
An Experimental Study of AJAX Application
Performance

Clinton W. Smullen III
The University of Tennessee at Chattanooga, Chattanooga, TN, USA

Clinton-Smullen@utc.edu

Stephanie A. Smullen
The University of Tennessee at Chattanooga, Chattanooga, TN, USA

Stephanie-Smullen@utc.edu

Abstract—An experimental study compared the
performance of a real-life HTML application and an AJAX
application that implemented the same user interface. A
statistically significant number of trials were used to collect
data on the performance of each when presented with the
same tasks. Response size and service time performance
measures were computed for the applications. AJAX
provided significant performance increase in response size,
thereby reducing bandwidth requirements. A typical user
would see a performance increase in the response size of
55%. AJAX provided a mean service time improvement of
approximately 16%. A typical user’s service time would
improve by 21%.
Index Terms—AJAX, performance, modeling, HTML

I. INTRODUCTION

AJAX (Asynchronous JavaScript And XML) is a

name applied to a set of technologies [1] designed to
improve web application responsiveness. This set
includes HTML, CSS, Dynamic HTML, client-side
scripting (in either JavaScript/ECMAScript or Java),
dynamic displays using the DOM model, data exchange
using XML, and synchronous or asynchronous data
retrieval using XMLHttpRequest. A good reference is
Crane [2]. Mature commercial examples of the use of
AJAX include Google Maps and Gmail; AjaxPatterns [3]
now categorizes several hundred websites using mature
AJAX applications.

 Fig 1. Classic web app Fig 2. AJAX web app

In the typical web application, the browser presents an
HTML page (with CSS and other components) to the
user. When the user clicks on a link or submits a form,
an HTTP request is made to the server (see Figure 1).
The server returns one or more HTTP responses
containing the new HTML page, along with CSS,
graphics, etc. The current visible browser page is then
entirely replaced by the new page. In an AJAX
application, the AJAX code, in response to user actions,
can perform behind-the-scenes server interactions unseen
by the user while the client-side user interface remains
active. The AJAX code sends an XMLHttpRequest to
the server (see Figure 2), which returns XML data. The
AJAX code then updates the visible page without
replacing the entire page. The user does not move from
page to page. Instead, the AJAX application responds
dynamically to the user's actions, downloading updates in
the background at the same time the user may be doing
other things. The technical basics for AJAX are well
understood. These basics (HTML, CSS, etc.) are covered
in many typical web programming courses and training
sessions.

The use of AJAX in web programming is becoming
more widespread as newer versions of browsers support
XMLHttpRequest objects. The popularity of certain
social networking websites that use AJAX has also
increased the visibility of AJAX. However, very few
studies have been published about the performance of
actual AJAX applications.

Using a “ridiculously simple” test application, Merrill
[4] found a 61% improvement due to the use of AJAX.
A commonly cited AJAX performance evaluation case
study is White [5]. This AJAX application transferred on
average 27% of the bytes that the traditional HTML
application transferred. White defined the “performance
increase” (PI) for a given measurement as

(HTML value – AJAX value) / (HTML value) * 100

Using this, White reported a 73% performance increase
for bytes transferred. Performance increases for the
AJAX application were also observed in the task times
taken by the users to accomplish the work. However, the
effects of users’ skill levels and training (which could

30 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

greatly affect the reported outcomes) were not assessed.
This is especially relevant since the two applications did
not implement the same user interface. Nevertheless, the
AJAX application required fewer bytes to be transferred
to carry out the tasks than did the HTML application and
the users accomplished the assigned work in less time.
These time savings can be directly translated into
personnel cost savings.

To gain insight into the performance effects of AJAX,
this report studies an HTML application and an AJAX
application which both implement the same user interface
with the same “look and feel”.

II. THE APPLICATION

In [6], Smullen and Smullen compared the client-side
performance of a real-life production HTML application
and an AJAX application that implemented the same user
interface. Experimental data was collected on the
performance of each when presented with the same set of
one-hundred ten tasks. Performance measures were
computed for the HTML application and for the AJAX
application. In [7], Smullen and Smullen initiated a
study of the impact of AJAX on the server. The current
study extends these works by collecting data on a
statistically significant sample size, including server
performance results.

 The application studied in this paper is an existing
application that supplies real-time class information
extracted from a university student information system
(SIS). The user specifies one or more selection criteria
(such as department, course/section, meeting days, start
time/end time, location, instructor, open/closed) and the
application returns a list of courses meeting the specified
criteria and additional information about each of the
courses (including the title and current enrollment).
Figure 3 displays a typical query screen. The application
uses a three tier model; the client communicates with the
web server, which communicates with the database
server. It is a production application, used daily by
students and faculty, not a “test” application. The web

Fig 3. Typical application screen

server is Apache, and the application uses PHP 5.05 and
custom database code to connect with the legacy SIS
database. All pages returned are validated XHTML 1.1.

A. THE HTML APPLICATION

 The initial page loaded by a user contains the HTML

form used to prepare a query. There is a significant
amount of “branding” overhead on this page; all of the
University’s pages use the same layout, navigation items,
style sheet, and graphics. These common elements
consist of two graphical images, a CSS style sheet, and
JavaScript supporting the common page navigation links,
and total 15573 bytes. These elements are linked to the
HTML page and are static. For most browsers, they are
downloaded once and cached, rather than being loaded
with each query and response.

A typical user would first load the HTML page
containing the query form (27KB) and the common
elements (15.2KB). The user prepares a query and
submits the query to a server application. The server
application queries the SIS. The data extracted from the
SIS is formatted as XML. The server process then reads
the XML data and applies an XSLT transform to produce
XHTML. The web server returns the XHTML as the
response to the client.

The page returned as a response to a query links to the
common elements described above, contains the HTML
formatted list of courses in answer to the query (or a
message if no results are produced), and also contains the
HTML form needed to make another query. As a result,
even a query that produces no results has a response page
of about 27KB (plus the linked common elements).

B. THE AJAX APPLICATION

An AJAX version of the HTML application was

coded. The AJAX version uses JavaScript to run the user
interface and the XML handler. Care was taken to create
the same “look and feel” for the AJAX version as is used
in the HTML version. Both the AJAX and the HTML
applications appear the same to the user at the
presentation level, so the presentation page structure is
the same, as are the graphics and common navigation
elements.

The Sarissa [8] libraries (version 0.9.6.1) were used to
code the AJAX application. Sarissa is an open-source
cross-browser set of libraries based on ECMAScript for
developing AJAX applications. It is representative of the
types of implementation libraries used for production
AJAX. The code and libraries downloaded to the client
to implement the AJAX interface for this application total
57KB.

For this investigation, the AJAX application uses only
synchronous AJAX XMLHttpRequest calls, for several
reasons. Choosing courses is inherently a serial process.
The next course selection often depends on the previous
selections made. Work in progress will assess
asynchronous AJAX performance, and this will appear in

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 31

© 2008 ACADEMY PUBLISHER

a future paper. Since the AJAX application reproduces
the same “look and feel” as the HTML application, the
use of asynchronous calls was not needed. This
application does not exploit AJAX capabilities to
enhance the user experience, preload data, or use event-
triggered processing. Hence this application represents
in some sense a worst case for AJAX – all of the
overhead but few of the advantages other than partial
page refresh.

The existing server application was used for the
AJAX application. The central IT staff was extremely
reluctant to modify a production system for this
experiment. Since the query results from the server
application are available in XML form, the existing
production server application responds to an AJAX
XMLHttpRequest with the existing XML output; it skips
the XSLT transform and forwards the XML to the client.
The AJAX application fetches the XML data produced
by the production server process, which is then processed
in the AJAX client for display.

III. MODELING THE APPLICATIONS

When a web application is contacted by a browser, an

HTML page is loaded into the browser, including any
graphical elements, stylesheets, or other linked elements.
The client interacts with the user interface presented on
the HTML page (such as by clicking a link or submitting
a form) which sends an HTTP request message to the
web server. The web server sends a new HTML page to
the browser. This page replaces the previous page in the
browser.

When an AJAX application is contacted by a browser,
an HTML page is loaded into the browser. This page
contains the JavaScript needed to run the user interface
and to issue XMLHttpRequest calls, the XML handler to
format and present the results, and any other elements
needed for the user interface, such as HTML code and
stylesheets. The client interacts with the user interface
presented on the browser page (such as by clicking a
link, submitting a form, or triggering an event). The
JavaScript code handles the user interface event, usually
generating an XMLHttpRequest message to the web
server. The web server sends XML data to the browser.
This XML data is handled by the JavaScript code and
presented to the user as HTML. Only the portion of the
browser page needed to display the results is refreshed.

Consider a task consisting of a sequence of operations
carried out through an HTML web application.
Accomplishing the task requires loading an initial page,
and then successively loading pages 1 to n, where n is the
number of steps needed to accomplish the task. For an
AJAX application, accomplishing the task requires
loading an initial page, and then successively handling
responses 1 to m, where m is the number of steps needed
to accomplish the task. For the two applications
discussed in section II above, n=m since both
implementations provide the same user interface. Define
the following notation.

H Size in bytes of the initial elements downloaded
by the HTML web application

Pi
Size in bytes of the ith HTML page loaded by the
HTML web application

Pa Size in bytes of the average of the n Pi values

A Size in bytes of the initial elements downloaded
by the AJAX web application

Ui
Size in bytes of the ith AJAX response handled
by the AJAX web application

Ua Size in bytes of the average of the n Ui values

The total bytes required to accomplish the task for each
implementation is as follows.

HTML: total bytes = H + (P1 + P2 + … + Pn)

 = H + n*Pa

AJAX: total bytes = A + (U1 + U2 + … + Un)

 = A + n*Ua

For most AJAX applications, H < A, Pa > Ua, and it is
likely that Pi > Ui for all i. If H > A and all Pi > Ui then
the AJAX application has an initial download time better
than the HTML application, and the download time for
each response is better as well. The AJAX application is
clearly preferred over the HTML application. If H = A
and the Pi = Ui then the download times are equal. The
greater effort and complexity required to code and
maintain an AJAX application as compared to an HTML
application would lead one to select the HTML
application, unless the AJAX user interface presented
advantages to the user. If H < A and the Pi < Ui then the
HTML application is clearly preferred over the AJAX
application based on download times and application
issues, again unless the AJAX user interface presented
significant advantages to the user.

Since both of the applications discussed in section II
implement the same user interface, the cognitive
requirements on the user to view a page or response and
to make a new request using the two interfaces are the
same. If asynchronous XMLHttpRequest calls were
supported, or if the AJAX user interface were
significantly improved over the HTML user interface
then for a particular application the user could process a
response and make a new request using the AJAX
interface faster than when using the HTML interface.

The total time needed to accomplish the task is the
sum of the time needed to download each of the pages or
responses plus the cognitive time needed for the user to
view the page or response and make a new request.
When using a fast network connection such as a local
area network, the download time is typically not readily
visible to the user. For a moderate speed connection, it
becomes visible only for large results, and for a dialup
connection, the download time is always of concern. In
these cases, the value of using asynchronous requests is
diminished, since the slowness of the communications
channel may serialize the responses. Downloading

32 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

multiple responses concurrently over a slow link may
actually cause the first of the responses to appear much
more slowly than it would when using synchronous
requests, thereby increasing the latency of the user
interface.

IV. DATA COLLECTION

The initial load of the HTML application requires
42.2KB overhead (15.2KB for the common elements -
graphics, CSS, navigation JavaScript, and 27KB for the
HTML page presenting the form). Thereafter, each
response file is a complete XHTML page containing the
results of the query, the HTML presentation, and the
form. The common elements need to be loaded only
once if the browser supports caching.

The initial load of the AJAX application requires
99.2KB overhead (15.2KB common elements - graphics,
CSS, navigation JavaScript, 27KB for the HTML
presentation and form, and 57KB AJAX JavaScript
code). All of these elements need to be loaded only once
if the browser supports caching. This initial load could
be made smaller if the AJAX application were not
reproducing the graphics and look-and-feel of the
existing HTML application. After loading the AJAX
application, each response is an XML file containing the
query result data and other information produced by the
server application.

Fig 4. Data collection for the experiments

All data was collected by querying the production
servers. Perl scripts were written to produce the exact
queries generated by the HTML application and by the
AJAX application (see Figure 4). Note that the server
sees no differences from queries generated by the Perl
scripts and by the two applications. The Perl scripts then
collected the responses sent by the server, and recorded
the size of each response and some client-side timing

information. Thirteen-thousand two-hundred and sixty
queries were posed using the production HTML form
queries, and also posed using the AJAX form queries.
The server logs produced by the Apache web server were
also collected for the appropriate periods. The number of
bytes returned for each query was recorded for the
HTML query (quantity Pi above) and for the AJAX query
(quantity Ui above). The size of each response does not
include the common elements loaded from the client
cache; the effects of caching common elements were
studied in [6]. The HTML values ranged from 27KB, a
query producing no courses, to 1.9MB, a query listing all
courses for the fall semester. The AJAX response byte
values ranged from 7.6KB to 1.1MB. A summary of
these results is shown in Table I.

TABLE I

RESPONSE BYTES SUMMARY

Response bytes HTML Pi AJAX Ui PI
N 13,260 13,260

Min 27,650 7,746 71.99
Max 2,017,914 1,196,618 40.70
Mean 129,828 68,234 47.44

Median 63,996 28,996 54.69
Total 1,721,523,273 904,776,578 47.44

Using White’s definition of performance increase

(PI), the performance increase for bytes transferred gives
a percentage improvement when AJAX is used compared
to HTML. A larger performance increase value is better,
although any positive value represents a performance
increase due to the use of AJAX. A performance
increase of 47% means that the savings achieved by
using AJAX as a percentage of the HTML size is 47%.
The performance increase values for response bytes
transferred are summarized in Table I. The mean
performance increase was 47.44%, and the median was
54.69%. The maximum response size produced a
performance increase of 41%, and the minimal response
size produced a performance increase of 71%.

Fig 5. Response size PI versus HTML response size (KB)

The performance increase for response size is
nonlinear in nature, and varies with the size of the HTML

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 33

© 2008 ACADEMY PUBLISHER

response. Figure 5 shows a graph of the response size
performance increase (in percent) versus HTML response
size (in K bytes). The initial download size and the
overhead are not accounted for in this calculation, only
the response size. The smaller responses have greater
performance increases than do the larger responses. The
largest response sizes provide a performance increase of
about 41%.

A visual evaluation of the graph in Figure 5 indicates
that it appears to exhibit exponential decrease. To test
this observation, the quantity Byte Transfer Ratio is
found by subtracting the performance increase percent
from 100: Byte Transfer Ratio = 100 – performance
increase. The Byte Transfer Ratio is thus

Byte Transfer Ratio = (AJAX size/HTML size)*100

This represents the reduction achieved by using AJAX
when compared to the HTML application. A Byte
Transfer Ratio of 42% means that the size of the AJAX
transfer is 42% of the size of the HTML transfer. A
small Byte Transfer Ratio is better; it means the AJAX
application is performing more efficiently than the
HTML application. However any value less than 100%
represents a reduction in bytes transferred when using
AJAX.

Fig 6. Byte Transfer Ratio versus HTML response size (KB)

To determine if the Byte Transfer Ratio is distributed

exponentially, the 13,260 values Ui/Pi for the application
were used. Given Pi, an estimate of Ui/Pi is given by the
function β(1- e-λPi). A nonlinear fit to the function β(1- e-

λPi) was performed using the SAS 9.1 for Windows (SAS
Institute, Cary, NC) NLIN procedure. The SAS NLIN
procedure estimates for the parameters β and λ were
β=55.68 and λ=0.0264. A Kolomogorov-Smirnov test
revealed that the predicted distribution was a good fit for
the observed distribution. Both the observed and the
predicted Byte Transfer Ratio values (in percent) for the
queries are shown in Figure 6, plotted against the HTML
response size in K bytes.

The actual Byte Transfer Ratio values level off at
about 59%, so the performance increase is limited to

41%. The predicted Byte Transfer Ratio values level off
at about 55% under this model, giving a predicted
performance increase of 45%.

In a “real life” use of this application, a typical student
presents about seven queries to build a semester
schedule. Using the median response size values from
Table I and totaling over seven queries produced the
performance increase seen by a typical user, displayed in
Table II.

TABLE II

TYPICAL USER’S IMPROVEMENT

7 queries Bytes
HTML Σ Pi 447,973
AJAX Σ Ui 202,972
PI 54.7%

H + Σ Pi 491,185
A + Σ Ui 304,553
PI 38.0%

A typical user would experience an improvement in
response bytes transferred of almost 55%. If the initial
download sizes (H and A) are added in, the actual
improvement on total bytes transferred for the session,
assuming no cached elements, becomes 38%.

V. SERVER PERFORMANCE

Additional performance gains result from the

reduction in the load placed on the server. The server
load reduction for the AJAX application is due to several
factors. No XSLT processing is required for the AJAX
application. For the HTML process, the number of bytes
handled by the server process is proportional to the sum
of the XML data and the HTML response page, since the
process reads the XML data, processes the XSLT
transform to produce the HTML response page, and the
web server then sends the resulting HTML response page
to the client. For the AJAX process, no XSLT
processing is done; the XML data is simply forwarded to
the client by the web server. This means the AJAX
application results in significantly fewer bytes being
handled by the server. Fewer bytes also means faster
connection termination, which could increase the number
of connections serviced.

The number of bytes returned for a given query is
deterministic, and does not vary with the load on the
servers. To measure the effects of the use of AJAX on
the servers (and hence the apparent responsiveness of the
application to the user), the time to service each request
was recorded from the Apache web server log. An
examination of a small sample of these times collected by
two clients showed that they had wide variations due to
the exogenous load applied to the servers. To reduce the
variance of the service times, repetitions of a set of 121
queries were performed for both the HTML and the
AJAX applications. A summary of the response times in
seconds for the total of 13,260 queries is presented in
Table III.

34 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

The service times summarized in Table III were
statistically tested and determined to be not statistically
linearly related to the size of the response in bytes. This
means that additional processing is performed on the
servers to prepare the responses to be sent to the client.

TABLE III

RESPONSE SECONDS SUMMARY

Response seconds HTML AJAX
N 13,260 13,260

Min 0.31 0.25
Max 37.58 34.42
Mean 1.53 1.29

Median 0.89 0.73
Std Dev 2.44 2.26

Total 20,252.32 17,090.15

Some of the queries were presented to the server using
HTTP/1.0, with one request and response per web server
connection. Some of the queries were presented to the
web server using HTTP/1.1 with “keep-alive”, which
allowed several request/response pairs per web server
connection. There were no statistically significant
differences between the sets of data collected using these
two methods. For this application, the service time
required to generate the data for the response dominates
the total request service time, and there was no
significant savings to the user when maintaining an open
server connection to service sequential requests, as
proposed by Windley in [9] for “Comet” AJAX
applications to provide low latency data to AJAX client
applications.

As previously mentioned, all data was collected by
querying the production servers. The production HTML
application averaged 180 page views per hour (3 per
minute) over the months of October, November, and
December of 2006; the peak day averaged 676 page
views per hour (over 11 per minute). The queries for this
study were performed sequentially, but response times
suffered due to contention for server resources from the
ongoing production demands on the servers, including
the queries from other users. The set of queries reported
represents a sample of “real life” responses.

Figure 7 graphs the response time in seconds for 110
separate trials for the AJAX response to the “List all
courses” request. This request returned 1,196,681 bytes.
The mean response time for this query, shown as a
dashed line in Figure 7, was 12.69 seconds, and had a
standard deviation of 2.59 seconds. The minimum
response time for this query was 10.62 seconds, and the
maximum response time was 31.02 seconds. The peak
value is truncated in Figure 7 for economy of
presentation, otherwise the graph would need to be
almost twice as high. The random nature of the poor
response times is evident in this graph.

While the large portion of requests received
reasonable response service, a few of the requests
received very bad response service, just as in “real life”.
These poor response times were seemingly random - not
predictable, not repeatable, there was no correlation
between poor HTML service and poor AJAX service,

and there was no correlation between the size of the
response and the reception of poor service.

Fig 7. Response time for each of 110 trials of the same query

Table IV summarizes the response times for four
groups of requests. The All group includes all queries.
The 99% group includes 99% of the queries; it excludes
queries with the longest 1% of response times.
Correspondingly, the 95% group excludes the longest
5%, and the 90% group excludes the longest 10%. The
service values for the “best” 95% of all requests are
summarized in the 95% column in Table IV. Note the
improvement of the coefficient of variation (CV) values
when moving from the “all” group down to the 90%
group. For HTML service, the CV decreases from 160 to

TABLE IV

RESPONSE TIMES IN SECONDS

HTML All 99% 95% 90%

N 13,260 13,129 12,597 11,935

Min 0.31 0.31 0.31 0.31

Max 37.58 15.38 4.36 2.65

Mean 1.53 1.34 1.10 0.98

Median 0.89 0.87 0.82 0.75

Std Dev 2.44 1.53 0.82 0.64

CV 159.7 114.1 74.0 65.0

Total 20,252 17,618 13,872 11,685

% CV Improvement 28.6% 53.7% 59.3%

AJAX All 99% 95% 90%

N 13,260 13,128 12,598 11,935

Min 0.25 0.25 0.25 0.25

Max 34.42 11.26 3.48 2.19

Mean 1.29 1.11 0.92 0.82

Median 0.73 0.71 0.65 0.60

Std Dev 2.26 1.24 0.67 0.59

CV 175.2 111.6 73.4 65.9

Total 17,090 14,541 11,545 9,775

% CV Improvement 36.3% 58.1% 62.4%

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 35

© 2008 ACADEMY PUBLISHER

65, an improvement of 59%. Similarly, the CV for
AJAX service improves from 175 to 66, an improvement
of 62%.

Figure 8 illustrates the reduction in size of the range
of the values as well as the reduction of the standard
deviation for each of the samples shown in Table IV.
The vertical scale has been made nonlinear to more
clearly show the areas of interest in the plots. The size of
each box represents the range of values from the
minimum to +1 standard deviation above the mean. The
median value is the horizontal line in each box, and the
maximum value is indicated by the T line. Note the
reduction in variation when moving from the All group
to the 90% group for both the HTML and the AJAX data.

Fig 8. Box plot of values from Table IV.

An example drawn from Table IV shows that 95% of
HTML requests received service in 4.36 seconds or less.
In the longest 5%, one unfortunate response received a
service time nine times as large. For AJAX requests,
95% received service in 3.48 seconds or less, while the
longest AJAX request received a service time ten times
as large. The averages for the 95% group give better
estimates of expected service times for typical users of
the application than do the averages for the ALL group.

Using White’s definition of performance increase, the
mean of the performance increases for response size is
56%. This is found by computing the performance
increase for each query (pairing the HTML and the
AJAX responses for that query) and then calculating the
mean of these values. Since the response size is
deterministic, the performance increase for response size
for a given query remains the same for every repeat of
the query.

Determining the performance increase for response
time is more complicated due to the randomness in the
data. Computing the performance increase for response
time for each query and then calculating the mean of
these values gives an improvement of 2.4%. However,
for about 4% of these queries, the AJAX response time
was larger than the HTML response time. Indeed, one
query resulted in an AJAX performance “increase” of
-7135%.

Calculating the performance increase from the means
of the 95% groups in Table IV (that is, the improvement
of the mean response times of the two 95% level groups)
gives an improvement of 16.8%. Calculating the
performance increase from the means in Table IV (that is,
the improvement of the mean response times of all of the
data) gives an improvement of 15.6%.

TABLE V

TYPICAL USER’S IMPROVEMENT

7 queries Response bytes Response secs
HTML 447,973 6.209
AJAX 202,972 5.117
PI 54.7% 17.6%

95% HTML 5.74
95% AJAX 4.55
PI

20.7%

In a “real life” use of this application, a typical student
presents seven queries to build a semester schedule.
Using the median values from Tables I, III and IV and
totaling over seven queries produces Table V. A typical
user would experience an improvement in response bytes
transferred of about 55%, and an improvement in service
time of almost 21%.

VI. CONTENTION

An additional experimental procedure was developed
to estimate the contention at the web server due to the
time needed for the application to serialize the data base
queries. The 13,260 queries (see Tables I-V) used the
existing production application on the server. This
application uses a process on the web server to serialize
the data base queries from all users of the application to
send over the application’s database connector to the data
base server. All requests from the web application were
serialized and transmitted over this connector to the data
base server. The contention test web application was
modified to use a separate database connector for the data
base queries. This eliminated the contention for the
connector from other users’ queries, and enabled the
development of an estimate of the impact of the
contention on the server’s response times. Note that the
queries sent to the test application were serialized by the
test software; no contention occurred due to test queries.
The results from this test, however, do not apply to the
responses seen by a typical user of this application, since
access to the test system is not public.

Table VI summarizes the response time results of
1968 queries, divided into four groups – HTML and
AJAX combined, and HTML and AJAX separate. The
combined queries used the production process while the
separate queries used the test process and its separate
database connector. The number of bytes returned was
the same for corresponding HTML and AJAX queries
regardless of which database connector was used, and is
not shown in Table VI. Comparing the response times of
the combined and the separate groups shows that the

36 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

average server response time declined for this test for
both the HTML and AJAX queries. The mean HTML
response times declined by an average of 14.15%, and
the AJAX times declined an average of 2.7%.

TABLE VI

RESPONSE TIMES FOR TEST SYSTEM

 Combined Separate
Response secs HTML AJAX HTML AJAX
N 492 492 492 492
Min 0.38 0.30 0.33 0.28
Max 40.42 28.99 27.64 28.39
Mean 2.12 1.47 1.82 1.43
Median 1.04 0.88 1.04 0.79
Std 4.40 2.34 2.96 2.17
CV 207.57 159.51 162.19 151.61
Total 1042.35 721.01 897.64 704.84

However, the variability in the response times
remained large, as evidenced by the standard deviation
and CV values in Table VI. Eliminating the web server’s
query marshaling time confirms that the randomness in
response times is primarily due to contention for the data
base server.

VII. CONCLUSIONS

The savings in transmission time between the server

and client are significant due to the average 56%
reduction in the bytes making up a response. AJAX can
significantly reduce the bandwidth required for the client
to receive a response, or can improve the response of the
application as perceived by the user by presenting a
response faster than the traditional HTML application.

However, the reduction in time that the server spends
generating a query (16%) indicates that AJAX is less
useful as a server productivity tool. While eliminating
the query marshaling time does improve the average
response time, it does not reduce the variability in the
response times. In the case of this application, a more

efficient database query process is more likely to reduce
the wait time for the server query process for all users
than would the use of the AJAX application.

When the client-server bandwidth needs to be
improved, AJAX can be effectively utilized. However,
AJAX can have less impact on server utilization than on
the client-server bandwidth.

ACKNOWLEDGMENT

Dan Chase assisted in the collection of data for this

work.
REFERENCES

[1] L. Paulson, “Building rich web applications with AJAX”,

IEEE Computer, 38(10), 2005, 14-17.
[2] Crane, Pascarello, James, Ajax in Action, Manning

Publishing Company, Greenwich, CT, 2005.
[3] AJAX Patterns, “Ajax Examples”, retrieved August,

2007, http://ajaxpatterns.org/Examples.
[4] C. Merrill, "Using AJAX to Improve the Bandwidth

Performance of Web Applications", Web
Performance.com, January 2006

[5] A. White, “Measuring the Benefits of Ajax”, retrieved
March, 2006,
http://www.developer.com/xml/article.php/3554271.

[6] C. Smullen, S. Smullen, “Modelling AJAX Application
Performance”, 524-074, Web Technologies, Applications,
and Services 2006, ed. J.T. Yao, ACTA Press, Calgary,
2006.

[7] C. Smullen, S.Smullen, "AJAX Application Server
Performance", Proceedings of the IEEE SoutheastCon
2007 (CH37882), March 22-25, 2007, Richmond,
Virginia, pp. 154-158.

[8] Sarissa, http://sarissa.sourceforge.net/ retrieved March
2005. The Sarissa project page is found at
http://sourceforge.net/projects/sarissa.

[9] P. Windley, “Comet: Beyond AJAX”, retrieved
December, 2006,
http://www.irishdev.com/NewsArticle.aspx?id=2173.

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 37

© 2008 ACADEMY PUBLISHER

http://ajaxpatterns.org/Examples
http://www.developer.com/xml/article.php/3554271
http://sarissa.sourceforge.net/
http://sourceforge.net/projects/sarissa
http://www.irishdev.com/NewsArticle.aspx?id=2173

