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Abstract— A protocol for assuring the authenticity of 

information broadcasted over long periods of time is 

proposed. The protocol is based on time synchronization 

and uses one-way chains constructed with the squaring 

function which gives the possibility to construct a one-way 

chain of whose length is unbounded in practice. Although 

the computational cost is somewhat increased, compared to 

the use of hash chains, these computational requirements 

are affordable for the addressed scenario. In brief, the 

protocol assures information authenticity at the reduced 

cost of almost one modular multiplication for each 

broadcasted packet. Time synchronization issues are 

discussed and the security of the protocol is equivalent to the 

integer factorization problem since the squaring function is 

used in the construction of the one-way chain. A failure 

mode analysis of the protocol is done; this is an aspect of 

novelty and applies to other protocols based on time 

synchronization as well. Also, a formal proof on the security 

of the protocol is sketched. 

Index Terms — authentication, broadcast, one-way chain, 

protocol.  

I. INTRODUCTION

It is commonly acknowledged that authentication is 

one of the most important security objectives. Although 

authentication comes at a lower price compared to other 

security objectives, since for example message 

authentication codes are cheap cryptographic primitives 

compared to encryption function (required to assure 

confidentiality) or digital signatures (required to assure 

non-repudiation), real world scenarios can not be solved 

by the straightforward use of these primitives. A good 

example is a broadcast scenario where multiple entities 

receive the same messages from a sender. The problem 

that occurs is the fact that message authentication codes 

require secret shared keys, and therefore a potential 

sender will need to share a distinct secret key to each 

receiver, and more, compute and send a distinct message 

authentication code for each receiver, even if the message 

is the same. 

Fortunately a good solution emerged for this problem, 

the use of authentication protocols based on one-way 

chains and time synchronization proposed by Perrig et al. 

[20]. One-way chains are arrays generated by the 

successive composition of a one-way function. Usually in 

practice, for computational efficiency, a hash function is 

used for this purpose. Such protocols prove to be a 

versatile solution that comes at reduced computational 

costs and offer security properties that are close to the 

schemes that use expensive public key operations. 

In this paper we extend one of our previous proposals 

of broadcast authentication protocol based on time 

synchronization and quadratic residue chains which has 

the advantage that can be used for long periods of time 

since the chain is unbounded for practical use. More 

concrete, the same loose time synchronization as in the 

proposal of Perrig et al. [20] is used but our proposal 

differs at the communication participants and more 

relevant at the construction of the chain. The advantages 

of this proposal are: first it requires minimal interaction 

between senders and receivers, being efficient especially 

when there are many receivers, and secondly, it can be 

used for broadcast over long periods of time since the 

one-way chain that we use has an unbounded length in 

practice. Relevant extensions to our previous proposal 

from [11] consist in: a detailed analysis of lengths of 

periods for the chain that we use, a sketch on a formal 

proof of security, a complete description of the protocol 

with details on the parameters setup and the short 

discussion on the presence of the failure modes is 

extended.  

The paper is organized as follows. Section 2 inspects 

some related work. Section 3 holds the general setting of 

our scenario while section 4 describes time 

synchronization issues and section 5 presents the 

construction of the one-way chain. In section 6 the 

complete description of the protocol is given. Section 7 is 

a discussion on failure modes and section 8 gives a 

formal proof of security for the proposed protocol. 

Section 9 holds the conclusion of our paper. 

II. RELATED WORK

The history of one-way chains begins with the work of 

Lamport [14] which proposed the use of elements from a 

one-way chain as one-time passwords in order to 

authenticate a user to a remote system. Later, this 

proposal was used in the S-Key system by Haller [12]. 

However this systems is not secure [16], and the 

limitation in using Lamport’s scheme in a real-world 

scenario is obvious: since it provides unilateral 

authentication, an adversary impersonating the real 

system can receive and store passwords that are not yet 
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used for subsequent impersonation of the user (this is 

known as the pre-play attack).  

The great success of one-way chains begins with the 

work of Perrig et al. which used them to assure 

information authenticity [17], [18], [19], [20]. Message 

Authentication Codes (MAC) are the cryptographic 

primitive that is used for this purpose, but MAC codes 

come with the disadvantage that they require a secret 

shared key between the sender and each receiver. Using 

elements from a one-way chain as keys for MAC codes is 

a good solution to remove this disadvantage. Briefly, this 

advantage can be explained as follows: the MAC is 

secure if the key of the MAC is disclosed only after the 

MAC is received, and since each element of a one-way 

chain serves as a commitment for the following element 

of the chain, after the disclosure of the key, a new MAC 

can be computed with the forthcoming element and so on.  

The most successful proposal based on this principle is 

the Timed Efficient Stream Loss-tolerant Authentication 

(TESLA) protocol proposed by Perrig et al. [19]. Several 

variants are proposed, all of them relying on loose time 

synchronization, which means that the receivers must 

have an upper bound on the time from the side of the 

sender. The principle is to use a key which is an element 

of a one-way chain in order to compute a MAC and to 

disclose this key only in some forthcoming packet, the 

security condition which must be met to make this 

authentication secure is the following: a packet arrives 

safely if the receiver can unambiguously decide based on 

its synchronized time that the sender did not yet send the 

key disclosure packet. In brief the TESLA protocol offers 

authenticity at reduced costs without involving any 

shared secret between senders and receivers. For this 

advantage the protocol was suited even in constrained 

environments such as sensor networks [17]. Also, some 

related proposals based on similar principles can be found 

in [15]. 

Different proposals of authentication protocols in 

which elements of a one-way chain are used as keys for 

MAC codes are in [3], [9], [10] - here an authentic 

confirmation, which is also an element from a one-way 

chain, is used instead of time synchronization. Also, 

probably the first protocol based on this principle was the 

Guy Fawkes protocol from [1]. 

III. GENERAL SETTING FOR THE PROTOCOL

A. Communication Participants 

The addressed scenario assumes the existence of the 

following participants:  a registration server and a number 

of senders and receivers (this possible setting has also 

been pointed out in [20]). Each sender establishes its 

initialization information on the registration server and 

then at some time later starts broadcasting authentic 

information. Additionally, if there is some clock drift 

between the sender and the registration server, the sender 

can synchronize again its time with the registration server 

(however this is not the main intention of our proposal). 

Each receiver obtains the initialization information of a 

particular sender from the registration server and then it 

can check the authenticity of the information that is 

broadcasted by that sender; we underline that except for 

receiving information that can be checked for authenticity 

there is no other interaction between senders and 

receivers. Again, to prevent clock drifts between 

receivers and the registration server; the receivers can 

synchronize their time with the registration server. As in 

the case of the TESLA protocol [19] only loose time 

synchronization is required which means that only an 

upper bound for the time value at the registration server is 

needed. The registration server does not have access to 

any private or secret information of senders or receivers; 

therefore it is not an unconditionally trusted entity. All 

that we request from the registration server is to be 

functionally secure, which means to behave honest. Its 

role is to provide time synchronization, to store sender’s 

initialization information and to distribute it to receivers. 

We assume that this scenario can take place over a long 

period of time; for example a sender stores its 

initialization information on the registration server and 

then starts broadcasting for five years, in all this period 

there is no need for any other interaction between the 

sender and the registration server except for the case 

when the sender needs to synchronize its time with the 

registration server. 

B. Registration of a sender on the registration server 

The objective of sender S  is to establish his 

initialization information on the registration server RS .

This information consists in a packet 

0 ,, , , , ,RS

init broadcast id S RS
SigS

P t S n k  signed by S . Here 

RS

broadcastt  is the minimum time value at RS  when S  starts 

broadcasting (below it is shown how to compute this 

value), idS  is an identifier for the sender (for example it 

may be some number or an IP address), n  is the public 

modulus and 0k  is the initialization key,  denotes the 

key disclosure period, ,S RS  is the time synchronization 

error computed as shown below and SSig  denotes that 

the information is signed by S  (as a general condition we 

assume that all the participants of this scenario can verify 

the signature of each other). 

The registration procedure involves the following 

steps: 

1. S RS : SNonce

2. RS S : , , RS

RS S reg
SigRS

Nonce Nonce t

3. S RS :
0 ,, , , , , ,RS

RS broadcast id S RS
SigS

Nonce t S n k

Here SNonce  is a nonce used by S  in order to ensure 

that the response from RS  is not a replay of some old 

response and RSNonce  is a nonce used by RS  to ensure 

that the registration information sent by S  is also new, 

RSSig  denotes that the information is signed by RS . The 

time delay between steps 1 and 2 is the synchronization 
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error 
,S RS

 between S  and RS , i.e. 
,

S S

S RS reg startt t .

We request for the synchronization error ,S RS   to be 

much smaller than the disclosure period , i.e. 

,S RS , this is a natural requirement; a detailed 

explanation is in section 4). The registration procedure is 
also suggested in figure 1. 

S

startt

S

regt

S

broadcast
t

RS

regt

0 ,
, , , , , ,RS

RS broadcast id S RS
SigS

Nonce t S n k

S RS

SNonce

, ,RS

reg RS S
SigRS

t Nonce Nonce,S RS

,S RS

RS

broadcastt

,

RS

broadcast S RSt

Figure 1. Registration procedure 

Now S  can estimate for any time value St  the 

minimum and maximum time value at RS  as follows: 

,S RS S S RS S

reg regMinTV t t t t     (1) 

,

,

S RS S S RS S

reg reg S RSMaxTV t t t t   (2) 

Let S

broadcastt  be the time at which sender S  starts 

broadcasting authentic information, now the minimum 

time value at RS  when the time value at S  is 
S

broadcastt

can be easily computed as ,RS S RS S

broadcast broadcastt MinTV t .

We will also define the disclosure time for the thi  key as: 

1S S

broadcastDisT i t i    (3) 

Because of the synchronization error ,S RS , by using 

relations (1) and (2) when the time value at S  is 
SDisT i  the time value at the registration server is 

somewhere in the interval  
, ,,S RS S S RS SMinTV DisT i MaxTV DisT i ; since this 

is the time at which the thi  key is released we will call 

this interval the disclosure interval for the thi  key. What 

is important is that as long as the loose time 

synchronization is preserved between S  and RS  the thi

key is not released sooner than: 
,RS S RS SMDT i MinTV DisT i

1RS RS

broadcastMDT i t i   (4) 

We will call this time value the Minimal Disclosure 

Time (MDT) for the thi  key, MDT is of particular interest 

since the proposed protocol guarantees that packet iP ,

which contains a MAC computed with the 1thi  key, can 

not be forged sooner than 1RSMDT i .

C. Synchronization of a receiver with the registration 

server

The objective of the synchronization of a receiver R

with the registration server RS  is to obtain the 

initialization information of a particular sender S  and to 

achieve loose time synchronization with the registration 

server, i.e. establish an upper bound on the time value at 

RS . This will make possible for R  to check the 

authenticity of the information that is broadcasted by S .

The synchronization procedure involves the following 

steps: 

1. R RS : ,id RS Nonce

2. RS R : , ,RS

R sync init
SigRS

Nonce t P

Here RNonce  is a nonce used by R  in order to ensure 

that the response from RS  is not a replay of some old 

response and idS  is the identifier of the particular sender 

from which R  wants to receive authentic information. 
The time delay between steps 1 and 2 is the 

synchronization error ,R RS  between R  and RS , i.e. 

,

R R

R RS sync startt t . We will assume that , ,R RS S RS

and if this condition does not hold the synchronization 

procedure must be repeated; an explanation for this is 

given in section 4). This procedure is also suggested in 

figure 2. 

R

startt

, ,RS

R sync init
SigRS

Nonce t P

R RS

,id RS Nonce

,R RS

R

synct

RS

sync
t

Figure 2. Synchronization procedure 

After this synchronization R  can also estimate at any 

time Rt  the minimum and maximum value for the time 

value at RS :

,R RS R R RS R

sync syncMinTV t t t t     (5) 

,

,

R RS R R RS R

sync sync R RSMaxTV t t t t   (6) 

Now R  can use the maximum time value at RS  in 

order to decide if packet iP  received at time 
R

it  which 

contains a MAC computed with the 1thi  key is secure, 

i.e. the key used for the computation of the MAC was not 

already released. This can be verified by checking that: 
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, 1R RS R RS

iMaxTV t MDT i    (7) 

To prevent significant clock drifts the synchronization 

procedure can be periodically repeated by R .

IV. TIME SYNCHRONIZATION ISSUES

A. The influence of the synchronization error on security 

Because of the synchronization error ,S RS  between the 

sender and the registration server, key ik  is disclosed in 

the worst case when the time value at the registration 

server is ,S RS SMaxTV DisT i . In this case a receiver 

having synchronization error ,R RS  with the registration 

server knows that the time value at the registration sever 

is at most ,

,

S RS S

R RSMaxTV DisT i . Also we must 

take into account the network delay for a particular 

receiver R , i.e. the time needed for a packet to travel 

through the network from  S  to R . Of course this time 

may vary for different packets but for our purpose it is 

sufficient to have an average value. Let this delay be 
R

,

now in order for the security condition to be verified 

when the packet arrives, we need: 
,

, 1S RS S RS

R RS RMaxTV DisT i MDT i

, ,S RS R RS R
     (8) 

And therefore relation (8) needs to be satisfied in order 

for the receiver to obtain authentic packets at a delay 
R

and synchronization errors 
,S RS

,
,R RS

; this is why we 

have requested for the synchronization errors to be much 

smaller than the key disclosure period. If  is chosen by 

the sender too small to satisfy (8) then the receiver will 

get only packets that must be dropped since the security 
condition (7) does not hold. In order to overcome this, an 

improvement that was proposed by Perrig et al. in the 

case of the TESLA protocol [19] can be also used here: 

the key which is used to compute the MAC from packet 

iP  can be disclosed only in some later packet iP  instead 

of packet 1iP , see [19] for details. 

B. Synchronization between a sender and the registration 

server

Assuring that clock drifts between the sender and the 

registration server are negligible is critical for the security 

of the communication. In order for the security of the 

protocol to hold, the sender must ensure that at any time 
St  the time value at the registration server side is 

between the minimum and maximum values given in (1), 

(2), this is required in order to disclose the keys in the 
correct disclosure intervals. If the sender suspects that 

clock drifts between its clock and the registration server 

clock are not negligible then there are two possible 
solutions to overcome this. The first solution is for the 

sender to repeat the registration procedure and to commit 

new initialization information on the registration server 
(this means to restart the entire protocol), however this 

solution is inefficient for receivers that have already 

obtained the registration information of the sender. The 

second solution is for the sender to re-synchronize its 

time with the registration server. At time St  the sender 

can estimate that the time value at the registration server 

is between ,S RS SMinTV t  and ,S RS SMaxTV t  by using 

(1), (2). In order to achieve a new synchronization the 

sender has to follow the synchronization procedure 
described in section 3). Now the sender plays the role of a 

receiver and after completing the synchronization 

procedure it can estimate that the time value at the 

registration server is between ,R RS RMinTV t  and 

,R RS RMaxTV t  by using (5), (6). We suppose that 

, ,R RS S RS
, this is needed in order for the new 

synchronization to be more accurate than the previous 
one. Now the sender can compute a time adjustment 

, ,R RS R S RS SMinTV t MinTV t  (here S Rt t  since 

the sender plays the role of the receiver) and use this 

adjustment by broadcasting packets at time 

1S

broadcastt i  instead of 1S

broadcastt i . The 

case of 
, ,R RS S RS

 should be avoided since in some 

situations the sender cannot be certain that its estimation 

is or not wrong compared to the new estimation (after 

following receiver’s synchronization procedure); also, the 

best thing that the sender can do is to ensure that packets 

are not released too soon by applying an adjustment 

computed in the same way, however in some situations 

packets may be released too late causing receivers to drop 

them. 

V. CONSTRUCTION OF A KEY CHAIN THAT IS UNBOUNDED 

IN PRACTICE

A. General construction of one-way chains  

As already stated, protocols based on one-way chains 

offer good computational advantages while preserving 

security properties that are close to protocols based on 

expensive public key operations. Basically, in order to 

construct a one-way chain, a one-way function is 

required. This is a non-restrictive condition since all 

cryptographic primitives, such as hash functions, 

encryption functions or digital signatures, behave as one-

way functions. As a trivial example, one may use an 

encryption function and set 0xf x E  then 

successively compute 2 3, ,f r f r f r  and so on, for 

some random value r , in order to generate a one-way 

chain. 

Because of their computational efficiency, since they 
are the cheapest cryptographic primitives, hash functions 

are the best choice for this purpose. The only limitation 

that occurs in using hash functions is that the length of 
the chain is fixed and the computational complexity 

depends linearly on the length of the chain. In order to 

improve on the computational requirements for the 
traversal of hash chains several time-memory tradeoffs 
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were proposed [7], [8], [24]. The basic principle on which 

these optimizations are based is to compute the hash 

chain and store some values of the chain for faster 

subsequent re-computation. 

The solution proposed in the following section 

removes the disadvantage of fixed length, by providing a 

one-way chain that is unbounded in practice, and also 

makes it possible to compute values at any given index 

without requiring additional storage. However these 

advantages come with an increase in the computational 

complexity for the one way function that we use, but 

finally the increase in computational requirements is still 

affordable for the targeted scenarios. 

B. The use of the squaring function 

Function modf x x n , where usually n p q  is 

the product of two large primes ,p q , is commonly used 

in public key cryptography. The most well known 
proposals for using this function are the RSA and Rabin 

cryptosystems [21], [22] which use different values for 

the exponent .

Later, the particular case of 2 modf x x n , i.e. the 

squaring function, was proposed by Blum et al. [5], [6] in 

order to construct a pseudorandom number generator that 

has its security equivalent to the integer factorization 

problem. Several facts that are established in [6] about 

this function will serve to our proposal as well. 

Even more recently, the squaring function was 

proposed for creating time-lock puzzles [23]. These are 

cryptographic constructions that can be used for “sending 

information into future” and are close related to 

cryptographic puzzles used to prevent denial of services 

attacks. The time-lock puzzles from [23] have the 

tremendous advantage that they can be solved only after a 

predetermined amount of time, without giving a potential 

solver the ability to parallelize the solving process due to 

the intrinsic sequential nature of the repeated squaring 

process. 

Both the proposals from [6], [23] exploit the same 

property of the function that we will use in our protocol. 

Namely, we use the fact that while working over groups 

of integers, exponents can be reduced modulo the order 

of the group. Therefore, the result of the successive 

composition of the squaring function can be efficiently 

computed as 2 modf x x n
2 mod

mod
n

x n ,

here n  is the Euler totient function which can be 

computed if and only if the factorization of n  is known.  

We can use the same property for creating one-way 

chains of unbounded length. Since the value of  
2 mod

mod
n

f x x n  can be efficiently computed by 

first computing the exponent 2 mode n  and then 

computing modef x x n  a one-way chain of 

unbounded length can be computed in this way. We 

underline that the computational complexity for 

computing a one-way chain based on a hash function 

depends linearly on the length of the chain while by the 

use of this function it depends only logarithmically on the 

length of the chain – because of the repeated square and 

multiply algorithm that can be used to perform modular 

exponentiation.  

Therefore, for the proposed protocol we will define 

each session key, which is an element of the one-way 

chain generated by the squaring function, i.e. a chain of 

quadratic residues, as follows: 
2 mod

0 mod , 0..
i n

ik x n i     (9) 

Here 0x  is a random value chosen by the sender. 

More, the elements of the one-way chain can be 

computed in a time memory trade as suggested in [10] 

and the computational time is significantly reduced to 

almost one modular multiplication. The time-memory 

trade is based on the fact that it is possible to compute the 

value of if x  with only one modular multiplication if 

the value of  1if x  is known; indeed 

1 1i i if x f x f x . Because of this, the chain 

of  elements can be split into smaller chains of  

elements. Instead of performing one modular 

exponentiation for every element of the chain a smaller 

chain of  elements can be computed with only one 

modular exponentiation followed by 1  modular 

multiplications. 

Although this function is more computational intensive 

than a hash functions and its output is larger it has the 

advantage that the chains can have extreme lengths 

without influencing the computational time and therefore 

the chain can be used for a long time of  broadcast. 

C. The length of period for the 
2 modx n  sequence 

As stated in [23] looking for perfection in number 

theory may be considered overkill in this context. It is 

natural to expect that by choosing random values for 0x

and the modulus n  we will obtain a sequence with a 

large period that will not lead to the loss of security. 

Therefore, the use of random values should be safe in 

practice and the analysis from this section can be skipped. 

However, for the completeness of the results a solution 

for choosing number that will not defile the expectancies 

is preferable. In [6] a good analysis of the length of 

period is presented, here we give a brief approach, which 

is related to the one from [6], for choosing numbers that 

offer good security properties. 

It is obvious that we are concerned with two things, 

first the order of 0x  in nZ , denoted by 0nord x , and 

second, the order of 2  in 
n

Z , denoted by 2
n

ord .

We will use the same notation as in [6] for the length of 

the period, which will be denoted by  and represents 

the smallest number such that 2

0 0 modx x n , i.e.: 
'2 2

0 0 0 0mod , ' , modx x n x x n                (10) 

The first step, in order to a achieve a large length of 

period, is to obtain a high order of 0x  in nZ . We can use 

a straight forward solution for this purpose, two random 
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numbers  and  that are generators in pZ  and qZ

respectively are chosen. Now by using the Chinese 

remainder theorem we compute the solution of the 

following system: 

1

1

mod

mod

x p

x q
                (11) 

It is obvious that the order of 1x  in nZ  is 

1 1, 1nord x lcm p q . Now we set 2

0 1 modx x n .

 The second step is to obtain a high value for 

2
n

ord .  The order of  2  in 
n

Z  can be easily 

checked if the factorization of  n  is available. For this 

purpose we will use the same kind of primes as in [6], 

called special primes, for which it holds that 

2 ' 1p p , ' 2 '' 1p p , here p , 'p , ''p  are all 

prime numbers. Also, we make the same requirement for 

the modulus as in [6] and we request for n  to be a special 

number which means that both  p  and q   are special an 

also congruent to 3 mod 4 (this implies that each 

quadratic residue has exactly one root that is also a 

quadratic residue).  If p  and q  are special primes, then 

the value of n  is obviously 

1 1 4 ' ' 8 '' ''n p q p q p q .

As the value of n  and its factorization is known, 

the value of 2
n

ord  can be easily computed. Even 

more, it is obvious that 2
n

ord  is '' ''p q  if 2 is a 

quadratic residue with respect to either ''p  or ''q  and 

2 '' ''p q  otherwise; either ways, since n  is an integer 

infeasible to factor, the value will be safe for practical 

use. The special primes p  and q  will be chosen in the 

same manner as suggested in [6] by choosing random 
numbers and using probabilistic primality testing then 

select the one that are special. 

Finally, for the values established above, it is trivial to 

prove that the length of the period  will be equal to: 

2
n

ord                   (12) 

This gives the desired length of period for the sequence 

– a length which is unbounded for practical use. 

D. The verification of some key from the initialization key 

We preserve our initial analysis from [11] for 

determining the computational time required to verify 

some key from the initialization key.  

Each new key 
ik  must be checked for authenticity by 

the receiver, this can be easily done if the receiver already 

has the previous authentic key 
lk  by checking that 

i l

i lk f k . If a significant amount of time has passed 

from the moment when the sender has start broadcasting 

and a recent authentic key is not available for the receiver 

(in the worst case the receiver has only the initialization 

key received from the registration server, i.e. 
0k ), since 

each key has to be computed from the previous one with 

one modular multiplication, the verification of the current 

session key may require a significant number of modular 

multiplications.  

We want now to establish how fast the receiver can 

synchronize its key with the sender, i.e. verifying the 

session key for the current time interval based on the 

initialization key 
0k . If the receiver starts computations at 

time RS

startt  (we suppose that it has received key 
ik  of the 

current time interval and without loosing generality we 

take the time value at RS  as reference) then at some later 

time RSt  the number of verified keys is:  

/RS RS

keys start mulv t t t                  (13)  

Here
mult  is the computational time required for a 

modular multiplication on the receiver side. In order to 

synchronize its key with the current session key we need 

that the number of verified keys to be equal to the number 

of keys released by the sender which is: 

/RS RS

keys broadcastr t t                 (14) 

By putting relations (13) and (14) together we get the 

following: 

keys keysv r RS RS RSmul
start broadcast

mul mul

t
t t t

t t
          (15) 

Therefore the time after which the current session key 

is verified is: 

RS RS

recovery startt t RS RSmul
start broadcast

mul

t
t t

t
               (16) 

This further simplifies if we consider that the broadcast 

starts at 0RS

broadcastt  and then RS

startt  is in fact the time 

elapsed after broadcast starts, under these circumstances 

relation (16) becomes: 

RSmul

recovery start

mul

t
t

t
                 (17) 

For example after 2 years of broadcast at a disclosure 

period 10 seconds and 674 10mult  seconds by 

using (16) the receiver needs  
recovery

 467 seconds  8 

minutes. After this computation the receiver will need to 

recover every new session key with only one modular 

multiplication, i.e. 674 10mult  seconds. This is not a 

great amount of time after 2 years of broadcast in order to 

synchronize the key chain of the receiver with that of the 

sender. However, if this could be a problem, as an 

improvement on this, the sender can refresh from time to 

time its initialization information from the registration 

server by renewing the initialization key 
0k  with some 

recently disclosed key 
ik , the registration procedure from 

section 3 can be used for this purpose by replacing 
0k

with 
ik  and RS

broadcastt  with RSMDT i , new receivers may 

use the new initialization packet while the old 

initialization packet is still correct. From both (16) and 

(17) it can be easily seen that as  increases the recovery 

time decreases. 
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E. Reducing the computational overhead by the use of 

delayed key chains 

In order to reduce the computational overhead induced 

by the verification of a key from a key received long time 

before the use of delayed key chains can be a solution. 

This means that instead of using a single one-way chain 

we can use two chains with distinct disclosure delays. 

Namely, besides the one-way chain that we use for the 

authentic broadcast, another chain with a larger 

disclosure period can be used in order to authenticate the 

current key from the chain used for the authentic 

broadcast.  

We note that this solution reduces the computational 

overhead at the cost of introducing a delay equal to the 

disclosure period of the second chain (since the client 

must now wait for the disclosure of the key from the 

second chain, and also verify this key, which can be done 

indeed faster). Also this solution can be generalized for 

more than two chains. The idea of using multiple one-

way chains was also used in a related context in [15]. 

VI. THE PROPOSED PROTOCOL

A. Protocol description 

The description of the protocol now easily follows 

from the previously described procedures. 

The following initialization stage is required for 

senders and receivers: 

Sender: Establish the number of communication 

sessions . In principle, the value of  can be computed 

as /T  where T  represents the duration of the entire 

transmission and  represents the duration of the 

disclosure interval. However, the proposed protocol is 

intended for long time periods, or even uncertain, 

therefore, due to the construction of the chain any value 

for  can be chosen. As an example, one may choose 

1282  which will result in a chain that will never 

exhaust in practice. Choose two large special primes p ,

q  according to the specifications from section V, for this 

purpose random values will be chosen until special 

primes are found, this is going to happen in polynomial 

time as suggested in [6]. Compute 0x  by choosing two 

random generators from pZ  and qZ  as shown in section 

5. Compute n p q , 1 1n p q ,

2 mod

0 0 mod
n

k x n  (this can be done efficiently by first 

computing 2 mode n  and then computing 

0 0 modek x n ). Use the registration protocol to establish 

the initialization packet 

0 ,, , , , ,RS

init broadcast id S RS
SigS

P t S n k  on the registration 

server. Set the time adjustment 0  (see section 4 for 

details on the value of ). 

Receiver: Use the time synchronization procedure 

from section 4 in order to obtain an upper bound on the 

time from the registration server’s side and the 

initialization packet for a particular sender.  

The communication stage is now described for both 

senders and receivers: 

Sender: At time 1S

broadcastt i  broadcast the 

packet 
1

, , , , 1,
i

i i i iKD k
P i M MAC M k i . Here iM

denotes the broadcasted message and ik  denotes the 

session key which is 
2 mod

mod
i n

i Ak x n  (this 

computation can be easily performed in a time-memory 

tradeoff at the reduced cost of almost one modular 

multiplication, see [5] for details). As a potential 

improvement we also note that a sender may broadcast 

more than one packet authenticated with key 1ik  until 

this key expires, i.e. 1RSMDT i . For example it can 

broadcast packets with the structure 

1
, ,, , , , , , 1,

i
i i j i j iKD k

P i j M MAC M j k j r , here r  is 

the number of messages authenticated with the same key 

1ik . 1iKD k  is a key derivation process used to derive 

the key of the MAC from the next session key. 

Receiver: If packet iP  is received on time, which 

means that the security condition (7) holds, then store the 

message and the MAC, otherwise drop them. Verify the 

authenticity of each session key by checking that 
i l

i lk f k , here lk  is the last authentic key that was 

received; in the worst case if no previous authentic key is 

available then use the key from the initialization packet, 

i.e. 0k . If the key is authentic then use it to verify the 

authenticity of the previously received packets. 

B. Implementation aspects 

Of course the proposed protocol can be also 

implemented with any other one way function, for 

example a hash function. We considered that the use of 

the squaring function is more suited for the addressed 

scenario (a long term broadcast) since chains of 

unbounded length can be computed with this function.  

Implementing the discrete squaring function is not 

difficult; there are many libraries which allow working 

with large integers, a good example is Java BigInteger 

class [26]. The disadvantage in using the squaring 

function f  is that this function is more computational 

intensive and the size of the keys is also larger. In order 

to set a more accurate point of view in tables 1 and 2 

some practical results on the time requirements of the 

squaring function and some hash function are given. 

We conclude that although this function is more 

intensive than a hash function it is not unaffordable; a key 

of 1024 bits at requirements of microseconds for 

computing a key should be no great concern for many 

environments. It is obvious that this function can be 

successfully used in the proposed broadcast 

authentication protocol and the same properties of the 

function that are used in [6], [23] are also useful for the 

proposed scenario. 
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TABLE I. 
TIME REQUIRED FOR MODULAR MULTIPLICATION AND EXPONENTIATION 

(TIME IS EXPRESSED IN SECONDS, EXPONENTIATION IS DONE FOR 1024
BIT MODULE AND EXPONENT)

CPU 1024 bit module
1536 bit 

module

2048 bit 

module

Exponentiat

ion

Intel Centrino 1.6 

Ghz
74x10-6s 168x10-6 s 281x10-6s 50x10-3s

Athlon 64 2800+ 

1.8 Ghz 62x10-6s 129x10-6s 223x10-6s 42x10-3s

Athlon 64 3800+ 

2.4 Ghz 46x10-6s 96x10-6s 167x10-6s 32x10-3s

TABLE II. 
HASH FUNCTIONS AND MAC (TIME IS EXPRESSED IN SECONDS)

CPU SHA1 SHA256 SHA512
MAC 

(SHA1)

Intel Centrino 1.6 

Ghz
2.8x10-6s 8.5x10-6s 27x10-6s 10x10-6s

Athlon 64 2800+ 

1.8 Ghz 2.4x10-6s 7.1x10-6s 25x10-6s 9.4x10-6s

Athlon 64 3800+ 

2.4 Ghz 1.8x10-6s 5.3x10-6s 18.7x10-6s 6.9x10-6s

VII. FAILURE MODES AND SECURITY ANALYSIS

A. About fail safe and fail danger failures in real world 
applications 

Real world applications may fail in more than one 

way, therefore we say that they have more than one 

failure mode [4]. A basic distinction can be made 

between two opposite kind of failures:  

- Fail danger failure– is a failure in which the system 

moves into a dangerous condition which harms other 

systems that are connected to it. 

- Fail safe failure – is a failure in which the system 

moves to a safe condition without harming other systems 

that are connected to it. 

To make things clearer we consider a trivial example 

from the real world - the case of a boiler. A boiler is a 

closed vessel in which some fluid, usually water, is 

heated under pressure. If the pressure gets to high levels 

the boiler may explode potentially causing catastrophes. 

In order to prevent this, a safety valve is present. The 

safety valve is a security device; the role of the safety 

valve is to release pressure in order to prevent the 

potential explosion of the boiler. Now consider that the 

safety valve is implemented on some electronic circuit, 

such as a transistor or a diode. Obviously the circuit 

inside the safety valve may fail too. Let us assume that 

the electronic circuit may fail in open circuit, which 

causes the element output to rise to a high value, or may 

fail in short circuit which causes the element output fall 

to a low value. Now if we consider that a high output will 

cause the valve to stuck close and a low output will cause 

the valve to stuck open we get: a) a fail danger failure 

when the valve remains closed since obviously the boiler 

may explode b) a fail safe failure for the case when the 

valve remains opened since obviously there will not be 

the desired pressure inside the boiler. 

 As the notions of fail safe and fail danger failures are 

clear we proceed in the next section to analyze their 

presence in cryptographic protocols based on time 

synchronization. 

B. Fail safe and fail danger failures in cryptographic 
protocols based on time synchronization 

Security tends to have a black and white image; a 

cryptographic protocol can or cannot be broken. The 

proposed protocol, as well as other protocols based on 

time synchronization (such as the TESLA protocol) may 

fail because of clock drifts between the sender and the 

registration server. However there are two distinct 

situations which correspond to a fail safe failure or a fail 

danger failure. In the first situation the clock of the sender 

goes slower than that of the registration server, this 

corresponds to a fail safe failure since the secrets are 

disclosed too late when the receiver assumes that the 

authentication key was already released and therefore 

packets are dropped. In the second situation the clock of 

the sender goes faster than that of the registration server, 

this corresponds to a fail danger failure since the keys are 

released earlier and packets can be forged by an 

adversary. A further analysis of the failure modes is now 

done. The analysis is done for a sender and a receiver 

with synchronization errors ,S RS , ,R RS , a network delay 

R
 (the time needed for the packet to travel from the 

sender to the receiver) and by RS

iRT  we denote the time 

value at RS  when S  releases packet iP . Assuming 

potential clock drifts between the sender and the 

registration server, we can now distinguish between five 

distinct intervals according to the time value at the 

registration server and the time value at the sender when 

the keys are released: 

a) Functional Interval.  This corresponds to the case 

when the keys are released in the correct time interval: 
RS

iRT , ,

,,S RS S RS

S RSMDT i MDT i .

b) Potential Communication Failure. This is the case 

when the keys are released outside the functional interval 

causing potential packet drops from the receivers (a 

receiver with network delay  smaller than 
R

 receives 

packets at correct time, however the keys are not released 

at the correct time): RS

iRT

, ,

, ,, 1S RS S RS

S RS R R RSMDT i MDT i .

c) Communication Failure. Packets are released too 

late and are certainly dropped by the receivers with 

network delay higher than 
R

: RS

iRT

,

,1 ,S RS

R R RSMDT i .

d) Potential Security Failure.  Packets are released 

too soon, an attacker can forge packets but if the receiver 

has a network delay 
R

 or higher the attacker can not 

forge packets on time (forged packets will be dropped by 

the receiver since they arrive too late): 
RS

iRT , ,

, ,S RS S RS

R R RSMDT i MDT i .

e) Security Failure. Packets are released too son, an 

attacker can forge packets for any receiver with a network 
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delay 
R

 or smaller: RS

iRT

, ,

,,S RS S S RS

broadcast R R RSMinTV t MDT i .

It is important to note that situations b) and c) 

correspond to a fail safe failure while situations d) and e) 

correspond to a fail danger failure. Now it can be easily 

seen that the sender needs to keep its clock inside the 

functional interval. This is reinforced by the 

synchronization procedure described in section 4 and in 

the case when 
, ,S RS R RS

 the sender can prevent a fail 

danger failure but however it can enter into a fail safe 

failure. 

Also, we underline that establishing fail safe and fail 

danger failures for a system is relevant when the system 

becomes part of a larger system and the condition of the 

entire system needs to be established. In this context 

techniques such as Fault Tree Analysis (FTA) or Failure 

Mode and Effect Analysis (FMEA) can be used [4].  

VIII. A SKETCH ON A FORMAL PROOF OF SECURITY

Proofs of security for related protocols can be found in 

[3], [20]. In our previous paper [11], for simplicity, only 

an informal argument on the security of the protocol was 

given. The security of the protocol can be proven to be 

equivalent to the integer factorization problem in the 

Random Oracle Model (ROM) [2]. Informally, it is 

obvious that in order to break the protocol an attacker 

must compute a packet , , ,
att

i att att iKD k
P i M MAC M k

where attk  is the key forged by the attacker and 

att if k k . Assuming that this packet arrives on time it 

will prove to be authentic when packet 1iP  containing 

key attk  is received. If att if k k  then attk  is the square 

root of ik  and since the modulus is the product of two 

prime numbers then there are exactly four square roots of 

ik . When the sender releases the key 1ik  then 

1
modi attk k n  with probability ½ and therefore with 

probability ½ the attacker can factor the modulus (it is 

commonly known that computing modular square roots is 

equivalent to factoring). This means that if an attacker 

manages to forge the scheme by computing the key attk

then it can solve the integer factorization problem, since 

this is infeasible to solve the security of the protocol 

holds.  

For the completeness of the result we now give a 

sketch on a formal proof for the security of the protocol. 

We underline that we assume that there are no significant 

clock drifts between the participants and the 

synchronization error is inside the prescribed margins 

(i.e. situation a) from section 7, which implies that the 

keys are released in the correct time interval), also we 

assume that the registration and initialization values are 

correct. 

In what follows, we will use the notation 

1
, ,

KD k
M MAC M k  where 1k f k . Obviously any 

packet sent by the broadcast protocol fits to this notation, 

in fact we renounced only to the index i . Also, the proof 

of security is given for an adaptive chosen ciphertext 

adversary against the indistinguishability of a MAC given 

a random key encapsulated with function f  and some 

random value, i.e. IND-CCA2. The first approach that 

used indistinguishability to prove the security of such a 

protocol was the proof of security for the TESLA scheme 

in [20]. However, we take an approach that is more close 

to the proofs of security for the Key Encapsulation 

Mechanism from [2], [25]. Such a proof gives in fact a 

solid argument for security in a less constrained 

environment. Since both the MAC and the key derivation 

function behave as pseudorandom functions, we assume 

that 
1KD k

MAC M  behaves as a random function as 

well and we use a random oracle to simulate this 

function. Now we assume the existence of an IND-CCA2 

adversary against the cryptosystem 

1
, ,

KD k
M MAC M k  and the following theorem 

establishes the equivalence between breaking this scheme 

and the integer factorization problem: 

Theorem 8.1. If there exists an adversary A  that can 

distinguish between 
1

, ,
KD k

M MAC M k  and , ,M r k

with advantage  by making Dq  queries to a MAC 

oracle O  that when given ,M k  returns 
1KD k

MAC M ,

then the adversary can be used to factor integers with 

advantage 
1

'
2

Dq

n
.

We sketch a proof for theorem 8.1. The MAC oracle 

O  is simulated as follows: a MACList  is preserved 

which is initially empty, if the attacker queries O  with 

1,M k  to obtain 
1KD k

MAC M  then 2

1 modk k n  is 

computed and a new random value r  is generated then 

the values 1, , ,M k r k  are stored in the MACList , if the 

attacker queries O  with ,M k  to obtain 
1KD k

MAC M

then MACList  is inspected and if ,M k  are found the 

corresponding values are returned, else a new random 

value r  is generated and the triple , ,M k r  is stored in 

the MACList . If O  is ever queried with 1,M k  such that 

2

1 modk k n  and ,M k  are in the MACList  then the 

corresponding value r  from the MACList  is returned. 

We underline that the MAC oracle O  works in a similar 

fashion to the decryption oracle for the RSA-KEM in [25] 

to which we refer the reader for a more detailed proof. 

Assuming the adversary outputs b  the advantage of 

the adversary is defined as 
1

Pr
2

b b . Let 

Awins  denote the event that A  correctly guesses the 

hidden bit, let AskChall  denote the event that A  asks for 

the challenge ,M k  in its find stage and AskMAC  the 

event that A  asks for 1,M k  with 2

1 modk k n . Let 

Bad  denote the absence of AskChall  and AskMAC ;
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since in this situation all that the adversaries knows is 

independent from the challenge we have 

1
Pr

2
Awins Bad . Since 

1
Pr

2
Awins , and 

Pr Pr PrAwins Awins Bad Awins Bad , it 

follows that 
1 1

Pr
2 2

Dq
AskMAC

n
. Since the 

event AskMAC  implies that the square root of k  is 

disclosed (and computing square roots is equivalent to 

factoring), we get the factoring advantage 

1
'

2

Dq

n
.

IX. CONCLUSIONS

A new broadcast authentication protocol was proposed. 

The solution is based on time synchronization and uses 

the squaring function for computing the one-way chains; 

this leads to the potential use for a broadcast over a long 

period of time since the length of the chain is unbounded. 

An analysis of the time synchronization issues was done 

and the security of the protocol is proved to be equivalent 

to factoring large integers. Also an analysis of the failure 

modes was presented; this is an interesting aspect that 

applies to other protocols based on time synchronization 

too. This solution may be useful in assuring the 

authenticity of information broadcasted over public 

networks such as the Internet for long periods of time.  
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