
Managing Software Architectural Evolution at
Multiple Levels of Abstraction

Tien N. Nguyen
Electrical and Computer Engineering Department

Iowa State University, Ames, IA 50011, USA
Email: tien@iastate.edu

Abstract— Software development is a dynamic process where
engineers constantly modify and refine systems. As a con-
sequence, system architecture evolves over time. Software
architectural evolution has been managed at different ab-
straction levels: the meta level, the architectural level, the
application level, and the implementation level. However,
management supports for architectural evolution are lim-
ited to evolution mechanisms in architectural description
languages such as subtyping, inheritance, interface, and
genericity. This paper presents a model-oriented version and
configuration control approach to managing the evolution
of architectural entities and relationships among them in
configurations at different levels of abstraction.

This paper also illustrates our approach in building an ar-
chitectural configuration management system, MolhadoArch,
that is capable of managing configurations and versions of
software architecture across multiple levels of abstraction in
a uniform and tightly connected manner. In MolhadoArch,
consistent configurations are maintained not only among
source code but also with the high-level software archi-
tecture. MolhadoArch supports the management of both
planned and unplanned evolution of software architecture.
We have conducted an experimental study to show that
MolhadoArch can handle large and real-world systems. By
evaluation, we learned that the benefits outweigh the extra
space needed to represent architectural entities.

I. INTRODUCTION

Software architecture [1] defines the overall logical
structure of high-level design of a software system
in terms of components, interactions, and relationships
among them. Software architecture provides conceptual
integrity for a system and the mental framework that
engineers use to design, discuss, document, and reuse its
elements. It can also be used for generating partial or
full implementations and for structuring the repository of
software artifacts.

The ability to manage architectural evolution is cru-
cial to a successful software development and mainte-
nance process. Software architectural evolution has been
managed at different abstraction levels: the meta level,
the architectural level, the application level such as in
the Software Architecture EVolution Model (SAEV) [2].
Unlike source code, for which the use of a software
configuration management (SCM) system is the predom-
inant approach to capturing evolution, the management

This paper is based on “Multi-level Architectural Evolution Manage-
ment” by Tien N. Nguyen, which appeared in the Proceedings of the
40th IEEE Hawaii International Conference on System Sciences, HICSS
2007, Big Island, Hawaii, USA, January 2007. c© 2007 IEEE.

supports for architectural evolution are still limited to
evolution mechanisms in architectural description lan-
guages (ADLs) such as subtyping, inheritance, interface,
and genericity [3]. In addition, architectural SCM systems
treat a software architecture as a set of text files in
a file system, and consistent configurations are defined
implicitly as sets of file versions with a certain label or
tag as in CVS [4] or Subversion [5]. Existing architectural
SCM systems focus only on the application level and
could not manage the evolution of architectural entities
that belongs to other levels of abstraction as well as the
logical relations among them.

A. Motivation Example

Let us consider a client-server system (used as an
example in [2]). According to SAEV [2], at the high-
est level of abstraction (i.e. the meta level), all ADL
architectural entities are defined such as configuration,
component, connector, and interface. The architectural
level is the level of the description of any architecture
using one or more architectural entities defined in the
meta level. Figure 1 presents an architecture with a
configuration C and three component types: SERVER,
CLIENT, DATABASE, and two connector types K1 and
K2. Application level is the level of description of any
application in accordance with its architecture. For ex-
ample, in Figure 1, an application can made up of: one
instance of the configuration type C, two instances of the
component CLIENT (c1,c2), one instance of the compo-
nent DATABASE (Oracle), one instance of the component
SERVER (s1), and three instances of connectors (k1,k2,
and k3). The dotted arrows represent the architectural
relationships such as “instance of” among entities.

In current practice, a system’s architecture described
in some graphical notation or in some ADL is often
versioned as simple text files, whose logical contents are
irrelevant to SCM systems. Those systems are able to
manage versions of an architecture description file for a
software system. However, the architectural relationships
among architectural entities, and between those entities
and source code that realizes them are hardly managed.
These logical relationships are very crucial since they help
developers to have good understanding of the architectural
design and implementation of a system. When designs or
implementation source code are changed, those mappings

60 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER



configuration

component connector

configuration_
     interface

component_
  interface

0..*

0..* 0..*

connector_
  interface

0..*

Meta level

  SERVER

CLIENT

  DATABASE

K1

K2

Architectural level

  s1

  Oraclek3

k2 c2

c1k1
Application level

configuration type C

conf1

Figure 1. Motivation Example

also evolve over time. Unfortunately, no SCM system
provides supports for managing the version consistency
of architectural relationships. Therefore, developers often
run into the version mismatch problem in which versions
of software architecture and source code are not compati-
ble. Furthermore, these relationships connect logical enti-
ties together, rather than files. Therefore, text file-oriented
SCM systems are not well-suited to manage architectural
evolution at multiple levels of abstraction. In other words,
supports for software architectural evolution in ADLs
are moving toward model-oriented. However, architectural
SCM supports are still file-oriented, disregarding logical
contents of architectural description files.

Text file-oriented architectural SCM systems represent
changes in architecture in term of text lines of a file
that have changed, instead of entities that changed. In
those systems, changes between versions are reported
in term of disconnected sets of changed lines in the
textual representation of the model. Furthermore, in those
systems, merging support, which is to incorporate changes
from multiple developers to the same architectural design,
is very limited and error-prone. Making branches in those
systems is easy, but merging the changes can be hard.
File-oriented SCM systems can merge changes automat-
ically if they are to different parts of a file, but if two
branches change the same lines of texts in a file then the
merge fails and must be done manually. Even successful
file-based merge might result in an incorrect model since
the lines do not match very well with logical entities in
an architectural design.

B. Model-Oriented Architectural Configuration Manage-
ment Approach

To bridge that gap and to address the aforementioned
problems, we introduce a model-oriented configuration
management approach to managing versions of architec-
tural entities, source code, and the multi-level, architec-
tural relationships among them. The relationships can be
within- or between levels. The departure point of our
approach is the focus on the models of architectural
evolution, rather than architectural description files. An-
other distinguished feature is its capability of managing
the relationships across different levels of abstraction
in an architectural evolution model. A configuration at
each level is represented by an attributed, directed graph.
Architectural entities are explicitly represented and ver-
sioned. A novel directed graph-based version control
framework is developed to support the version manage-
ment of system architecture, entities, and relationships. To
illustrate our ideas, we have also taken advantage of Mol-
hado’s versioned data repository and infrastructure [6] to
build MolhadoArch, a model-oriented architectural SCM
system. The evolution of architecture entities in multiple
abstraction levels and implementations are captured in a
tightly connected and cohesive manner.

The next section discusses related work on architectural
configuration management. Sections 3 and 4 describe our
graph-based representation model for architectural enti-
ties. Section 5 explains our fine-grained graph-based ver-
sion control scheme for architectural evolution at different
levels. Section 6 focuses on our representation for artifacts
at the implementation level. The tool development in
MolhadoArch is presented in Section 7. Section 8 reports
our empirical evaluation. Conclusions appear last.

II. RELATED WORK

This section discusses existing SCM-based approaches
to managing architectural evolution. In their analy-
sis, Westfetchtel et al [3] classified those approaches
into following categories: orthogonal integration, SCM-
supported software architecture, SCM-centered software
architecture, and architecture-centered SCM.

The SCM community has developed a large number
of models for capturing the software evolution [7]–[9].
SCM systems are traditionally focused on source code.
More advanced tools such as ClearCase [10], Rational-
Rose [11], and System Architect [12], can manage non-
program software artifacts and structures among them.
However, in these systems, architectural evolution is only
recorded via the management of architecture descriptions.
Since the description contents are irrelevant to the SCM
tools, the semantic relationships between architectural
entities and source code are often unmanageable. If a
description contains multiple objects, configuration con-
trol is required. This type of integration between SCM
and software architecture is called orthogonal integration,
where both of them are decoupled as far as possible.

In SCM-supported software architecture approach, an
architectural design tool makes use of the services from

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 61

© 2008 ACADEMY PUBLISHER



an SCM tool. The overall software architecture is decom-
posed into units (packages or subsystems) which are sub-
mitted to the SCM tool. To compose an architecture from
a set of architectural units, the architectural design tool
offers commands for browsing the versioned object base,
for supplying configuration descriptions, and for initiating
check in/check out operations. In contrast to orthogonal
integration, design tools in this approach are aware of and
take advantages of SCM systems. Ragnarok [13] manages
architectural evolution via a total versioning model [14]. It
hides the concrete level of actual file versioning supported
by CVS [4], allowing designers to work at the architecture
level. SOFA/DCUP [15] has a version model for com-
ponents employing user-defined attribute taxonomies and
entity relations. SubCMTool [16] versions for sub-systems
but lacks of supports for connectors and interfaces.

In SCM-centered software architecture approach, soft-
ware architecture is typically represented with the support
of system modelling languages, which include mecha-
nisms to manage architectural evolution. Module inter-
connection languages (MILs) [17] address the structure
and partly the evolution of systems, but they do not deal
with behavior. Some MILs offer simple version control,
for instance, multiple realization versions for the same
interface. Adele [18] offers a predefined MIL whose
system model is defined in terms of a database schema.

ADLs [19] deal with architectural components, rather
than modules, implying a potentially coarser granularity.
Examples of ADLs include C2SADEL [20], Rapide [21],
UniCon [22], PCL [23], Koala [24], etc. These languages
often offer facilities and mechanisms to improve reusabil-
ity and to handle planned evolution. Mechanisms, in-
cluding genericity, inheritance, subtyping, and interfaces,
effectively introduce different kinds of variants [3]. xADL
2.0 [25] supports the architectural evolution via versions,
options, and variants XML schemas. SAEV [2] extends
architectural evolution mechanisms in an ADL to sup-
port for multiple levels of abstraction. Despite successes,
ADLs deal only with variants and options, and do not
fully address unplanned architectural evolution with the
exception of the work by Van der Hoek in Menage [26].
All variants must be represented in an architecture de-
scription, and designers choose among them [3]. Esaps
and Cafe [27] focused on managing variants in software
product families via structural rules.

Architecture-centered SCM approach combines archi-
tectural and SCM concepts into a single, unified system
model, called architectural system model. To cope with
architectural evolution, Mae [28] provides concepts of
revisions, variants, optionality, and inheritance. The main
difference with MolhadoArch is that each instance in
Mae’s architectural system model is an instance of a
specific version of a type (i.e. a type has its version num-
ber) [28, p. 3]. In MolhadoArch, architectural elements
and other objects are placed under a global version space.
Therefore, version selection in Mae is done for each
individual architectural entity, while in MolhadoArch, the
selection of the working version of the whole software

system implicitly determines the versions of architec-
tural entities and source code. This product versioning
approach in MolhadoArch facilitates the management of
implementation mappings between system architecture
and source code. However, the separation between types
and instances in Mae provides better run-time supports.

Menage [26] manages the product line architectures in
terms of both time and space. To address space vari-
abilities, Menage supports the specification of all three
kinds of variation points defined by xADL 2.0 [25].
Time variabilities are introduced through check in and
check out in its SCM policy. Unicon [22] is focused
on implementation-level variability. Based on a property
selection mechanism, each component in a given architec-
tural configuration is instantiated with a particular variant
implementation. However, its system model does not cap-
ture architectural revisions and options. Koala’s system
model [24] supports variability and optionality via a
property mechanism. Koala does not integrate versioning
information into its representation. It utilizes an external
SCM system instead. ShapeTool [29] does not provide
mechanisms beyond grouping, versioning, and version
selection. ArchTrace [30] addresses the traceability be-
tween architecture and source code through a policy-based
infrastructure for automatically updating traceability links
every time an architecture or its code base evolves.

III. GRAPH-BASED REPRESENTATION MODEL

System architecture, composite components, configura-
tions are all structured. To represent those structured enti-
ties, we use a graph-based representation model. Graphs
are commonly known, well understood, have an estab-
lished mathematical basis (graph theory), and encompass
a huge number of concepts, methods and algorithms [31].
This makes them very interesting from a formal as well as
a practical point of view. We use a special type of graphs,
called attributed, typed, nested, and directed graphs to
represent architectural entities and configurations.

First of all, a directed graph can be defined as a tuple
G = {N,E, source, sink} where N is a finite set of
nodes (or vertices), E is a finite set of edges (or arcs), and
N∩E = ∅. source and sink are functions source : E →
N and sink : E → N assigning exactly one source and
target node to each edge. We allow multi-graphs where
different edges can have exactly the same source and sink
nodes. However, we do not allow hyper-graphs, which
contain hyper-edges that have more than one source or
target node. A node in our model has a unique identifier.
A node has no values of its own. However, each node in
a directed graph can be associated with multiple attribute-
value pairs. That is, for each n ∈ N , there is an associated
attribute table consisting of one or multiple attribute-
value pairs (ai, vi) where ai is an attribute name and
vi is an attribute value. An attribute name can be any
string and must be uniquely identified. The domain of
vi can be any data type T , possibly the reference type.
These typed attributes accommodate multiple properties
associated with nodes. In our model, each edge in a

62 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER



directed graph can be associated with attribute-value pairs
in the same manner as a node.

Our model also allows a directed graph to be nested
within another in order to support composition and ag-
gregation. In a nested graph, the overall complexity is
reduced by allowing nodes to contain entire graphs them-
selves. Nested graphs are also referred to as hierarchical
graphs [31]. This characteristic of a directed graph in our
representation model is defined by a partial node mapping
function: nested : N → N , such that its corresponding
relation nested ⊂ N × N is acyclic. This constraint
is needed to ensure that we have a proper composition
mechanism, i.e., a node cannot be contained within itself.
Using relation notation, (n,m) ∈ nested denotes that n
is directly nested in m.

The reason why attributed, typed, nested, and di-
rected graphs are used in our framework is manifold.
Firstly, graphs are an intuitive, visually attractive, general,
and mathematically well-understood formalism. From the
practical point of view, directed graphs are often used
as an underlying representation of arbitrarily complex
software artifacts and their interrelationships in traditional
software engineering environments [31]. Directed graphs
are sufficiently general to be used for a wide variety of
entities, depending on the interpretation given to nodes
and edges. Secondly, a nesting mechanism is attached
to the graphs to facilitate the composition and aggrega-
tion among architectural entities and configurations. The
nested graphs also enable an encapsulation and layering
mechanism to reduce the complexity and to hide unim-
portant details of an artifact from others.

Thirdly, the association of an attribute table to a node
or an edge facilitates the modelling of complex config-
urations and allows us to take advantage of underlying
SCM and version control services for different data types
provided by the Molhado repository (will be explained
later). Molhado relies on the attribute table technology [6].
Finally, source code at the implementation level can be
nicely encoded via this attributed, directed graph-based
representation model since their abstract syntax trees form
a sub-class of this type of graph.

IV. MODEL-ORIENTED VERSION CONTROL

A. Versioned Data Model

This section describes how the attributed, directed
graphs are implemented. First of all, we would like
to summarize Molhado versioned data model. Figure 2
conceptually illustrates the main concepts in that data
model: node, slot, and attribute. A Molhado node is the
basic unit of identity. A Molhado node has no values
of its own – it has only its unique identity. A slot is a
location that can store a value of any data type, possibly a
reference to a Molhado node or a set of slots. A slot may
exist in a sequence, an entity with identity and ordered
slots. In a sequence, slots may have the same or different
data types. A slot can exist in isolation but typically slots
are attached to Molhado nodes, using an attribute. An
attribute is a mapping from Molhado nodes to slots. All

Figure 2. Versioned Data Model

the slots of an attribute hold values of the same data type.
The data model can thus be regarded as attribute tables
whose rows correspond to Molhado nodes and columns
correspond to attributes. The cells of attribute tables are
slots. Once versioning is added, the tables get a third
dimension: the version (see Figure 2).

Version control is added into the data model by a
third dimension in attribute tables. That is, slots can be
versioned. Molhado’s version model is called product
versioning in which a version is global across entire
system [6]. The third dimension in attribute tables is
tree-structured (to accommodate branching) and versions
move discretely from one point to another. The current
version is the version designating the current state of a
system. Any version may be made current. Every time
a versioned slot is assigned a (different) value, we get a
new version, branching off the current version. Molhado
has a mechanism to store and retrieve versioned slots that
belong to a particular version point.

B. Attribute Table for a Graph

Since a directed graph in our representation model
is also based on attribute-value pairs, it is reasonably
straightforward to realize a graph via Molhado’s data
model for versioning purpose. An attribute table is con-
structed for a directed graph as follows. First of all, each
graph node is represented by a Molhado node in the table.
The associated attribute-value pairs of a graph node could
be easily mapped into a row of the table. Attribute values
are realized as slots associated with the corresponding
Molhado node. The attributes in those attribute-value
pairs are added into the set of attributes of that table.
Each edge in the graph is also represented by a new
Molhado node (i.e. a new row in the attribute table).
Let us call it an “edge” node. The associated attribute-
value pairs of an edge are integrated into the attribute
table as for graph nodes. Furthermore, for each “edge”
node, two additional attributes are defined: “sink” attribute
defines the target node of the edge, and “source” attribute
defines its source node. Finally, for each Molhado node
that is used to represent a graph node, an additional
“children” attribute defines a slot containing a reference
to a sequence of outgoing edges of the node. An example
of this representation will be given next.

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 63

© 2008 ACADEMY PUBLISHER



 1

 2

 3

 4

 5

n1
n2
n3

n4

n5
n6
n7
n8

"source" "children"

[n6]
  node

.....

.....

.....

.....B

A

"sink" "ref"

n9

n10

Attribute table for B

"type"
node
node
node

node

node

"attr1" 

edge
edge
edge
edge

edge

n6

n7

n8 n9

n10

undef
undef
undef

undef

undef
n1
n3
n2
n2

n4

undef
undef
undef
undef

undef

n2
n1
n3
n5

n2

[n8,n9]
[n7]

[n10]

null

undef
undef
undef
undef

undef

A

null
null
null

null

null

null
null

null
null

....
....
....
....

....

....

....

....
....
....

....

Figure 3. Composite Component Representation

C. Graph-based Composite Component Versioning

Each architectural entity carries an identifier that serves
to identify it uniquely within a software system. In our
framework, an atomic entity does not contain any other
entity. For a composite or structured architectural entity,
which contain other entities, we use an attributed, directed
graph as the entity’s internal structure. Both types of entity
are stored in the repository.

In our representation model, a directed graph that
contains other graphs will have at least one node that
logically contains another graph. Let us call that type
of directed graph “composite” graph and that type of
node “composite” node. Otherwise, let us call it an
“atomic” graph. For a “composite” graph, an additional
attribute, attribute “ref”, is created to define for each
“composite” node a versioned slot containing a reference
to an architectural entity that corresponds to the subgraph
nested at that “composite” node.

Figure 3 shows an example of the representation of
an attributed, directed graph. There are two graphs in
the figure: the directed graph corresponding to entity
A is nested within the directed graph corresponding to
entity B via the node 5. The attribute table in Molhado
representing for entity B is shown. Nodes “n1” to “n5” are
“node” nodes (i.e. representing for a graph node) while
nodes “n6” to “n10” are “edge” nodes (i.e. representing
for an edge). Each “edge” node has “source” and “sink”
slots. For example, “edge” node “n6” “connects” nodes
“n1” and “n2”. Each “node” node has a children slot. For
example, “n2” has two outgoing edges (“n8” and “n9”).
Node 5 has no outgoing edge, thus, the “children” slot
of “n5” contains null. However, it is also a composite
node, therefore, its “ref” attribute refers to entity A. The
attribute table for entity A is similar (not shown).

The API functions for attributed graphs will be called

 1

 2

 3

 11

 5

n1
n2
n3

n4

n5
n6
n7
n8

"source" "children"

[n6]
IR node

.....

.....

.....

.....New version of  B

New version of A

"sink" "ref"

n9

n10

Attribute table for B

"type"
node
node
node

undef

node

"attr1" 

edge
edge
edge

n6

n7

n8

n12

undef
undef
undef

undef

undef
n1
n3
n2

undef
undef
undef
undef

undef

n2
n1
n3

[n8]
[n7, n12]

undef

null

undef
undef
undef
undef

      A

null
null
null

null

null
null

....
....
....
....

....

....

....
....

n13

n11

n12
n13

undef undef

undef undef undef undef undef undef

undef undef undef undef undef

node

edge
edge

undef undef
n3 n11

n11 n5

[n13] null ....

undef

undef

null

null

....

....

Figure 4. Graph-based Version Control

after the modifications to architectural entities occur.
Those functions will update the values of slots in attribute
tables including structural slots (e.g. “children”, “source”,
and “sink”).

For example, Figure 4 displays a new version of B and
A shown in Figure 3. In the new version, the attribute
table was updated to reflect the changes to the graph
structure as well as to the slot values. For example, since
node 4 and edges corresponding to “n9” and “n10” were
removed, any request to attribute values associated with
those nodes will result in an undefined value. On the other
hand, node 11 and two edges were inserted, thus, one new
“node” node (“n11”) and two new “edge” nodes (“n12”
and “n13”) were added into the table. Attribute values
of these nodes were updated to reflect new connections.
Attribute values of existing nodes were also modified.
For example, “children” slot of “n3” now contains an
additional child (“n12”), since that new edge (“n12”)
comes out of node 3. The attribute table for entity A was
similarly updated. This fine-grained versioning scheme is
very efficient since common structures are shared among
versions and all information including structures and
contents are versioned via one mechanism. Importantly,
this scheme is general for any subgraph at a node.
Therefore, fine-grained version control can be achieved
for any architectural object that is represented by a node.

V. SOFTWARE ARCHITECTURE REPRESENTATION

This section describes how MolhadoArch uses the
aforementioned model-oriented versioning mechanism for
architectural entities and architectural structure.

To support the modeling of software architectural
evolution at the multiple levels of abstraction, several

64 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER



n1
n2
n3

n4

n5

ArchConfig

ArchComponent

ArchConfigInterface

"ref"

ArchCompoInterface

b. Attribute table

a. Representation graph
for a meta model

ArchConnector

n6 ArchConnInterface

n7 config_rel

"property" "children""type"

entity

entity

...

1

2 34

5 6

7

8 9

10 11

12

n8 compo_rel

n9 conn_rel

n10 com_config

n11 conn_config

entity

entity

entity

entity

relation

relation

relation
relation

relation

0..*

0..*

0..*
1..*

1..*

...

...

...

...
...

[n7]

[n8,n10]
[n9,n11,...]

[n11]

[n2]

"source"

n1

"sink"

[n3]

[n1]

[n2]

[n3]

[n1]
[n2]

undef

n1
n2 n2

n3 n3
n2 n1

n3 n1

undef

undef undef
undef undef

undef undef

undef undef
undef undef

Figure 5. Architectural Meta Model

types of components can be defined and added into the
architectural system model. For example, they are: 1)
architectural component (ArchComponent), 2) architec-
tural atomic component (ArchAtomicComponent), 3) ar-
chitectural composite component (ArchCompositeCompo-
nent), 4) architectural connector (ArchConnector), 5) con-
figuration interface (ArchConfigInterface), 6) component
interface (ArchCompoInterface), 7) connector interface
(ArchConnInterface), and 8) architectural configuration
(ArchConfig). Instances of those object types will be used
at the architectural and application levels. The properties,
constraints, style, and other information of entities are
represented as versioned slots associated with entities.
The internal structure of an ArchCompositeComponent
or ArchConfig is represented via an attributed tree or di-
rected graph depending on the complexity of the structure.

Project is a named entity that represents the overall
architectural structure of a software system. The basic
units in a project are components (atomic and composite).
That is, a project is considered to be composed of
components. Unlike systems in which each object has
its own version space, in MolhadoArch, all instances of
concepts are uniformly versioned under a global version
space via our version model.

Figure 5 shows MolhadoArch’s representation for the
meta model presented in Figure 1 (ArchAtomicCom-
ponent and ArchCompositeComponent are not shown).
Technically, an attributed, directed graph is used to rep-
resent the architectural meta model. Each entity (config-
uration, component, connector, interface) is represented
as a graph node. The relations between component,
configuration, and connector are modelled as a node
as well. However, for simplicity purpose, the relation
between an entity and its interface is represented as a
directed edge (e.g. between component and its interface).
The “ref” attribute of a node contains a reference to
corresponding entity. For example, the “ref” slot of “n1”
refers to ArchConfig. Invariants and properties associated

1

m1
m2
m3

m4

m5

a.

b. Attribute table

Representation graph for configuration type C

1

2

3

4

5

"ref"

SERVER

CLIENT
DATABASE

K1

K2

"link""sink" "source""arch_type"

ArchComponent ... ...

...ArchComponent

ArchComponent

ArchConnector

ArchConnector

6 7

m6 undef ArchCompoInterface

...
...

n2

n2

n3

n2

n3
n5

Figure 6. Architectural Structure

with an entity are represented in “properties” attributes.
The connection information is encoded in structural slots
such as “children”, “source”, and “sink”.

At the architectural level, the architectural structure
of a system is represented as an ArchConfig containing
an attributed directed graph. Each architectural entity is
represented by a node in the graph. Each node is associ-
ated with a referential attribute containing a reference to
the corresponding architectural entity. Each architectural
interface associated with the architectural component is
also represented by a node associated with a pointer to the
corresponding ArchInterface component. A directed edge
connects that ArchInterface node to the corresponding
ArchComponent node. A similar representation is used for
an architectural connector, except that an ArchConnector
node has a reference to an ArchConnector object. Also,
if an ArchInterface is associated with an ArchConnector,
a directed edge is added to the graph connecting the
corresponding ArchInterface node to the corresponding
ArchConnector node. For each connection link between
two ArchInterfaces (one from an ArchComponent and
one from an ArchConnector), there is a directed edge
from the ArchInterface node of the ArchComponent to
the ArchInterface node of the ArchConnector.

Figure 6 shows the representation for the configuration
type C in Figure 1. In the attribute table, each node is
associated with a reference to the corresponding architec-
tural element via the attribute “ref”. An “arch type” slot
refers to the architectural entity type at the meta level.
For example, “SERVER” is an ArchComponent type. The
“edge” nodes and the labels of some “interface” nodes are
not shown. When an attribute is not applicable to a node,
the special value “undef” is used. Finally, the architectural
structure of a concrete system at the application level is
modelled in the similar manner.

The relationships among architectural entities across
different models of abstraction are stored as a special
attribute “link” and versioned as well. For example, in
Figure 6, the “link” attribute of “m1” contains “n2”,
meaning that “SERVER” in the configuration C refers
to the “ArchComponent” in the meta model.

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 65

© 2008 ACADEMY PUBLISHER



n1

n2

n3

n4

n5

n6

n7

"parent"

null

n1

n1

n1

"NodeType"

CompiUnit

PackageDecl

ImportDecl

TypeDecl

"Name"

"PrintServer"

"nodes"

"content.Packet"

"PrintServer"

"children"

[n2,n3,n4]

null

null

n1

n3n2 n4

n5 n6 n7

MethodDecl

MethodDecl

MethodDecl

"print"

"getPacketInfo"

"accept"

n4

n4

n4

[n5,n6,n7]

null

null

null

"SuperType"

LANNode

undef

undef

undef

"Modifier"

"public"

undef

undef

undef

"public"

"public"

"public"

"RetType"

undef

undef

undef

"void"

"String"

"void"

undef

undef

undef

undef

"Parameters"

[(Packet, p)]

[(Packet, p)]

[(Packet, p)]

undef

undef

undef

undef

"MethodBody"

"String packet..."

"return p.cont..."

"if (p.addresse.."

undef

undef

undef

undef

Tree Representation

package nodes;

import content.Packet;

public void print(Packet p) {

public class PrintServer extends LANNode {

}

String packetInfo = getPacketInfo(p);

public String getPacketInfo (Packet p) {

}
return p.contents;

System.out.println(packetInfo);

public void accept (Packet p) {

}

if (p.addressee == this) this.print(p);

else super.accept(p);

}

Program

Attribute Table

Figure 7. Source code Representation

VI. IMPLEMENTATION LEVEL

A. Software Documents

This section describes our representation for software
artifacts produced during implementation phase including
source code and documentation. In MolhadoArch, each
documentation is considered to have a hierarchical in-
ternal structure, called document tree. Each node in the
tree represents a structural unit at a level. A child node
represents a sub unit of the parent unit. Programs or
documentation are represented in this manner.

In particular, to capture the semantics of a program, we
develop an entity named CompilationUnit, with a tree-
based structure representing for the program’s Abstract
Syntax Tree (AST) (see Figure 7). The class name is one
of its properties. That tree-based structure representation
is based on Molhado versioned data model, that is, a
tree is also encoded within an attribute table. In general,
an AST node is represented as a Molhado node with
unique, persistent identifier (i.e. a row in the attribute
table). To model the parent node and children nodes of
an AST node, each Molhado node is associated with
two attributes: “parent” attribute defines for each node
the parent node in the AST, and “children” attribute
defines a sequence of references to its children nodes. In
addition to those structural attributes, each Molhado node
also has an attribute (“NodeType” attribute) that identifies
the syntactical unit represented by that node and other
attributes representing properties.

B. File Directory Structure

Based on MolhadoArch’s SCM infrastructure, we have
defined another type of objects called directory com-
ponent. The directory structure of a software project is

editor_project

editorword_count spell_check

doc_modelprog A prog B prog C prog D prog E

1

2 3 4

5 6 7 8 9 10

...

n1
n2
n3

n4

n5

editor_project (dir)

word_count (dir)

spell_check (dir)

"ref"

prog A (doc)

editor (dir)

...

a. Directory
    Structure

b. Representation c.  Attribute table

...

Figure 8. Directory Structure Representation

represented by a tree data structure. An intermediate node
in that tree is associated with an attribute referring to
a directory component. A leaf node is associated with
an attribute containing a reference to either a program
component or a documentation component. Figure 8a)
shows an example of a directory structure in a software
project. Each node in the representation tree in Figure 8b)
has an attribute referring to either a directory compo-
nent or a document component. For example, “n2” is
associated with an attribute containing a reference to the
directory component “word count”, which is consisted of
two program components “prog A” and “prog B”.

C. Architecture Implementation Mappings

As mentioned earlier, architectural relations may be
established between entities at the application level (in

66 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER



...

word_
counter

spell_checker

editor

bus
word_
count dir

spell_
check dir

architecture 

directory structure

Figure 9. Architectural Relationship Graph

software architecture) and entities at implementation level
(in program source code). Note that this traceability
relations can be created by developers or automatic
analysis tools. MolhadoArch helps developers to manage
versions of these mappings over time. Each architectural
relationship is represented by an edge between a node in
the representation graph of the system architecture and
the corresponding node in the representation tree of the
program directory structure. The result of those connec-
tions is a larger graph, called architectural relationship
graph. Figure 9 shows the architectural implementation
mappings between the architecture of the editing system
and source code that realizes it.

The fine-grained versioning scheme described in Sec-
tion IV is directly applied to achieve fine-grained version
control for programs (as ASTs) and structured documents
(as XML document trees) since their internal structures
and contents are represented as document trees. The
history of any document node can be recorded since the
scheme is generic for any tree or graph node.

The combined graph between an architecture repre-
sentation graph and a directory structure representation
graph is also versioned according to the directed graph
version control scheme. Every single change to the graph
can be captured and retrieved. Therefore, not only the
directory structure is versioned, but also the evolution of
architectural implementation relations can be managed.

VII. TOOL DEVELOPMENT

This architectural SCM model has been implemented in
the MolhadoArch architectural SCM system and its asso-
ciated SCM-centered architecture-based development en-
vironment. Document editors in MolhadoArch are reused
from the SC environment [32]. This section highlights im-
portant and distinguished SCM features of MolhadoArch.

A. SCM transaction supports

MolhadoArch and the SC user interfaces support a
variety of transactions. First of all, MolhadoArch parses a
description file, creates architectural elements at the meta

Figure 10. System Architecture Window

level, the architectural level, and the application level. A
user can create the initial version of a project’s software
architecture by either using built-in graphical editing
tools. MolhadoArch also supports a system architecture
description written in xADL 2.0 [25], an XML-based
ADL. A version of the architectural structure can be
displayed (see Figure 10). From this window, the user
graphically manipulates the architecture to create different
versions and variants. To specify the implementations of
architectural elements, the user can create new source
code via built-in editors or importing external programs
into the system. The user can display this logical structure
in the same window as architecture (see “Document
Model” component in Figure 11) by double-clicking on
architectural elements, or in a different window.

The version that is initially displayed in the project
structure window as in Figure 10 is called the base
version. From this window, the user can also edit, delete,
import, export programs and documentations, and graph-
ically modify their organization. The user can choose to
display any component and an appropriate component
editor will be invoked such as structured Java program,
XML, HTML, SVG graphics, UML diagrams, or text
editors. These editors are version-savvy [32] and are able
to import and export documents from and to external
formats (Java, XML, HTML, SVG, ASCII) at any version.

If any modification is made to the project at this base
version, a new version would be temporarily created,
branching from the base version. The word “modified”
attached to the base version name signifies that the state
of the project at the temporary version has not been
recorded yet. The user can choose to discard any derived
(temporary) version, or to capture the state of the project
at a version. Capturing changes a temporary version into a
captured one. A unique name as well as date, authors, and
descriptions can be attached to the newly captured version
for later retrieval. The captured version plays the role of
a checkpoint that the user can retrieve and refer to and

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 67

© 2008 ACADEMY PUBLISHER



Figure 11. Mapping to Implementation

it becomes the new base version of the project structure
window. However, no data is saved to disk after a capture.
While working on one version, the user can always switch
to work on (view or modify) any other version. If the
user modified the project at the new working version,
an additional derived version will be branched off from
that new version. If the user moves the mouse focus
to a window, the working version is automatically set
to the version that window is displaying. The user can
also explicitly select a different version from the project
history window and open it. Any windows showing old
versions (even un-captured ones) are still available should
the user want to do additional work on those versions.

The user may commit changes at any time. Upon
issuing this command, the user is asked which un-
captured, temporary versions should be saved and the
chosen versions are then saved to the file system along
with any already captured versions. Only the differences
are stored. The user may also save complete version
snapshots, which can improve version access time. All
changes in architecture and implementations are integrally
saved and related to each other. In current system, each
user has his own data files for the project and they can
be stored anywhere in a file system. Each user does
not see changes made by others. Therefore, no locking
mechanism is needed. Users can share data files and use
merging tools to collaborate. We implement a centralized
repository similar to CVS [4] with an “official” version
graph. If the user wants to make a branch, he will just
need to copy files of the desired version to his own
workspace and work on them. The user can create many
“private” versions that others will not see, and copy
meaningful versions back to the repository.

B. Fine-grained version control

Unlike many fine-grained SCM systems where granu-
larity of versionable information unit is predefined and
hard-coded, MolhadoArch can version any logical unit

Figure 12. Fine-grained Version Control

of a component if it is built according to our graph-
based versioning framework as demonstrated earlier. For
example, with Java classes and XML documents, the
evolution of any syntactical unit in a Java program or
any element in an XML document can be captured. In
the SC editor, a user can select any logical unit and view
its history (see method “loadDelta” in Figure 12).

C. Structural comparison tools

A set of comparison tools (diff tools) was developed
to show differences between two arbitrary versions of 1)
a system’s hierarchical structure, 2) any component, and
3) any logical unit in both structural and line-oriented
fashions. The tools are based on the Versioned Unit
Slot Information (VUSI) mechanism (see details in [33]).
VUSI attaches versioned slots of type “boolean” to nodes
in a tree or graph to track if there is a change in attributes
of nodes between any two versions. For a program or
a structured document, the system visually displays the
differences between two versions of any document node
(i.e. logical unit). If the chosen document node is the
root of a component, changes of the entire component
will be shown. Figure 13 shows structural changes in
a Java program. The icon next to a syntactical unit’s
entry shows the change in its status from one version to
another. For example, the “tree”, “i”, “eraser”, and “truck”
icons represent a modification, insertion, deletion, and
relocation of a syntactical unit respectively. For textual
nodes, changes can also be displayed in line-by-line
manner similar to ViewCVS [34]. It is very cumbersome
for SCM systems that heavily depend on line-by-line
comparison between versions (e.g. CVS [4]) to build this
sort of fine-grained comparison and change tracking tool.

VIII. EXPERIMENTS AND EVALUATION

A. Experiment on Space and Time Complexity

An experimental study has been conducted to evaluate
the performance and efficiency of MolhadoArch. The
results are shown in Table I. We have imported into Mol-
hadoArch Java-based open source systems ranging from
small to large sizes (JGraph [35], JTidy [36], Jext [37],

68 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER



Figure 13. Java Program Comparison

and JEdit [38]). SC is also imported into MolhadoArch.
The experiment was carried out on a Windows XP com-
puter with Pentium (R) 4 processor at 2.4 GHz, 512 MB
of RAM, and 37 GB hard disk and using Java Virtual
Machine JDK 1.5.

The components include system architecture and pro-
gram entities. For each project, the program files in
ASCII text format were input into Rigi [39], a reverse
engineering tool to re-construct the software architecture
of the system. Then, we used the output of Rigi to man-
ually create the corresponding system architecture within
MolhadoArch. After that, we checked into MolhadoArch
all the architecture as well as program and documentation
files. The import time was recorded. Since MolhadoArch’s
versioning is fine-grained, documents of a system are
parsed into trees and graphs, and saved in our persistent
format. The import time also includes parsing and saving
time. Notice that the system’s size (stored in our persistent
format) is about 3 to 5 times larger than its external
size. We randomly made 10000 changes, each of which
modified about 10 bytes of the textual slot of a node,
and then measured the time to commit changes. Note
that commit time for larger systems is slower due to
the overhead to maintain more structures. In brief, the
results show that the performance and time efficiency is
satisfactory. Storage cost is high relative to ASCII text.
Given the current trend that disk space is getting cheaper,
we believe that the benefits gained by being able to track
fine-grained, structural changes for any logical unit and
architectural components, far outweigh the extra space.

B. Experiment on Compactness

In this experiment, we compared the compactness and
expressiveness of change representation in MolhadoArch
with those produced by a representative of traditional
SCM tool, CVS [4].

Firstly, we checked out of Eclipse CVS repository three
revisions of org.eclipse.ltk.core.refactoring. This subcom-
ponent is the core of the refactoring engine in Eclipse.
These revisions are tagged in the Eclipse repository at

jGraph jTidy SC Jext jEdit
No. lines (K) 102 73 62 148 172
Lines of code (K) 18 25 59 98 114
No. Components 235 364 144 659 613
Ext. space (MB) 3.3 5 7.2 8.1 9.2
Int. space (MB) 19 23 27 29 32
Import time (sec) 22 25 29 33 35
Commit time (sec) 2.3 2.8 3.3 5.1 5.3

TABLE I.
SYSTEM EVALUATION RESULTS

TABLE II.
EVOLUTION OF ECLIPSE’S CORE.REFACTORING

Version LOC Changed LOC #Pack #Classes #Methods
01/31 19933 - 14 114 868
02/28 19993 1786 13 114 871
03/29 20405 526 13 114 875

01/31, 02/28/ and 03/29 2006. Table II shows how the
source code evolved along this time interval. Even though
the total number of lines of code does not reveal a great
number of changes, the component passed through a great
deal of changes revealed by the number of individual
lines of code changed. We examined those changes and
manually reconstructed architectural changes in term of
UML elements. For example, between versions 01/31
and 02/28, we found out several structural changes: four
classes moved to other packages, one class was renamed,
five classes were deleted and five totally new classes
were added, four methods were renamed and four
changed their signatures, one method moved to another
class. Between versions 02/28 and 03/29, most changes
are edits, e.g., all the classes changed their copyright
notice.

MolhadoArch correctly retrieves the history of classes
and methods renamed or moved in the 02/28 ver-
sion, while CVS loses their history. In addition, brows-
ing through the history with MolhadoArch reveals
those aforementioned architectural changes and editing
changes, thus offering a higher-level understanding of
software evolution. On the other hand, CVS shows a lot
of changes scattered throughout the textual files, with no
connection between them. For example, CVS reported
that there were 1786 LOCs that has been changed from
01/31/2006 to 02/28/2006 (see Table II).

IX. CONCLUSIONS

Managing architectural evolution in a software system
is crucial for software development. Approaches for soft-
ware architectural evolution in ADLs are moving toward
model-oriented, describing the architectural evolution at
different levels of abstraction. However, architectural
SCM supports are still file-oriented, disregarding the un-
derlying semantics of architectural description files. Thus,
the mismatch creates several problems for architectural
evolution models.

This paper has shown the feasibility and the advan-
tages of a model-oriented, architectural SCM tool that is
capable of managing the architectural evolution at differ-

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 69

© 2008 ACADEMY PUBLISHER



ent abstraction models. Architectural entities at multiple
levels and relationships among them are managed in a
cohesive manner. In MolhadoArch, versions are uniformly
maintained at all levels of abstraction including the ar-
chitecture and implementation levels. Developers never
have the version mismatch problem between architectural
objects and source code that realizes them.

REFERENCES

[1] D. Garlan and M.Shaw, “An introduction to software ar-
chitecture,” Advances in Software Engineering and Knowl-
edge Engineering, 1993.

[2] N. Sadou, D. Tamzalit, and M. Oussalah, “How to Manage
Uniformly Software Architecture at Different Abstraction
Levels,” in Proceedings of the International Conference on
Conceptual Modeling (ER 2005). Springer Verlag, 2005,
pp. 16–30.

[3] B. Westfetchtel and R. Conradi, “Software Architecture
and Software Configuration Management,” in Proceedings
of the Software Configuration Management Workshop.
Springer Verlag, 2001.

[4] T. Morse, “CVS,” Linux Journal, vol. 1996, no. 21es, p. 3,
1996.

[5] “Subversion.tigris.org,” http://subversion.tigris.org/.
[6] T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao,

“An Infrastructure for Development of Multi-level, Object-
Oriented Configuration Management Services,” in Pro-
ceedings of the 27th International Conference on Software
Engineering (ICSE 2005). ACM Press, 2005, pp. 215–
224.

[7] P. Feiler, “Configuration management models in commer-
cial environments,” Software Engineering Institute, Tech.
Rep. CMU/SEI-91-TR-7, 1991.

[8] P. Ingram, C. Burrows, and I. Wesley, Configuration Man-
agement Tools: a Detailed Evaluation. Ovum Limited,
1993.

[9] S. Dart, “Concepts in configuration management systems,”
in Proceedings of the 3rd International Workshop on
Software Configuration Management. ACM Press, 1991.

[10] D. Leblang, “The CM challenge: Configuration manage-
ment that works,” Configuration Management, vol. 2,
1994.

[11] “Rational Software,” http://www.rational.com/.
[12] P. Software, System Architect. McGraw-Hill, 2000.
[13] H. Christensen, “The Ragnarok software development en-

vironment,” Nordic Journal of Computing, vol. 6, no. 1,
January 1999.

[14] U. Asklund, L. Bendix, H. Christensen, and B. Mag-
nusson, “The unified extensional versioning model,” in
Proceedings of the 9th International Workshop on Software
Configuration Management, SCM-9. Springer Verlag,
1999, pp. 100–122.

[15] J. Gergic, “Towards a versioning model for component-
based software assembly,” in Proceedings of 19th Inter-
national Conference on Software Maintenance (ICSM).
IEEE Computer Society Press, 2003.

[16] H. Volzer, B. Atchison, P. Lindsay, A. MacDonald, and
P. Strooper, “A tool for subsystem configuration manage-
ment,” in Proceedings of 18th International Conference on
Software Maintenance (ICSM). IEEE Computer Society
Press, 2002.

[17] R. Prieto-Diaz and J. Neighbors, “Module interconnection
languages,” Journal of Systems and Software, vol. 6, no. 4,
11 1986.

[18] J. Estublier, “Workspace management in software engi-
neering environments,” in Proceedings of the 6th Interna-
tional Workshop on Software Configuration Management
(SCM-6). Springer Verlag, 1996.

[19] P. Clements, “A survey of architecture description lan-
guages,” in Proceedings of the 8th International Workshop
on Software Specification and Design, 1996.

[20] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A
language and environment for architecture-based software
development and evolution,” in Proceedings of the 21st
International Conference on Software Engineering (ICSE
1999). IEEE Computer Society Press, 1999, pp. 44–53.

[21] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan,
and W. Mann, “Specification and analysis of system ar-
chitecture using Rapide,” IEEE Transactions on Software
Engineering, vol. 21, no. 4, Apr 1995.

[22] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and
G. Zelesnik, “Abstractions for software architecture and
tools to support them,” IEEE Transactions on Software
Engineering, vol. 21, no. 4, Apr 1995.

[23] E. Tryggeseth, B. Gulla, and R. Conradi, “Modeling sys-
tems with variability using the PROTEUS configuration
language,” in Proceedings of the 5th International Work-
shop on Software Configuration Management (SCM-5).
Springer Verlag, 1995.

[24] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee, “The Koala component model for consumer
electronic software,” IEEE Computer, vol. 33, no. 3, 2000.

[25] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “An
infrastructure for the rapid development of XML-based
architecture description languages,” in Proceedings of the
24th International Conference on Software Engineering
(ICSE 2002). ACM Press, 2002, pp. 266–276.

[26] A. van der Hoek, “Design-time product line architectures
for any-time variability,” Science of Computer Program-
ming, special issue on Software Variability Management,
vol. 53, no. 3, pp. 285–304, 2004.

[27] F. van der Linden, “Software Product Families in Europe:
The Esaps and Cafe Projects,” IEEE Software, vol. 19,
no. 4, pp. 41–49, 2002.

[28] A. van der Hoek, M. Mikic-Rakic, R. Roshandel, and
N. Medvidovic, “Taming architectural evolution,” in Pro-
ceedings of the 9th ACM SIGSOFT Foundations of soft-
ware engineering. ACM Press, 2001, pp. 1–10.

[29] J. Kuusela, “Archirectural evolution,” in IFIP Conference
on Software Architecture, 1999.

[30] L. Murta, A. van der Hoek, and C. Werner, “Arch-
Trace: Policy-Based Support for Managing Evolving
Architecture-to-Implementation Traceability Links,” in
21st IEEE International Conference on Automated Soft-
ware Engineering (ASE’06). IEEE Computer Society,
2006, pp. 135–144.

[31] Luqi, “A Graph Model for Software Evolution,” IEEE
Transactions on Software Engineering, vol. 16, no. 8, pp.
917–927, 1990.

[32] T. N. Nguyen and E. V. Munson, “The Software Concor-
dance: A New Software Document Management Environ-
ment,” in Proceedings of the 21th International Confer-
ence on Computer Documentation (ACM SIGDOC 2003).
ACM Press, 2003, pp. 198–205.

[33] T. N. Nguyen, “Model-based Version and Configuration
Management for a Web Engineering Lifecycle,” in Pro-
ceedings of the 14th International World Wide Web Con-
ference. ACM Press, 2006, pp. 437–446.

[34] “Viewing CVS Repositories,” viewcvs.sourceforge.net/.
[35] “Jgraph,” www.jgraph.com.
[36] “JTidy,” sourceforge.net/projects/jtidy.
[37] “JExt,” www.jext.org/.
[38] “JEdit,” www.jedit.org/.
[39] M.-A. D. Storey, K. Wong, and H. A. Miller, “Rigi: a

visualization environment for reverse engineering,” in Pro-
ceedings of the 19th international conference on Software
engineering. ACM Press, 1997, pp. 606–607.

70 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER


