
Broadcast Authentication with Practically

Unbounded One-way Chains

Bogdan Groza
Politehnica University of Timisoara, Faculty of Automatics and Computers, Romania

Email: bogdan.groza@aut.upt.ro

Abstract— A protocol for assuring the authenticity of

information broadcasted over long periods of time is

proposed. The protocol is based on time synchronization

and uses one-way chains constructed with the squaring

function which gives the possibility to construct a one-way

chain of whose length is unbounded in practice. Although

the computational cost is somewhat increased, compared to

the use of hash chains, these computational requirements

are affordable for the addressed scenario. In brief, the

protocol assures information authenticity at the reduced

cost of almost one modular multiplication for each

broadcasted packet. Time synchronization issues are

discussed and the security of the protocol is equivalent to the

integer factorization problem since the squaring function is

used in the construction of the one-way chain. A failure

mode analysis of the protocol is done; this is an aspect of

novelty and applies to other protocols based on time

synchronization as well. Also, a formal proof on the security

of the protocol is sketched.

Index Terms — authentication, broadcast, one-way chain,

protocol.

I. INTRODUCTION

It is commonly acknowledged that authentication is

one of the most important security objectives. Although

authentication comes at a lower price compared to other

security objectives, since for example message

authentication codes are cheap cryptographic primitives

compared to encryption function (required to assure

confidentiality) or digital signatures (required to assure

non-repudiation), real world scenarios can not be solved

by the straightforward use of these primitives. A good

example is a broadcast scenario where multiple entities

receive the same messages from a sender. The problem

that occurs is the fact that message authentication codes

require secret shared keys, and therefore a potential

sender will need to share a distinct secret key to each

receiver, and more, compute and send a distinct message

authentication code for each receiver, even if the message

is the same.

Fortunately a good solution emerged for this problem,

the use of authentication protocols based on one-way

chains and time synchronization proposed by Perrig et al.

[20]. One-way chains are arrays generated by the

successive composition of a one-way function. Usually in

practice, for computational efficiency, a hash function is

used for this purpose. Such protocols prove to be a

versatile solution that comes at reduced computational

costs and offer security properties that are close to the

schemes that use expensive public key operations.

In this paper we extend one of our previous proposals

of broadcast authentication protocol based on time

synchronization and quadratic residue chains which has

the advantage that can be used for long periods of time

since the chain is unbounded for practical use. More

concrete, the same loose time synchronization as in the

proposal of Perrig et al. [20] is used but our proposal

differs at the communication participants and more

relevant at the construction of the chain. The advantages

of this proposal are: first it requires minimal interaction

between senders and receivers, being efficient especially

when there are many receivers, and secondly, it can be

used for broadcast over long periods of time since the

one-way chain that we use has an unbounded length in

practice. Relevant extensions to our previous proposal

from [11] consist in: a detailed analysis of lengths of

periods for the chain that we use, a sketch on a formal

proof of security, a complete description of the protocol

with details on the parameters setup and the short

discussion on the presence of the failure modes is

extended.

The paper is organized as follows. Section 2 inspects

some related work. Section 3 holds the general setting of

our scenario while section 4 describes time

synchronization issues and section 5 presents the

construction of the one-way chain. In section 6 the

complete description of the protocol is given. Section 7 is

a discussion on failure modes and section 8 gives a

formal proof of security for the proposed protocol.

Section 9 holds the conclusion of our paper.

II. RELATED WORK

The history of one-way chains begins with the work of

Lamport [14] which proposed the use of elements from a

one-way chain as one-time passwords in order to

authenticate a user to a remote system. Later, this

proposal was used in the S-Key system by Haller [12].

However this systems is not secure [16], and the

limitation in using Lamport’s scheme in a real-world

scenario is obvious: since it provides unilateral

authentication, an adversary impersonating the real

system can receive and store passwords that are not yet

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 11

© 2008 ACADEMY PUBLISHER

used for subsequent impersonation of the user (this is

known as the pre-play attack).

The great success of one-way chains begins with the

work of Perrig et al. which used them to assure

information authenticity [17], [18], [19], [20]. Message

Authentication Codes (MAC) are the cryptographic

primitive that is used for this purpose, but MAC codes

come with the disadvantage that they require a secret

shared key between the sender and each receiver. Using

elements from a one-way chain as keys for MAC codes is

a good solution to remove this disadvantage. Briefly, this

advantage can be explained as follows: the MAC is

secure if the key of the MAC is disclosed only after the

MAC is received, and since each element of a one-way

chain serves as a commitment for the following element

of the chain, after the disclosure of the key, a new MAC

can be computed with the forthcoming element and so on.

The most successful proposal based on this principle is

the Timed Efficient Stream Loss-tolerant Authentication

(TESLA) protocol proposed by Perrig et al. [19]. Several

variants are proposed, all of them relying on loose time

synchronization, which means that the receivers must

have an upper bound on the time from the side of the

sender. The principle is to use a key which is an element

of a one-way chain in order to compute a MAC and to

disclose this key only in some forthcoming packet, the

security condition which must be met to make this

authentication secure is the following: a packet arrives

safely if the receiver can unambiguously decide based on

its synchronized time that the sender did not yet send the

key disclosure packet. In brief the TESLA protocol offers

authenticity at reduced costs without involving any

shared secret between senders and receivers. For this

advantage the protocol was suited even in constrained

environments such as sensor networks [17]. Also, some

related proposals based on similar principles can be found

in [15].

Different proposals of authentication protocols in

which elements of a one-way chain are used as keys for

MAC codes are in [3], [9], [10] - here an authentic

confirmation, which is also an element from a one-way

chain, is used instead of time synchronization. Also,

probably the first protocol based on this principle was the

Guy Fawkes protocol from [1].

III. GENERAL SETTING FOR THE PROTOCOL

A. Communication Participants

The addressed scenario assumes the existence of the

following participants: a registration server and a number

of senders and receivers (this possible setting has also

been pointed out in [20]). Each sender establishes its

initialization information on the registration server and

then at some time later starts broadcasting authentic

information. Additionally, if there is some clock drift

between the sender and the registration server, the sender

can synchronize again its time with the registration server

(however this is not the main intention of our proposal).

Each receiver obtains the initialization information of a

particular sender from the registration server and then it

can check the authenticity of the information that is

broadcasted by that sender; we underline that except for

receiving information that can be checked for authenticity

there is no other interaction between senders and

receivers. Again, to prevent clock drifts between

receivers and the registration server; the receivers can

synchronize their time with the registration server. As in

the case of the TESLA protocol [19] only loose time

synchronization is required which means that only an

upper bound for the time value at the registration server is

needed. The registration server does not have access to

any private or secret information of senders or receivers;

therefore it is not an unconditionally trusted entity. All

that we request from the registration server is to be

functionally secure, which means to behave honest. Its

role is to provide time synchronization, to store sender’s

initialization information and to distribute it to receivers.

We assume that this scenario can take place over a long

period of time; for example a sender stores its

initialization information on the registration server and

then starts broadcasting for five years, in all this period

there is no need for any other interaction between the

sender and the registration server except for the case

when the sender needs to synchronize its time with the

registration server.

B. Registration of a sender on the registration server

The objective of sender S is to establish his

initialization information on the registration server RS .

This information consists in a packet

0 ,, , , , ,RS

init broadcast id S RS
SigS

P t S n k signed by S . Here

RS

broadcastt is the minimum time value at RS when S starts

broadcasting (below it is shown how to compute this

value), idS is an identifier for the sender (for example it

may be some number or an IP address), n is the public

modulus and 0k is the initialization key, denotes the

key disclosure period, ,S RS is the time synchronization

error computed as shown below and SSig denotes that

the information is signed by S (as a general condition we

assume that all the participants of this scenario can verify

the signature of each other).

The registration procedure involves the following

steps:

1. S RS : SNonce

2. RS S : , , RS

RS S reg
SigRS

Nonce Nonce t

3. S RS :
0 ,, , , , , ,RS

RS broadcast id S RS
SigS

Nonce t S n k

Here SNonce is a nonce used by S in order to ensure

that the response from RS is not a replay of some old

response and RSNonce is a nonce used by RS to ensure

that the registration information sent by S is also new,

RSSig denotes that the information is signed by RS . The

time delay between steps 1 and 2 is the synchronization

12 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

error
,S RS

 between S and RS , i.e.
,

S S

S RS reg startt t .

We request for the synchronization error ,S RS to be

much smaller than the disclosure period , i.e.

,S RS , this is a natural requirement; a detailed

explanation is in section 4). The registration procedure is
also suggested in figure 1.

S

startt

S

regt

S

broadcast
t

RS

regt

0 ,
, , , , , ,RS

RS broadcast id S RS
SigS

Nonce t S n k

S RS

SNonce

, ,RS

reg RS S
SigRS

t Nonce Nonce,S RS

,S RS

RS

broadcastt

,

RS

broadcast S RSt

Figure 1. Registration procedure

Now S can estimate for any time value St the

minimum and maximum time value at RS as follows:

,S RS S S RS S

reg regMinTV t t t t (1)

,

,

S RS S S RS S

reg reg S RSMaxTV t t t t (2)

Let S

broadcastt be the time at which sender S starts

broadcasting authentic information, now the minimum

time value at RS when the time value at S is
S

broadcastt

can be easily computed as ,RS S RS S

broadcast broadcastt MinTV t .

We will also define the disclosure time for the thi key as:

1S S

broadcastDisT i t i (3)

Because of the synchronization error ,S RS , by using

relations (1) and (2) when the time value at S is
SDisT i the time value at the registration server is

somewhere in the interval
, ,,S RS S S RS SMinTV DisT i MaxTV DisT i ; since this

is the time at which the thi key is released we will call

this interval the disclosure interval for the thi key. What

is important is that as long as the loose time

synchronization is preserved between S and RS the thi

key is not released sooner than:
,RS S RS SMDT i MinTV DisT i

1RS RS

broadcastMDT i t i (4)

We will call this time value the Minimal Disclosure

Time (MDT) for the thi key, MDT is of particular interest

since the proposed protocol guarantees that packet iP ,

which contains a MAC computed with the 1thi key, can

not be forged sooner than 1RSMDT i .

C. Synchronization of a receiver with the registration

server

The objective of the synchronization of a receiver R

with the registration server RS is to obtain the

initialization information of a particular sender S and to

achieve loose time synchronization with the registration

server, i.e. establish an upper bound on the time value at

RS . This will make possible for R to check the

authenticity of the information that is broadcasted by S .

The synchronization procedure involves the following

steps:

1. R RS : ,id RS Nonce

2. RS R : , ,RS

R sync init
SigRS

Nonce t P

Here RNonce is a nonce used by R in order to ensure

that the response from RS is not a replay of some old

response and idS is the identifier of the particular sender

from which R wants to receive authentic information.
The time delay between steps 1 and 2 is the

synchronization error ,R RS between R and RS , i.e.

,

R R

R RS sync startt t . We will assume that , ,R RS S RS

and if this condition does not hold the synchronization

procedure must be repeated; an explanation for this is

given in section 4). This procedure is also suggested in

figure 2.

R

startt

, ,RS

R sync init
SigRS

Nonce t P

R RS

,id RS Nonce

,R RS

R

synct

RS

sync
t

Figure 2. Synchronization procedure

After this synchronization R can also estimate at any

time Rt the minimum and maximum value for the time

value at RS :

,R RS R R RS R

sync syncMinTV t t t t (5)

,

,

R RS R R RS R

sync sync R RSMaxTV t t t t (6)

Now R can use the maximum time value at RS in

order to decide if packet iP received at time
R

it which

contains a MAC computed with the 1thi key is secure,

i.e. the key used for the computation of the MAC was not

already released. This can be verified by checking that:

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 13

© 2008 ACADEMY PUBLISHER

, 1R RS R RS

iMaxTV t MDT i (7)

To prevent significant clock drifts the synchronization

procedure can be periodically repeated by R .

IV. TIME SYNCHRONIZATION ISSUES

A. The influence of the synchronization error on security

Because of the synchronization error ,S RS between the

sender and the registration server, key ik is disclosed in

the worst case when the time value at the registration

server is ,S RS SMaxTV DisT i . In this case a receiver

having synchronization error ,R RS with the registration

server knows that the time value at the registration sever

is at most ,

,

S RS S

R RSMaxTV DisT i . Also we must

take into account the network delay for a particular

receiver R , i.e. the time needed for a packet to travel

through the network from S to R . Of course this time

may vary for different packets but for our purpose it is

sufficient to have an average value. Let this delay be
R

,

now in order for the security condition to be verified

when the packet arrives, we need:
,

, 1S RS S RS

R RS RMaxTV DisT i MDT i

, ,S RS R RS R
 (8)

And therefore relation (8) needs to be satisfied in order

for the receiver to obtain authentic packets at a delay
R

and synchronization errors
,S RS

,
,R RS

; this is why we

have requested for the synchronization errors to be much

smaller than the key disclosure period. If is chosen by

the sender too small to satisfy (8) then the receiver will

get only packets that must be dropped since the security
condition (7) does not hold. In order to overcome this, an

improvement that was proposed by Perrig et al. in the

case of the TESLA protocol [19] can be also used here:

the key which is used to compute the MAC from packet

iP can be disclosed only in some later packet iP instead

of packet 1iP , see [19] for details.

B. Synchronization between a sender and the registration

server

Assuring that clock drifts between the sender and the

registration server are negligible is critical for the security

of the communication. In order for the security of the

protocol to hold, the sender must ensure that at any time
St the time value at the registration server side is

between the minimum and maximum values given in (1),

(2), this is required in order to disclose the keys in the
correct disclosure intervals. If the sender suspects that

clock drifts between its clock and the registration server

clock are not negligible then there are two possible
solutions to overcome this. The first solution is for the

sender to repeat the registration procedure and to commit

new initialization information on the registration server
(this means to restart the entire protocol), however this

solution is inefficient for receivers that have already

obtained the registration information of the sender. The

second solution is for the sender to re-synchronize its

time with the registration server. At time St the sender

can estimate that the time value at the registration server

is between ,S RS SMinTV t and ,S RS SMaxTV t by using

(1), (2). In order to achieve a new synchronization the

sender has to follow the synchronization procedure
described in section 3). Now the sender plays the role of a

receiver and after completing the synchronization

procedure it can estimate that the time value at the

registration server is between ,R RS RMinTV t and

,R RS RMaxTV t by using (5), (6). We suppose that

, ,R RS S RS
, this is needed in order for the new

synchronization to be more accurate than the previous
one. Now the sender can compute a time adjustment

, ,R RS R S RS SMinTV t MinTV t (here S Rt t since

the sender plays the role of the receiver) and use this

adjustment by broadcasting packets at time

1S

broadcastt i instead of 1S

broadcastt i . The

case of
, ,R RS S RS

 should be avoided since in some

situations the sender cannot be certain that its estimation

is or not wrong compared to the new estimation (after

following receiver’s synchronization procedure); also, the

best thing that the sender can do is to ensure that packets

are not released too soon by applying an adjustment

computed in the same way, however in some situations

packets may be released too late causing receivers to drop

them.

V. CONSTRUCTION OF A KEY CHAIN THAT IS UNBOUNDED

IN PRACTICE

A. General construction of one-way chains

As already stated, protocols based on one-way chains

offer good computational advantages while preserving

security properties that are close to protocols based on

expensive public key operations. Basically, in order to

construct a one-way chain, a one-way function is

required. This is a non-restrictive condition since all

cryptographic primitives, such as hash functions,

encryption functions or digital signatures, behave as one-

way functions. As a trivial example, one may use an

encryption function and set 0xf x E then

successively compute 2 3, ,f r f r f r and so on, for

some random value r , in order to generate a one-way

chain.

Because of their computational efficiency, since they
are the cheapest cryptographic primitives, hash functions

are the best choice for this purpose. The only limitation

that occurs in using hash functions is that the length of
the chain is fixed and the computational complexity

depends linearly on the length of the chain. In order to

improve on the computational requirements for the
traversal of hash chains several time-memory tradeoffs

14 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

were proposed [7], [8], [24]. The basic principle on which

these optimizations are based is to compute the hash

chain and store some values of the chain for faster

subsequent re-computation.

The solution proposed in the following section

removes the disadvantage of fixed length, by providing a

one-way chain that is unbounded in practice, and also

makes it possible to compute values at any given index

without requiring additional storage. However these

advantages come with an increase in the computational

complexity for the one way function that we use, but

finally the increase in computational requirements is still

affordable for the targeted scenarios.

B. The use of the squaring function

Function modf x x n , where usually n p q is

the product of two large primes ,p q , is commonly used

in public key cryptography. The most well known
proposals for using this function are the RSA and Rabin

cryptosystems [21], [22] which use different values for

the exponent .

Later, the particular case of 2 modf x x n , i.e. the

squaring function, was proposed by Blum et al. [5], [6] in

order to construct a pseudorandom number generator that

has its security equivalent to the integer factorization

problem. Several facts that are established in [6] about

this function will serve to our proposal as well.

Even more recently, the squaring function was

proposed for creating time-lock puzzles [23]. These are

cryptographic constructions that can be used for “sending

information into future” and are close related to

cryptographic puzzles used to prevent denial of services

attacks. The time-lock puzzles from [23] have the

tremendous advantage that they can be solved only after a

predetermined amount of time, without giving a potential

solver the ability to parallelize the solving process due to

the intrinsic sequential nature of the repeated squaring

process.

Both the proposals from [6], [23] exploit the same

property of the function that we will use in our protocol.

Namely, we use the fact that while working over groups

of integers, exponents can be reduced modulo the order

of the group. Therefore, the result of the successive

composition of the squaring function can be efficiently

computed as 2 modf x x n
2 mod

mod
n

x n ,

here n is the Euler totient function which can be

computed if and only if the factorization of n is known.

We can use the same property for creating one-way

chains of unbounded length. Since the value of
2 mod

mod
n

f x x n can be efficiently computed by

first computing the exponent 2 mode n and then

computing modef x x n a one-way chain of

unbounded length can be computed in this way. We

underline that the computational complexity for

computing a one-way chain based on a hash function

depends linearly on the length of the chain while by the

use of this function it depends only logarithmically on the

length of the chain – because of the repeated square and

multiply algorithm that can be used to perform modular

exponentiation.

Therefore, for the proposed protocol we will define

each session key, which is an element of the one-way

chain generated by the squaring function, i.e. a chain of

quadratic residues, as follows:
2 mod

0 mod , 0..
i n

ik x n i (9)

Here 0x is a random value chosen by the sender.

More, the elements of the one-way chain can be

computed in a time memory trade as suggested in [10]

and the computational time is significantly reduced to

almost one modular multiplication. The time-memory

trade is based on the fact that it is possible to compute the

value of if x with only one modular multiplication if

the value of 1if x is known; indeed

1 1i i if x f x f x . Because of this, the chain

of elements can be split into smaller chains of

elements. Instead of performing one modular

exponentiation for every element of the chain a smaller

chain of elements can be computed with only one

modular exponentiation followed by 1 modular

multiplications.

Although this function is more computational intensive

than a hash functions and its output is larger it has the

advantage that the chains can have extreme lengths

without influencing the computational time and therefore

the chain can be used for a long time of broadcast.

C. The length of period for the
2 modx n sequence

As stated in [23] looking for perfection in number

theory may be considered overkill in this context. It is

natural to expect that by choosing random values for 0x

and the modulus n we will obtain a sequence with a

large period that will not lead to the loss of security.

Therefore, the use of random values should be safe in

practice and the analysis from this section can be skipped.

However, for the completeness of the results a solution

for choosing number that will not defile the expectancies

is preferable. In [6] a good analysis of the length of

period is presented, here we give a brief approach, which

is related to the one from [6], for choosing numbers that

offer good security properties.

It is obvious that we are concerned with two things,

first the order of 0x in nZ , denoted by 0nord x , and

second, the order of 2 in
n

Z , denoted by 2
n

ord .

We will use the same notation as in [6] for the length of

the period, which will be denoted by and represents

the smallest number such that 2

0 0 modx x n , i.e.:
'2 2

0 0 0 0mod , ' , modx x n x x n (10)

The first step, in order to a achieve a large length of

period, is to obtain a high order of 0x in nZ . We can use

a straight forward solution for this purpose, two random

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 15

© 2008 ACADEMY PUBLISHER

numbers and that are generators in pZ and qZ

respectively are chosen. Now by using the Chinese

remainder theorem we compute the solution of the

following system:

1

1

mod

mod

x p

x q
 (11)

It is obvious that the order of 1x in nZ is

1 1, 1nord x lcm p q . Now we set 2

0 1 modx x n .

 The second step is to obtain a high value for

2
n

ord . The order of 2 in
n

Z can be easily

checked if the factorization of n is available. For this

purpose we will use the same kind of primes as in [6],

called special primes, for which it holds that

2 ' 1p p , ' 2 '' 1p p , here p , 'p , ''p are all

prime numbers. Also, we make the same requirement for

the modulus as in [6] and we request for n to be a special

number which means that both p and q are special an

also congruent to 3 mod 4 (this implies that each

quadratic residue has exactly one root that is also a

quadratic residue). If p and q are special primes, then

the value of n is obviously

1 1 4 ' ' 8 '' ''n p q p q p q .

As the value of n and its factorization is known,

the value of 2
n

ord can be easily computed. Even

more, it is obvious that 2
n

ord is '' ''p q if 2 is a

quadratic residue with respect to either ''p or ''q and

2 '' ''p q otherwise; either ways, since n is an integer

infeasible to factor, the value will be safe for practical

use. The special primes p and q will be chosen in the

same manner as suggested in [6] by choosing random
numbers and using probabilistic primality testing then

select the one that are special.

Finally, for the values established above, it is trivial to

prove that the length of the period will be equal to:

2
n

ord (12)

This gives the desired length of period for the sequence

– a length which is unbounded for practical use.

D. The verification of some key from the initialization key

We preserve our initial analysis from [11] for

determining the computational time required to verify

some key from the initialization key.

Each new key
ik must be checked for authenticity by

the receiver, this can be easily done if the receiver already

has the previous authentic key
lk by checking that

i l

i lk f k . If a significant amount of time has passed

from the moment when the sender has start broadcasting

and a recent authentic key is not available for the receiver

(in the worst case the receiver has only the initialization

key received from the registration server, i.e.
0k), since

each key has to be computed from the previous one with

one modular multiplication, the verification of the current

session key may require a significant number of modular

multiplications.

We want now to establish how fast the receiver can

synchronize its key with the sender, i.e. verifying the

session key for the current time interval based on the

initialization key
0k . If the receiver starts computations at

time RS

startt (we suppose that it has received key
ik of the

current time interval and without loosing generality we

take the time value at RS as reference) then at some later

time RSt the number of verified keys is:

/RS RS

keys start mulv t t t (13)

Here
mult is the computational time required for a

modular multiplication on the receiver side. In order to

synchronize its key with the current session key we need

that the number of verified keys to be equal to the number

of keys released by the sender which is:

/RS RS

keys broadcastr t t (14)

By putting relations (13) and (14) together we get the

following:

keys keysv r RS RS RSmul
start broadcast

mul mul

t
t t t

t t
 (15)

Therefore the time after which the current session key

is verified is:

RS RS

recovery startt t RS RSmul
start broadcast

mul

t
t t

t
 (16)

This further simplifies if we consider that the broadcast

starts at 0RS

broadcastt and then RS

startt is in fact the time

elapsed after broadcast starts, under these circumstances

relation (16) becomes:

RSmul

recovery start

mul

t
t

t
 (17)

For example after 2 years of broadcast at a disclosure

period 10 seconds and 674 10mult seconds by

using (16) the receiver needs
recovery

 467 seconds 8

minutes. After this computation the receiver will need to

recover every new session key with only one modular

multiplication, i.e. 674 10mult seconds. This is not a

great amount of time after 2 years of broadcast in order to

synchronize the key chain of the receiver with that of the

sender. However, if this could be a problem, as an

improvement on this, the sender can refresh from time to

time its initialization information from the registration

server by renewing the initialization key
0k with some

recently disclosed key
ik , the registration procedure from

section 3 can be used for this purpose by replacing
0k

with
ik and RS

broadcastt with RSMDT i , new receivers may

use the new initialization packet while the old

initialization packet is still correct. From both (16) and

(17) it can be easily seen that as increases the recovery

time decreases.

16 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

E. Reducing the computational overhead by the use of

delayed key chains

In order to reduce the computational overhead induced

by the verification of a key from a key received long time

before the use of delayed key chains can be a solution.

This means that instead of using a single one-way chain

we can use two chains with distinct disclosure delays.

Namely, besides the one-way chain that we use for the

authentic broadcast, another chain with a larger

disclosure period can be used in order to authenticate the

current key from the chain used for the authentic

broadcast.

We note that this solution reduces the computational

overhead at the cost of introducing a delay equal to the

disclosure period of the second chain (since the client

must now wait for the disclosure of the key from the

second chain, and also verify this key, which can be done

indeed faster). Also this solution can be generalized for

more than two chains. The idea of using multiple one-

way chains was also used in a related context in [15].

VI. THE PROPOSED PROTOCOL

A. Protocol description

The description of the protocol now easily follows

from the previously described procedures.

The following initialization stage is required for

senders and receivers:

Sender: Establish the number of communication

sessions . In principle, the value of can be computed

as /T where T represents the duration of the entire

transmission and represents the duration of the

disclosure interval. However, the proposed protocol is

intended for long time periods, or even uncertain,

therefore, due to the construction of the chain any value

for can be chosen. As an example, one may choose

1282 which will result in a chain that will never

exhaust in practice. Choose two large special primes p ,

q according to the specifications from section V, for this

purpose random values will be chosen until special

primes are found, this is going to happen in polynomial

time as suggested in [6]. Compute 0x by choosing two

random generators from pZ and qZ as shown in section

5. Compute n p q , 1 1n p q ,

2 mod

0 0 mod
n

k x n (this can be done efficiently by first

computing 2 mode n and then computing

0 0 modek x n). Use the registration protocol to establish

the initialization packet

0 ,, , , , ,RS

init broadcast id S RS
SigS

P t S n k on the registration

server. Set the time adjustment 0 (see section 4 for

details on the value of).

Receiver: Use the time synchronization procedure

from section 4 in order to obtain an upper bound on the

time from the registration server’s side and the

initialization packet for a particular sender.

The communication stage is now described for both

senders and receivers:

Sender: At time 1S

broadcastt i broadcast the

packet
1

, , , , 1,
i

i i i iKD k
P i M MAC M k i . Here iM

denotes the broadcasted message and ik denotes the

session key which is
2 mod

mod
i n

i Ak x n (this

computation can be easily performed in a time-memory

tradeoff at the reduced cost of almost one modular

multiplication, see [5] for details). As a potential

improvement we also note that a sender may broadcast

more than one packet authenticated with key 1ik until

this key expires, i.e. 1RSMDT i . For example it can

broadcast packets with the structure

1
, ,, , , , , , 1,

i
i i j i j iKD k

P i j M MAC M j k j r , here r is

the number of messages authenticated with the same key

1ik . 1iKD k is a key derivation process used to derive

the key of the MAC from the next session key.

Receiver: If packet iP is received on time, which

means that the security condition (7) holds, then store the

message and the MAC, otherwise drop them. Verify the

authenticity of each session key by checking that
i l

i lk f k , here lk is the last authentic key that was

received; in the worst case if no previous authentic key is

available then use the key from the initialization packet,

i.e. 0k . If the key is authentic then use it to verify the

authenticity of the previously received packets.

B. Implementation aspects

Of course the proposed protocol can be also

implemented with any other one way function, for

example a hash function. We considered that the use of

the squaring function is more suited for the addressed

scenario (a long term broadcast) since chains of

unbounded length can be computed with this function.

Implementing the discrete squaring function is not

difficult; there are many libraries which allow working

with large integers, a good example is Java BigInteger

class [26]. The disadvantage in using the squaring

function f is that this function is more computational

intensive and the size of the keys is also larger. In order

to set a more accurate point of view in tables 1 and 2

some practical results on the time requirements of the

squaring function and some hash function are given.

We conclude that although this function is more

intensive than a hash function it is not unaffordable; a key

of 1024 bits at requirements of microseconds for

computing a key should be no great concern for many

environments. It is obvious that this function can be

successfully used in the proposed broadcast

authentication protocol and the same properties of the

function that are used in [6], [23] are also useful for the

proposed scenario.

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 17

© 2008 ACADEMY PUBLISHER

TABLE I.
TIME REQUIRED FOR MODULAR MULTIPLICATION AND EXPONENTIATION

(TIME IS EXPRESSED IN SECONDS, EXPONENTIATION IS DONE FOR 1024
BIT MODULE AND EXPONENT)

CPU 1024 bit module
1536 bit

module

2048 bit

module

Exponentiat

ion

Intel Centrino 1.6

Ghz
74x10-6s 168x10-6 s 281x10-6s 50x10-3s

Athlon 64 2800+

1.8 Ghz 62x10-6s 129x10-6s 223x10-6s 42x10-3s

Athlon 64 3800+

2.4 Ghz 46x10-6s 96x10-6s 167x10-6s 32x10-3s

TABLE II.
HASH FUNCTIONS AND MAC (TIME IS EXPRESSED IN SECONDS)

CPU SHA1 SHA256 SHA512
MAC

(SHA1)

Intel Centrino 1.6

Ghz
2.8x10-6s 8.5x10-6s 27x10-6s 10x10-6s

Athlon 64 2800+

1.8 Ghz 2.4x10-6s 7.1x10-6s 25x10-6s 9.4x10-6s

Athlon 64 3800+

2.4 Ghz 1.8x10-6s 5.3x10-6s 18.7x10-6s 6.9x10-6s

VII. FAILURE MODES AND SECURITY ANALYSIS

A. About fail safe and fail danger failures in real world
applications

Real world applications may fail in more than one

way, therefore we say that they have more than one

failure mode [4]. A basic distinction can be made

between two opposite kind of failures:

- Fail danger failure– is a failure in which the system

moves into a dangerous condition which harms other

systems that are connected to it.

- Fail safe failure – is a failure in which the system

moves to a safe condition without harming other systems

that are connected to it.

To make things clearer we consider a trivial example

from the real world - the case of a boiler. A boiler is a

closed vessel in which some fluid, usually water, is

heated under pressure. If the pressure gets to high levels

the boiler may explode potentially causing catastrophes.

In order to prevent this, a safety valve is present. The

safety valve is a security device; the role of the safety

valve is to release pressure in order to prevent the

potential explosion of the boiler. Now consider that the

safety valve is implemented on some electronic circuit,

such as a transistor or a diode. Obviously the circuit

inside the safety valve may fail too. Let us assume that

the electronic circuit may fail in open circuit, which

causes the element output to rise to a high value, or may

fail in short circuit which causes the element output fall

to a low value. Now if we consider that a high output will

cause the valve to stuck close and a low output will cause

the valve to stuck open we get: a) a fail danger failure

when the valve remains closed since obviously the boiler

may explode b) a fail safe failure for the case when the

valve remains opened since obviously there will not be

the desired pressure inside the boiler.

 As the notions of fail safe and fail danger failures are

clear we proceed in the next section to analyze their

presence in cryptographic protocols based on time

synchronization.

B. Fail safe and fail danger failures in cryptographic
protocols based on time synchronization

Security tends to have a black and white image; a

cryptographic protocol can or cannot be broken. The

proposed protocol, as well as other protocols based on

time synchronization (such as the TESLA protocol) may

fail because of clock drifts between the sender and the

registration server. However there are two distinct

situations which correspond to a fail safe failure or a fail

danger failure. In the first situation the clock of the sender

goes slower than that of the registration server, this

corresponds to a fail safe failure since the secrets are

disclosed too late when the receiver assumes that the

authentication key was already released and therefore

packets are dropped. In the second situation the clock of

the sender goes faster than that of the registration server,

this corresponds to a fail danger failure since the keys are

released earlier and packets can be forged by an

adversary. A further analysis of the failure modes is now

done. The analysis is done for a sender and a receiver

with synchronization errors ,S RS , ,R RS , a network delay

R
 (the time needed for the packet to travel from the

sender to the receiver) and by RS

iRT we denote the time

value at RS when S releases packet iP . Assuming

potential clock drifts between the sender and the

registration server, we can now distinguish between five

distinct intervals according to the time value at the

registration server and the time value at the sender when

the keys are released:

a) Functional Interval. This corresponds to the case

when the keys are released in the correct time interval:
RS

iRT , ,

,,S RS S RS

S RSMDT i MDT i .

b) Potential Communication Failure. This is the case

when the keys are released outside the functional interval

causing potential packet drops from the receivers (a

receiver with network delay smaller than
R

 receives

packets at correct time, however the keys are not released

at the correct time): RS

iRT

, ,

, ,, 1S RS S RS

S RS R R RSMDT i MDT i .

c) Communication Failure. Packets are released too

late and are certainly dropped by the receivers with

network delay higher than
R

: RS

iRT

,

,1 ,S RS

R R RSMDT i .

d) Potential Security Failure. Packets are released

too soon, an attacker can forge packets but if the receiver

has a network delay
R

 or higher the attacker can not

forge packets on time (forged packets will be dropped by

the receiver since they arrive too late):
RS

iRT , ,

, ,S RS S RS

R R RSMDT i MDT i .

e) Security Failure. Packets are released too son, an

attacker can forge packets for any receiver with a network

18 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

delay
R

 or smaller: RS

iRT

, ,

,,S RS S S RS

broadcast R R RSMinTV t MDT i .

It is important to note that situations b) and c)

correspond to a fail safe failure while situations d) and e)

correspond to a fail danger failure. Now it can be easily

seen that the sender needs to keep its clock inside the

functional interval. This is reinforced by the

synchronization procedure described in section 4 and in

the case when
, ,S RS R RS

 the sender can prevent a fail

danger failure but however it can enter into a fail safe

failure.

Also, we underline that establishing fail safe and fail

danger failures for a system is relevant when the system

becomes part of a larger system and the condition of the

entire system needs to be established. In this context

techniques such as Fault Tree Analysis (FTA) or Failure

Mode and Effect Analysis (FMEA) can be used [4].

VIII. A SKETCH ON A FORMAL PROOF OF SECURITY

Proofs of security for related protocols can be found in

[3], [20]. In our previous paper [11], for simplicity, only

an informal argument on the security of the protocol was

given. The security of the protocol can be proven to be

equivalent to the integer factorization problem in the

Random Oracle Model (ROM) [2]. Informally, it is

obvious that in order to break the protocol an attacker

must compute a packet , , ,
att

i att att iKD k
P i M MAC M k

where attk is the key forged by the attacker and

att if k k . Assuming that this packet arrives on time it

will prove to be authentic when packet 1iP containing

key attk is received. If att if k k then attk is the square

root of ik and since the modulus is the product of two

prime numbers then there are exactly four square roots of

ik . When the sender releases the key 1ik then

1
modi attk k n with probability ½ and therefore with

probability ½ the attacker can factor the modulus (it is

commonly known that computing modular square roots is

equivalent to factoring). This means that if an attacker

manages to forge the scheme by computing the key attk

then it can solve the integer factorization problem, since

this is infeasible to solve the security of the protocol

holds.

For the completeness of the result we now give a

sketch on a formal proof for the security of the protocol.

We underline that we assume that there are no significant

clock drifts between the participants and the

synchronization error is inside the prescribed margins

(i.e. situation a) from section 7, which implies that the

keys are released in the correct time interval), also we

assume that the registration and initialization values are

correct.

In what follows, we will use the notation

1
, ,

KD k
M MAC M k where 1k f k . Obviously any

packet sent by the broadcast protocol fits to this notation,

in fact we renounced only to the index i . Also, the proof

of security is given for an adaptive chosen ciphertext

adversary against the indistinguishability of a MAC given

a random key encapsulated with function f and some

random value, i.e. IND-CCA2. The first approach that

used indistinguishability to prove the security of such a

protocol was the proof of security for the TESLA scheme

in [20]. However, we take an approach that is more close

to the proofs of security for the Key Encapsulation

Mechanism from [2], [25]. Such a proof gives in fact a

solid argument for security in a less constrained

environment. Since both the MAC and the key derivation

function behave as pseudorandom functions, we assume

that
1KD k

MAC M behaves as a random function as

well and we use a random oracle to simulate this

function. Now we assume the existence of an IND-CCA2

adversary against the cryptosystem

1
, ,

KD k
M MAC M k and the following theorem

establishes the equivalence between breaking this scheme

and the integer factorization problem:

Theorem 8.1. If there exists an adversary A that can

distinguish between
1

, ,
KD k

M MAC M k and , ,M r k

with advantage by making Dq queries to a MAC

oracle O that when given ,M k returns
1KD k

MAC M ,

then the adversary can be used to factor integers with

advantage
1

'
2

Dq

n
.

We sketch a proof for theorem 8.1. The MAC oracle

O is simulated as follows: a MACList is preserved

which is initially empty, if the attacker queries O with

1,M k to obtain
1KD k

MAC M then 2

1 modk k n is

computed and a new random value r is generated then

the values 1, , ,M k r k are stored in the MACList , if the

attacker queries O with ,M k to obtain
1KD k

MAC M

then MACList is inspected and if ,M k are found the

corresponding values are returned, else a new random

value r is generated and the triple , ,M k r is stored in

the MACList . If O is ever queried with 1,M k such that

2

1 modk k n and ,M k are in the MACList then the

corresponding value r from the MACList is returned.

We underline that the MAC oracle O works in a similar

fashion to the decryption oracle for the RSA-KEM in [25]

to which we refer the reader for a more detailed proof.

Assuming the adversary outputs b the advantage of

the adversary is defined as
1

Pr
2

b b . Let

Awins denote the event that A correctly guesses the

hidden bit, let AskChall denote the event that A asks for

the challenge ,M k in its find stage and AskMAC the

event that A asks for 1,M k with 2

1 modk k n . Let

Bad denote the absence of AskChall and AskMAC ;

JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008 19

© 2008 ACADEMY PUBLISHER

since in this situation all that the adversaries knows is

independent from the challenge we have

1
Pr

2
Awins Bad . Since

1
Pr

2
Awins , and

Pr Pr PrAwins Awins Bad Awins Bad , it

follows that
1 1

Pr
2 2

Dq
AskMAC

n
. Since the

event AskMAC implies that the square root of k is

disclosed (and computing square roots is equivalent to

factoring), we get the factoring advantage

1
'

2

Dq

n
.

IX. CONCLUSIONS

A new broadcast authentication protocol was proposed.

The solution is based on time synchronization and uses

the squaring function for computing the one-way chains;

this leads to the potential use for a broadcast over a long

period of time since the length of the chain is unbounded.

An analysis of the time synchronization issues was done

and the security of the protocol is proved to be equivalent

to factoring large integers. Also an analysis of the failure

modes was presented; this is an interesting aspect that

applies to other protocols based on time synchronization

too. This solution may be useful in assuring the

authenticity of information broadcasted over public

networks such as the Internet for long periods of time.

ACKNOWLEDGMENT

This work was supported in part by national research

grant MEDC-CNCSIS TD-122/2007.

REFERENCES

[1] R. Anderson, F. Bergadano, B. Crispo, J.H. Lee, C.

Manifavas, R. Needham, “A New Family of

Authentication Protocols”, ACM Operating Systems

Review, pp. 9-20, 1998.

[2] M. Bellare and P. Rogaway, “Random oracles are

practical: A paradigm for designing efficient protocols”,

ACM Conference on Computer and Communications

Security, pp. 62–73, 1993.

[3] F. Bergadano, D. Cavagnino, B. Crispo, “Individual

Authentication in Multiparty Communications”.

Computers & Security Journal, Elsevier Science, vol. 21 n.

8, pp.719-735, 2002.

[4] J. P. Bentley, An Introduction to Reliability and Quality

Engineering, Addison Wesley, ISBN 0201331322, 216

pages, 1998.

[5] L. Blum, M. Blum and M. Shub, “Comparison of Two

Pseudo-Random Number Generators”, Advances in

Cryptology Proceedings of Crypto 82, pp. 61-78, 1982.

[6] L. Blum, M. Blum and M. Shub, “A Simple Unpredictable

Pseudo-Random Number Generator”, SIAM Journal on

Computing, Volume 15 , Issue 2 , pp. 364 – 383, 1986.

[7] D. Coppersmith and M. Jakobsson, “Almost Optimal Hash

Sequence Traversal”, Proceedings of the Fifth

International Conference on Financial Cryptography, pp.

102-119, 2002.

[8] M. Fischlin, “Fast Verification of Hash Chains”, The

Cryptographers Track at the RSA Conference, pp. 339-

352, 2004.

[9] B. Groza, “Using one-way chains to provide message

authentication without shared secrets”, Second

International Workshop on Security, Privacy and Trust in

Pervasive and Ubiquitous Computing, IEEE Comp. Soc.,

pp. 82-87, 2006.

[10] B. Groza, T.-L. Dragomir, D. Petrica, “Using the discrete

squaring function in the delayed message authentication

protocol”, International Conference on Internet

Surveillance and Protection, IEEE Comp. Soc., 2006.

[11] B. Groza, "Broadcast authentication protocol with time

synchronization and quadratic residues chains", Second

International Conference on Availability, Reliability and

Security, pp. 550-557, IEEE Comp. Soc., 2007.

[12] N. Haller, C. Metz, P. Nesser, M. Straw, “A One-Time

Password System”, RFC 2289, Bellcore, Kaman Sciences

Corporation, Nesser and Nesser Consulting, 1998.

[13] M. Jakobsson, “Fractal hash sequence representation and

traversal”, Proceedings of IEEE International Symposium

on Information Theory, ISIT‘02, pp. 437–444, 2002.

[14] L. Lamport, “Password Authentication with Insecure

Communication”, Communication of the ACM, 24, pp.

770-772, 1981.

[15] D. Liu, P. Ning, “Efficient Distribution of Key Chain

Commitments for Broadcast Authentication in Distributed

Sensor Networks”, Proceedings of the 10th Annual
Network and Distributed System Security Symposium,

2002.

[16] C.J. Mitchell and L. Chen, “Comments on the S/KEY User

Authentication Scheme”, ACM Operating Systems Review,

pp. 12-16, 1996.

[17] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar,

“SPINS: Security Protocols for Sensor Network”,

Proceedings of Seventh Annual International Conference

on Mobile Computing and Networks - MOBICOM, pp.

521-534, 2001.

[18] A. Perrig, “The BiBa one-time signature and broadcast

authentication protocol”, Proceedings of ACM Conference

on Computer and Communications Security, pp.28-37,

2001.

[19] A. Perrig, R. Canetti, J. D. Tygar, D. Song, “The TESLA

Broadcast Authentication Protocol”, CryptoBytes, 5:2,

Summer/Fall, pp. 2-13, 2002.

[20] A. Perrig, R. Canetti, J. D. Tygar, D. Song, “Efficient

Authentication and Signing of Multicast Streams Over

Lossy Channels”, IEEE Symposium on Security and

Privacy, pp. 56-73, 2000.

[21] M. Rabin, “Digitalized signatures and public key functions

as intractable as factorization”, MIT/LCS/TR-212, MIT

Laboratory for Computer Science, 1979.

[22] R. Rivest, A. Shamir, L. Adleman, „A method for

obtaining digital signatures and public-key cryptosystems”,

Communications of the ACM, pp. 120-126, 1978.

[23] L Rivest, A. Shamir, D.A. Wagner, “Time-lock puzzles

and timed-release Crypto”, available at http:// theory.

lcs.mit.edu/~rivest/publications.html.

[24] Y. Sella, “On the Computation-Storage Trade-offs of -

Hash Chain Traversal”, Proceedings of the Seventh

International Conference on Financial Cryptography, pp.

270-285, 2003.

[25] V. Shoup, “A proposal for an ISO standard for public key

encryption”, Input for Committee, 2001.

[26] Java.sun.com: The Source for Java Developers, http://

java.sun.com/.

20 JOURNAL OF SOFTWARE, VOL. 3, NO. 3, MARCH 2008

© 2008 ACADEMY PUBLISHER

