provide quick in-
formation retrieval. Among other things it also computes
distance values for efficient range-based queries.

An additional persistency mechanism is represented by
connections to relational database management systems
which store snapshots of the contextual configuration in
discrete intervals. The federation component also pro-
vides query mechanisms for applications requesting mere
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Figure 3. Design of SCORE’s federation component

explicit information such as reasoning components used
for deduction of context. The querying component can
request current and past contextual information about a
number of specified entities. Applications and reasoning
components also issue range-based queries to obtain data
of entities that are in a specified range to a special entity.

V. REASONING

To deduce relevant information from federated data, the
reasoning system uses an ontology rule-based approach.
In each car a reasoning component dynamically connects
to one or more federation servers in range to access spatial
data necessary for interpreting the vehicle’s situational
information. Therefore the principal task of SCORE’s
reasoning component is context interpretation for queries
from applications running at this moment. Similar to
the federation component’s broker the reasoning system’s
central controller manages the control flow. The con-
troller mediates between the component’s interfaces, the
subscription component, the query parser, the reasoner
subsystem and the persistence manager (see figure 4).

Using the query handler interface, applications can
directly request deduced spatial context from a reasoning
component or can subscribe to notifications regarding
static queries. These queries are then executed in defined
intervals. The subscriber is notified only if contextual
changes regarding the observed entities occur.
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Figure 4. Design of SCORE’s reasoning component
The query language is declared to be easy to use, so

that non programmers can define their own queries for
use in additional ADAS systems. Each query consists
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of a triplet comprising an ontological object property.
Later, its domain and range are dynamically mapped to
entities by the reasoner. Hence, the important prerequisite
for SCORE’s functionality is the automated matching of
entity classes to ontological classes, entity class relations
to ontological binary relations between classes, and entity
class attributes to ontological properties, that assign data
types to ontological classes. The following two examples
show the request of contextual information for queries
whether vehicle ”car007” overtakes ’car001’, and which
lorry represents a spatial obstacle for the motorcycle
”bike27”. To support multiple applications at the same
time optional namespace declarations can be stated in a

query.

Vehicle=car007 overtakes Car=car001
Lorry=+ isSpatialObstacleFor
Motorcycle=bike27

The controller invokes the query parser only upon the
arrival of a new query. At that point in time, the query
is parsed, transformed into a processable abstract syntax
and afterwards cached due to efficiency purposes.

Next the abstract query is handed to the reasoner
subsystem, where it is processed by the description
logic-based reasoner (DL-reasoner). T-box information
contained in ontologies describe terminological entity
relationships that are used by the reasoning component to
understand how to interpret assertional spatial data that is
collected in the entities’ environment [12].

Reasoner Reasoner

reason(spatext) RuleParser

| ‘ parse()
<<interface>> Rule-based R E s

DL Reasoner Reasoner Y
invoke()
reason(static spatext) reason(dynamic spatext)

Function

Respository

Figure 5. Reasoner subsystem within SCORE’s reasoning component
("spatext” denotes “spatial context”)

The terminological interpretation process is based on
ontologies [16] known from the Semantic Web [17],
[18]. For defining static knowledge, a global ontology
knowledge base plays a central role in SCORE’s archi-
tecture. It comprises extensible ontologies for a homoge-
neous application domain terminology as well as rules
that describe the validity of binary relations between
ontology classes. Ontologies are well-suited for logic-
based reasoning, especially when description logic ( [19],
[20]) is applied. This is due to the similarity between
the language constructs of description logics and those
of ontologies. Additional information can be deduced
automatically from pre-defined ontologies with proper-
ties such as equality, symmetry, transitivity, inversion,
disjointness and others (see figure 6). For this purpose,
an off-the-shelf ontology-based reasoning framework is
accessed via the DL-reasoner interface.
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Figure 6. Example Ontology

A successful interpretation leads to a pre-defined in-
stance of the ontology class “rule” (see figure 7). To
identify the correct rule definitions for an object property,
the query relation’s domain and range classes are mapped
to the ontology relation’s domain — i.e., to the range
classes or to the proper sub-classes, if either the domain,
the range or both classes in the query inherit from those
declared by the relation in the corresponding ontology.
As mentioned before, the rules themselves are instances
of the ontology class rule. They are defined by application
developers in a generic way, such that they can be reused
in various application domains. Rules are specified in the
custom-defined RDFS-based language SRL (Spatext Rule
Language, Spatext abbreviates Spatial Context) [21].

SpatialObstacleFa

isDefinedBy

patialObstacleRul

Figure 7. Reasoning about ontological object properties

For each rule derivations are defined similarly to
”if” statements well-known from general programming
languages. Conditions can be expressed using sub-
conditions, boolean operators, comparison operators and
reasoning functions, where the latter ones are defined
within an extensible function repository. These functions
can also be nested, and are used to compute spatial
relations between entities. For instance there are functions
returning angles, distances or the time to collision (TTC)
between entities.

The interpretation process results in a set of rules that
just define the binary relation referenced in the query.
Similar to the query that is parsed by the query parser the
rule set is transformed by the rule parser of the rule-based
reasoner into an abstract syntax and cached internally to
speed up succeeding operations.

To execute the rules, the rule invoker invokes those
functions declared in the rule conditions together with
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the explicit spatial context of entities matching the query.
Here the federation layer plays an important role as it is
accessed for obtaining this information.

Ontological knowledge bases are not well-suited for
maintaining a detailed history of highly dynamic asser-
tional data due to the continuous growth of information
resulting in inefficient data management. In spite of that
and to cope with the increasing amount of data without
giving up the benefits of an ontological representation
of concept knowledge in application domains dynamic
spatial context data is managed on the federation tier and
only requested for interpreting situational information.
The reasoning process is rule-based, since it addresses
the objectivity of spatial relations, e.g., traffic rules, that
in its own sense disregard a scope of varying interpretation
[12].

Each successful rule invocation of the rule-based rea-
soner results in interpreted spatial context, returned to
the central controller, where it is cached as well and
forwarded to the persistence manager. The persistence
manager of the reasoning component can be compared
to the one of the federation subsystem. It handles the
storage and retrieval of spatial context. In this case it only
manages implicit data, not low-level context. Hence the
reasoning component’s persistence manager only enables
storage of those location-based information, that it can
deduce. Alike the persistence manager of the federation
layer this one does not implement persistent storage on
its own. Instead persistent storage is dependent on an
additional component providing persistence management
of interpreted spatial context.

Finally the interpretation result is provided to those
applications, that have subscribed to the corresponding
query or actively issued the query. Besides the implicit in-
formation deduced from a binary relation between certain
entities the result also comprises descriptive information
specified by application developers as well as correspond-
ing explicit context data requested from the federation
layer during the reasoning process.

VI. AD-HOC NETWORKING

Spatial context providers and federation components
can be placed in the environment and therefore can be
interconnected statically. Similarly, instances from the
reasoning layer can have hard-coded interconnections to
applications inside the car. Interconnections between the
federation and the reasoning components require dynamic
bindings, when a car leaves one federation sector and
moves to another. Then once more the car built-in reason-
ing system must get connected to the forthcoming sector’s
federation component and disconnect from the previous
one.

For this kind of ubiquitous networking we used the
DWAREF [22] architecture to describe and interconnect
all components. DWARF specifies a peer to peer frame-
work that manages services to dynamically interconnect
them depending on their contextual attributes [23]. For
instance localization and tracking distances of services
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are specified by such attributes. The DWARF middleware
supervises these attributes and interconnects correspond-
ing connectors, therefore enabling the data flow. When
the system is started, it establishes the interconnections
between federation and reasoning components as well as
between base data providers or applications that declare
driver assistance systems.

For the case, a car moves through the environment,
it updates the contextual requirements of the reasoning
service that specify its global position. When a car is
going to leave the sector of a specific federation com-
ponent, the DWARF middleware determines, that another
environmental federation service has contextual attributes
that now fulfill the changed need of the reasoning ser-
vice. The new connection between the entered sector’s
federation component and the car’s reasoning system is
established and the present connection between the two
services is removed. Figure 8 shows in a sketch how
interconnection is executed while a car drives along the
X-axis. While this operation is performed, some of the
reasoning service’s attributes are automatically passed to
the federation service, adjusting and configuring it for
addressed queries and notification frequency [24].

To provide additional tracking data, among other vari-
ous information sources a car built in GPS system can also
act as a spatial context provider and therefore propagate
the own car’s position to the federation service that is
connected at this moment.

Inconsistencies that may arise during a hand-over from
one federation service to another, which are similar to
hand-overs of WiFi systems, are not dealt with at the
moment. At the moment our work focuses on applied fed-
eration and reasoning, which we will investigate further
on in the future.

VII. IMPLEMENTATION

This section describes the current implementation state
of the SCORE framework as well as the procedure for
developing new applications on top of the SCORE system.
Some missing functionality implementations correspond
to the integration of an off-the shelf persistence manage-
ment system on the federation layer as well as the imple-
mentation of the persistency manager on the reasoning
layer. However the possibility of an easy extension of
SCORE has been carefully considered during its design
to meet these functionalities in future development.

A. Federation Subsystem

Due to high performance requirements the federation
service is implemented in portable ANSI/ISO C++. Thus
efficient main memory management speeds up the ser-
vice’s warehouse through fast memory (de)allocation. To
meet fast response time requirements of ubiquitous com-
puting and Augmented Reality applications, the service’s
warehouse (see Fig. 3) itself is based on an efficient
and flexible indexing data structure combining minimum
binary heaps and AVL-trees. Following a pointer from
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an item within an array of ontology classes to the cor-
responding heap, range-based queries can be executed
quickly since the heaps are arranged by distances be-
tween tracked objects. For general queries also internal
binary search trees pointing to items within heaps can be
traversed. Indeed, for both indexing methods the worst
case runtime for finding or updating an entity’s contextual
history refers to logarithmic time complexity on the total
number of items in the corresponding tree.

At this moment the federation service provides two
interfaces for communicating with other system com-
ponents. Spatial context providers use DWARF’s asyn-
chronous CORBA event notification connector match-
ing the federation service’s receiver connector to enable
events regarding low-level location-based information
about entities. Multiple spatial context provider services
can simultaneously send notification events to a single
service.

The decision for using an event-driven communication
with the federation service’s need interface is founded
upon the asynchronous property of this communication
mode. In contrast to synchronous method calls we in-
tegrated context providers by use of continuously sent
structured events of spatial information, therefore not
enforcing the federation component to take care of mul-
tiple communication sessions, but delegating this issue to
the DWARF middleware. The asynchronous communica-
tion mechanism significantly increases the performance
of context providers, especially when the frequency of
context acquisition is high. Though there is no absolute
guarantee for delivering events (they might get lost on the
network if netload is too high) the benefits in the flexibil-
ity of asynchronous communication clearly surpasses this
limitation.

The federation service also has a common interface
for querying basic spatial context histories about con-
textual entities using synchronous communication via
CORBA method calls. Here the service is capable of
handling multiple queries at the same time. By use of
the synchronous communication mode the calling system
is blocked during query processing. In contrast to the
need interface, where the federation service only receives
events, here the communication is based on a client-server
approach, where the client such as a reasoning service
specifies additional attributes for constraining the possible
results of its query. Events are far too inflexible and
inefficient for the transmission of both the dynamically
declared queries and the varying responses.

B. Reasoning Subsystem

As a concrete ontology reasoner the reasoning sub-
system uses the open-source Jena2 Semantic Web frame-
work' at this moment. This Java-based framework is the
second version of the Jena reasoner. It follows the HP
Labs Semantic Web Research Programz, and is now avail-
able under a BSD open source software license. Jena2

Thttp://jena.sourceforge.net/
Zhttp://www.hpl.hp.com/semweb/
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Figure 8. Sketch of dynamic reconnection of car internal reasoning service between two federation service sectors as car moves along X-axis

supports reasoning with respect to RDFS and subsets of
DAML and OWL. The framework provides several Java
APIs for accessing RDF models and ontologies. Besides
an implementation of RDQL, Jena2 also allows for the
persistence of ontology models in relational databases.
Though Jena2 restricts the programming language of
SCORE’s reasoning service to Java, it nevertheless has
been selected, because it provides an easy to use OWL
API and both a volatile and persistent storage mechanism.
Above all the OWL API facilitates the retrieval and rea-
soning about terminological information, that is contained
in SCORE’s ontologies.

For describing this information in SCORE’s central
ontological knowledge base the Web Ontology Language
(OWL) was chosen. OWL is a powerful XML-based
language, that has been recommended by the W3C in
February 2004°. It is based on RDF’s features of data
and meta data modeling, and RDFS’s capabilities of
defining the corresponding vocabulary and constraints.
OWL extends this first approach of knowledge modeling
by specifying formal semantics with the help of additional
restrictions in the usage of RDF. The decision for using
OWL as the description language for ontologies not only
allows for an uniform modeling of common knowledge
about application domains. Furthermore it enables shar-
ing of these information among cooperating applications
and also other context management systems. Also the
extensible structure of an OWL knowledge representation
enables developers and system architects to understand

3http://www.w3.org/TR/owl-features/
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ontology evolution.

Interpreting dynamic context is done by the rule-based
reasoner. On the basis of globally defined interpretation
rules, it transparently invokes functions, that refer to the
function repository - a special Java class designed for
easy extension. These functions are identified at runtime
and dynamically invoked via Java reflection by passing
the explicit context that matches a certain application
query and is subsequently requested from the federation
layer. Java reflection is used due to the convenience
for application developers, who just have to add new
functions to the repository in the case they do not yet
exist, and afterwards can instantly use them in new
rules. Since functions can be nested within conditional
statements, more complex interpretation behavior is also
achieved by piping spatial data through a set of functions.
Independent from whether functions are added to the
repository, composed during interpretation or nested in
complex conditional statements, because of the reflection
mechanism, application builders do not have to think
about how and when interpretation functions are executed
by the reasoning service.

As mentioned before reasoning services query basic
spatial information from the federation layer by calling
methods in the corresponding interface represented by
the federation service’s ability. Similar to the federation
service also SCORE’s reasoning subsystem enables other
services such as applications to query for spatial informa-
tion about entities. In further development the reasoning
service will also provide a subscription mechanism via
event notification to send contextual events to its sub-
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scribers. Therefore aware applications are able to actively
request or be informed about implicit context processed
on the basis of a terminological context representation and
the dynamically changing location-based context of those
entities, an application is interested in.

C. Developing Applications on top of SCORE

Figure 9 shows that SCORE’s usage in new applica-
tions is facilitated. In the requirements analysis phase
application builders first identify entities, e.g., individual
persons, locations and objects, that must be supported
by the application. After unique names are provided for
each entity they are mapped to common ontology classes,
e.g., 'person’, ’vehicle’ or ’service station’, for which
binary relations are analyzed. If necessary corresponding
ontology rule instances are defined properly for each
relation using the XML-based Spatext Rule Language.

Yet missing terminological information (concept, rela-
tion, property data) is added to the ontology knowledge
base (OKB) [12].

1. analysis of
application domain:
classes, instances,
properties, relations

2. OKB extension:
classes, properties,
relations and
associated rules

3. integration of missing
reasoning functions
and adaptation of

application developer :
context providers

4. impementation of
application logic,
query definitions

Figure 9. Use cases for building new SCORE applications

If a required reasoning function is still missing in
the function repository, then it is integrated additionally.
Then existing generic spatial context provider services
are configured or new ones are built depending on the
application’s requirements.

In the last step the application is built. During the devel-
opment, queries that were identified in the requirements
analysis are declared using SCORE’s query language. It
might be necessary to define classes and properties with
fully qualified URIs if their short names raise ambiguities.

Now the complete system can be started up. SCORE
will automatically detect any errors related to misstated
declarations in the terminologies, rules or in queries, for
instance. Here it informs the application developer where
and why errors arose.
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VIII. PERFORMANCE

To test the performance of our system, we used a driv-
ing simulator to simulate additional cars, whose amount
reflected an averagely frequented road. We developed
an ADAS application that observes the time to colli-
sion (TTC) with various additional cars. To support this
functionality it registers with respective events that are
released if the TTC falls below certain thresholds. The
foreign cars’ positional data is propagated by stationary
spatial context providers to the federation layer running
on another computer. Two federation services managed
two areas (left and right of a horizontal X axis dividing
the world into two areas), see figure 10.

X<0
Federation2

X>=0
Federation1

Origin

Figure 10. The road course of the driving simulator. Federationl
manages the positive side of the X-Axis, Federation2 the negative

The own car’s position in the virtual world was com-
puted by a single-lane driving dynamics model — we sim-
ulated a GPS tracker. Depending on the own car’s position
in the virtual world, the car’s reasoning service (running
on a Linux PC) was connected to one federation service,
querying for spatial data. Depending on its location in the
world, the reasoner updated its predicate for the selection
of a suitable federation.

The upper part of figure 11 illustrates a snapshot of the
SCORE system’s service structure. Within this snapshot,
the car is on the positive side of the simulated world and
therefore is connected to the service named Federationl.
The lower part of figure 11 shows the predicate that is
adjusted in correspondence to the current position of the
own car.

A. Performance of Single Services

The federation service gives a response time below
10ms for up to five spatial context providers with up
to 250 entities per provider. Compared to an average
amount of cars on an road interval, these response times
are acceptable. The reasoning service responds to n-to-n
queries in 37.1ms seconds for 100 entities. This result
is a worst case result, because general reasoning systems
are intended to be integrated in each car and therefore
only have to manage 1-to-n queries. Going down to 50
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Protocol Objreflmporter
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Figure 11. A snapshot of the services’ interconnections: The own car
is in the positive side of the federation sector ,,border”

entities, which still is a lot on open fast traveled roads
like highways, the response time sinks to values around
10ms, as shown in Figure 12. Taking network delays of
cabled installations into account, the cumulated response
or notification time of the system is below 30 ms. These
measurements do not match any wireless communication
and also do not take any computation time of tracking
systems into account.

100,0
90,0 [11 provider
5 providers
80,0 Wse )
B 10 providers
70,0 .

60,0

50,0

40,0

30,0

20,0

response time in milli seconds

10,0

0,0+

10 50 100 250 500 1000
number of entities per provider

Figure 12. Overall response times of the federation service’s entity
histories access interface method (n-to-n query)

B. Performance in Distributed Setups

When dividing up entities a single query will only
span one subset of entities. Therefore entities in different
subsets are not related to each other with respect to the
relation stated in the query.

Such an approach is depicted in Fig. 13 where 100
entities from the previous performance analysis are split
into particular groups of entities so that the number of
all entities in all groups equals 100 again. The diagram
shows the decreasing number of comparisons while the
number of groups is increased.

IX. EMBEDDING AND APPLYING IN ADAS SYSTEMS

An ontology-based reasoning system alone is no assis-
tance system for use in automotive environments. It only
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Figure 13. Reducing the complexity of queries by distributing entities
over particular numbers of groups

provides data of spatial interdependencies but does not
apply them to the car or the driver.

Data from such a system can get applied in autonomous
systems, as for instance, collision mitigation systems or
automatic course correction systems, but also allows for
driver information. At the moment driver information
in assisting manner state the focused approach of in-
car assistance systems as fully automated driving will
be a topic of research for some more years. Assisted
driving offers many opportunities for increased safety and
environmental awareness.

Besides development of our context deduction system,
our group also investigates top level ADAS system. The
top level systems define the human-centered computer
interface of the in-car system. In this section, different
applications that relate on spatially deduced sensor data
are illustrated.

A. Direction Indication of Dangers

One application that has to rely on such data is founded
by an ADAS system that is intended to guide a car driver’s
attention to the direction on an imminent danger in the
car’s near environment [25]. Figure 14 shows a 3D arrow
floating in the Head-up Display (HUD) of a car pointing
into the certain direction of that danger. Since obstacles
change their relative position quickly, the system requires
very high update rates to give an immersive and accurate
presentation. Our experiments indicate reduced reaction
times with respect to mini-map presentations.

B. Following Distance Assistance

Queries from the reasoning system to the federation
system, especially queries in a forward direction can be
used to determine possible forward collisions. An ADAS
system (see Figure 15), at the moment under development
in our group uses information of this kind. In general,
the system shows a bar floating in the HUD to extend
a driver’s anticipation about the car’s physical behavior
[26]. The bar indicates the position, the car would come to
a stop when fully pushing the breaking pedal and shows,
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Figure 14. An indicator for the direction of an imminent danger in the
car’s environment, shown in the Head-up Display

which area the car will cover on the actual setting of the
steering wheel. First results point to superior capability to
stay in the own lane without increasing overall cognitive
workload. Current extensions change the color of the bar,
when approaching a leading car and therefore give an
implicit follow-up distance warning.

(b) Bar presentation as follow-up distance warning

Figure 15. In-HUD presentation of the current driving state of the own
vehicle showing different opportunities for open roads or lading traffic

C. Designing ADAS Systems from Sensory Data

The modular approach of SCORE enables continuous
integration and development of new ADAS systems. As
ADAS systems must not be distractive, the design phase
of visual schemes is a critical part of the whole devel-
opment. Depending on the availability of sensor data and
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thus deducible knowledge, HCI developers have to find
out how a top level ADAS presentation scheme can look
like.

Such presentation schemes often depend on large scale
HUDs. To enable parallelized research between HUD
and presentation development, an in-car AR presentation
system [27] has been developed.

The system incorporates alternatives for in-car spatial
context providers, given by the laser-scanner. Feeding
sensed tracking data into the federation services would
allow for detailed knowledge of the spatial situation in
front of the car and enable reasoning. The system itself
enables discussion and evaluation of top level presentation
schemes. For instance, Fig. 16(a) only shows the laser-
scanner’s sensor data directly, while Fig. 16(b) shows a
boxed representation.

(a) One can see the laser-scanner data superimposed on the vehicles and
the guardrail

(b) One can see the green boxes superimposed on detected vehicles

Figure 16. The TFT of the sensor data presentation system SensorVis
held into the tracking volume while driving

X. CONCLUSION

In this paper, we presented our system that uses
ontology-based reasoning, resting upon distributed fed-
erating components. As such a system requires a suit-
able middleware, we used DWAREF for this purpose and
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showed, that, besides the tracking infrastructure, such a
system is capable of performing spatially related contex-
tual reasoning. We also showed that an overall highly
dynamic traffic environment can be split into separate
independent areas of stationary data acquisition, while
traveling cars access this data and conclude information
that is relevant for them. Dynamic short range network
connections can get established to guarantee access to
important data. The system shows how Semantic Web
technologies and logic/rule-based systems are applicable
to spatial context. Certainly additional focus must be laid
on research in the field of networking when pursuing a
system deployment in a wide area environment.

By using several examples we illustrated, that the
functionality of the framework eases development of
innovative ADAS systems.

However before deploying the framework for use with a
real world application, we will extend the function repos-
itory of SCORE to serve in proactive assistance for local
guidance in road traffic scenarios. Our further research on
ADAS applications intends to simulate a perfect driver in
order to give advises to the real car’s driver. For instance,
the proposed system recommends, which lane to choose in
heavy traffic or, in other cases, for instance, just to accel-
erate to comfortably let another car get on the own lane.
Identifying such a system’s ontological structure will have
a certain impact for ubiquitous computing technologies
in the sector of intelligent ground transportation systems.
Therefore the concept of Ubiquitous Augmented Reality
[23] can focus new challenges in HUDs, enabling further
distraction reduced driver assistance systems.
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