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Abstract— Image quality loss resulting from artifacts 

depends on the nature and strength of the artifacts as well 

as the context or background in which they occur.  In order 

to include the impact of image context in assessing artifact 

contribution to quality loss, regions must first be classified 

into general categories that have distinct effects on the 

subjective impact of the particular artifact. These effects 

can then be quantified to scale the artifact in a perceptually 

meaningful way.  This paper formulates general context 

categories, develops automatic image region classifiers, and 

evaluates the classifier performance using images containing 

multiple categories.  Linear classifiers are designed to 

identify three main classes which include random, textured, 

and transient regions.  Features for identifying these areas 

over regions at multiple resolutions are based on the optical 

density histogram (ODH), the cortex transform, and the co-

occurrence matrix.  It was found that selecting features 

from the ODH and cortex transform provides classification 

results in agreement with human assessment, and 

performances comparable to those of classifiers using co-

occurrence matrix features. Experiments to assess 

performance show misclassification rates ranging from 

3.3% for the lowest resolutions to 32.2% at highest. This 

paper also presents a hierarchical classification algorithm 

that combines classifiers operating at multiple resolutions 

and achieves an overall misclassification rate as low as 

4.8%.   

Index Terms— hierarchical classifier, classification 

confidence, image structure, image quality, image 

segmentation, cortex transform 

I. INTRODUCTION

The loss in perceived image quality is often 

determined by the nature and level of an artifact along 

with the context in which it appears. For example, in a 

highly structured image containing lines and edges, 

sharpness will likely be the most critical attribute in 

ranking image quality; where as, low-frequency 

uniformity may have little impact on the quality decision. 

The reverse may be true if the image content consisted of 

low frequency fields (such as sky or sand). Such fields 

with no structure or periodicity are robust to blur, but can 

be susceptible to periodic artifacts such as banding, or 

structural artifacts such as contouring or blocking. 

textures tend to mask structural defects and noise, but are 

prone to periodic artifacts. 

Prior work ranks the relative impact of artifacts on the 

judgment of subjective image quality for various image 

types and suggests local defect characterization for 

overall image quality evaluation [1, 2]. In addition, 

document analysis and understanding research has been 

given much attention [3-9]. For example, a scanned 

document page is likely to contain objects that require 

customized enhancement such as sharpening for text 

regions, color processing for images and graphics, and 

clipping to remove document background pixels [3, 4]. 

Here, classification is performed on each pixel, labeling it 

as text, image or background. This is a bottom-up 

approach, whereas the work presented here adopts a top-

down approach.  

This paper examines ways to classify image regions 

hierarchically based on the level of structural content. 

The image is divided into regions (or tiles) and assigned 

to one of three classes – random, texture, or transient. A 

classification confidence measure is applied to detect 

regions that cannot be classified at a set confidence level 

[10]. In this case it is assumed that the region content 

may belong to more than one class.  Hence, a low-

confidence region is then divided into smaller regions, 

which are again classified, using the next higher 

resolution classifier.  The confidence rule allows for 

hierarchical subdivision resulting in a classification of 

image content over the whole image at appropriate 

resolution levels. In addition, image content that could 

not be classified confidently at the highest resolution is 

labeled as such, and is available for further analysis or 

exclusion from the image quality loss estimation. 
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The first image region class considered is a random 

field for which contrast variations are randomly 

distributed and on the same order of magnitude. This 

region is void of structure and is characterized by its 

power spectral density (PSD) and optical density 

histogram (ODH). The second region type is a textured 

field.  Like the random field, the textured field has no 

dominant or isolated structures over the spatial region; 

however, this region contains quasi-periodic structures of 

relatively low frequency. The presence of structure 

results in PSD amplitude modulations; therefore, 

characterizations of textured fields require additional 

analyses, such as the harmonic analysis of the PSD or 

spatial autocorrelation. The third region type is a transient 

field, primarily consisting of isolated lines and edges. 

This region is highly structured with strong spatial 

localization, and high frequency spectral content.  The 

spatial orientation of the edges or lines can be further 

detected and utilized in the classifier feature selection 

process through the cortex transform, which indicates 

both spatial frequency and orientation [11, 12].  

This work examines feature selection for the design of 

linear classifiers [13, 14, 15].  It extends single resolution 

classification in [16] to include 3 window sizes in a 

hierarchical classifier. Exhaustive feature-combination 

searches are used to identify the best features from the 

ODH, cortex transform, and co-occurrence matrices. 

The paper is organized as follows.  Section II 

describes the experiments used to design classifiers and 

assess performance.  Section III describes the process of 

feature selection. Section IV presents performance results 

for classifiers at the lowest resolution levels.   Section V 

presents the best classifiers at different window sizes, and 

Section VI develops the hierarchical multi-resolution 

classifier.  Section VII illustrates example image 

segmentations using the multi-resolution classifier. 

Finally, results are summarized and presented with 

conclusions in Section VIII. 

II. METHODS

A total of 150 image regions of size 256 x 256 pixels 

were extracted from natural images, ranked according to 

their structural content and assign to one of the three 

categories (random, texture, or transient) by human 

observers. This image set was divided into 60 training 

image regions (20 images per class), and 90 test image 

regions (30 images per class).  Images showing complex 

scenes were created using a five megapixel color digital 

camera and converted to the CIE L*a*b* color space, 

where only the L-channel image was used for analysis. 

The image columns in Fig. 1 show examples of the 3 

image region classes used in his study. They represent the 

complex content found in real-life images. The left 

column contains random class images (table cloth; 

balloon rubber; brushed steel; blue sky; red paint). The 

middle and right columns contain examples of the texture 

and transient classes, respectively. From each training 

and test image regions, a total of 108 features are 

extracted at every resolution level. The features are listed 

in Table I and are based on the ODH, cortex filter, and 

the co-occurrence matrix. Initially, potential features 

were found using stepwise regression models [17]. This 

interactive examination helped identify the impact of 

individual features and resulted in a pool of 108 features.

The best performing classifier feature sets were 

identified through a Monte Carlo search where feature 

combinations were randomly selected. This work 

considered feature set sizes of eight, six, five and four 

features, and picked feature sets at random from the 

feature pool 2 x105 times per feature set size. The search 

program recorded the classification performances of the 

randomly selected feature sets for post analysis.  

The best set size was determined to be 4 for the lowest 

resolution. Sets of 5 and 6 features did not outperform 

those of size 4.  A similar pattern was observed at higher 

resolutions. The reduction in performance for larger 

feature sets is likely due to the fact that increasing the 

number of features caused the classifiers to learn the 

training set variations (i.e., overfitting) and as a result 

performed poorly on the test images.   

Table II shows the classifier performances at the 

largest window size using the best sets of four features as 

determined by the Monte Carlo search. The classifiers 

implemented in this work are basic linear discriminant 

function classifiers that fit a multivariate normal density 

function to each class and use a pooled estimate of 

covariance [14, 15]. 

Figure 1. Columns show example image regions of the three 

 classes - random, texture, and transient respectively.  
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III. CLASS FEATURES

The human visual system’s (HVS) sensitivity exhibits 

orientation and radial spatial frequency selectivity. These 

properties can be modeled as visual channels using the 

cortex transform, which uses radial frequency (Dom) and 

orientation (Fan) filters [11]. The superposition of these 

filters is termed cortex filter, and their effects are 

cascaded to describe the combined radial frequency and 

orientation selectivity of cortical neurons. Fig. 2 shows a 

decomposition of the spatial frequency plane according to 

Daly’s modified cortex filter [12].   

The result of applying the cortex filter to an image is 

similar to computing the two dimensional power spectral 

density. Both the PSD and cortex filter output show the 

directional distribution of spatial frequency energy; 

however, the cortex filter performs a subband filtering 

analogous to the independent visual channels of the HVS. 

This can be used to predict masking of image content 

based on its distribution over the independent visual 

channels. The discrete energy distribution also helps 

classify image content, as this study shows. 

As can be seen in Fig. 3, the cortex filter output for the 

three classes of interest differs qualitatively across the 

three classes. For the random-class image (top row), the 

energy is relatively low and uniform outside of the 

baseband. The texture-class image (middle row) has a 

similar uniform energy distribution; however, with more 

low frequency content. This means that Fan filter 

energies exhibit a sharper roll-off for the texture, 

compared to the random, case.  For the transient-class 

image region (bottom row), the energy is directional and 

normal to the edges with notable high-frequency content. 

The directionality of energy distribution can be measured 

by the variation in Dom energies, in this case. 

-5

0

5

-2

-1.5

-1

-0.5

0

-3

-2

-1

0

1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-1

-0.5

0

0.5

1

-4

-3

-2

-1

0

Figure 3. Optical density histograms and visual channel  

energies (using Daly’s cortex filter) for the three classes. 

The center column in Fig. 3 shows the typical ODH’s 

of the three classes. A random region tends to have 

similar pixel values throughout; this is indicated by a 

single narrow peak of the ODH. For the texture class, the 

pixel values tend to spread out and have multiple peaks in 

the ODH. Lastly, the transient class ODH shows a 

bimodal shape because it mostly contains only two pixel 

values – dark and light for example. It is interesting to 

note that line textures, such as the cantaloupe skin in Fig. 

1, also have bimodal ODH’s; however, their visual 

channel energies tend to radiate in multiple directions. 

Features related to changes in the energy distribution 

over the cortex channels, as well as shape changes in the 

ODH shape, were most critical for classification.  The 

impact of overall gray level on the classification was 

removed by subtracting out the mean gray level from the 

local region, and normalizing by the standard deviation.  

Both the original mean and standard deviation were 

recorded as individual features.  Features were grouped 

into two categories – features extracted from the ODH 

and cortex transform, and those extracted from the co-

occurrence matrix.  These are shown in Table I. 

The features of the co-occurrence matrix used in this 

work are described below. These features are based on 

the normalized gray level co-occurrence (or spatial 

dependence) matrix as defined by Haralick et al. [18].  

The sum of elements of the normalized co-occurrence 

matrix P equals unity after normalization. This allows P

to be seen as a probability distribution of gray-level 

occurrences across the image region. For example, a 

textured region will have certain gray-level values repeat 

at pixel distances close to the periods present in the 

texture; those distances will appear as higher probabilities 

in the co-occurrence matrix. The following equations 

define features of the co-occurrence matrix which were 

considered for the implemented linear classifiers:  
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Figure 2. The cortex filter’s radial and orientation channels.  

This figure is adapted from Daly’s work [12]. 
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where p(i,j) are elements of P, C1 is the contrast, C2 is 

correlation, C3 is energy, C4 is entropy, and C5 is 

homogeneity. In addition, i and j are the means of the 

marginal probabilities Pi and Pj, and i and j are their 

standard deviations - as follows: 

j

i jipip ),()( , (6) 

i
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iii ipi )()( 2
 (8) 

The features defined in (1) through (5) are computed 

for each of the co-occurrence matrices, as seen Table I 

(features 29–108). For each image direction (0, 45, 90, 

and 135 degrees), we find the five features of the co-

occurrence matrices, which have been computed for 

distances of d = {1, 4, 8, 16} pixels.  

The computed co-occurrence features provide 

measures of texture; for instance, contrast is zero for a 

constant image, i.e. close to zero for images of the 

random class. The absolute value of correlation is closer 

to one, the more pixel values correlate with their 

neighbors; and is relatively large for the random class and 

decreases for texture. Similarly, energy is unity for a 

constant image and decreases for textures. Entropy is 

largest for textures, and Homogeneity is large for the 

random and transient classes.  

The features in Table I are computed for all the 

training and test images in this study. For the 

performance analysis, sets of features containing only 

ODH and cortex filter energies are compared to sets of 

only co-occurrence matrix features. In addition, features 

from both groups are also used for classification.

IV. CLASSIFIER PERFORMANCE

Five sets of four features FS1 trough FS5 are shown in 

Table II Those feature sets have been determined 

(through a Monte Carlo search) to have the best 

classification performances at the window size 256 x 256. 

The error measures presented in the table are computed as 

follows: 

test

test
test

N

M
E 100 , (9) 

where Mtest is the number of misclassifications in the set 

of test images, which contains a total of Ntest = 90 images 

(30 per class). Similarly,  

train

train
train

N

M
E 100 , (10) 

where Mtrain is the number of misclassifications in the set 

of training images, which contains a total of Ntrain = 60 

images (20 per class). The feature sets in Table II are 

divided into three categories. The first category includes 

features from the ODH and cortex filter only (FS1). The 

second category includes only co-occurrence matrix 

features (FS2 and FS3), and is examined to contrast its 

classification performance with the features from the 

first category. The third group of feature sets includes 

features from both the first and second categories (FS4 

and FS5). 

Note that FS4 includes three features from the ODH 

and cortex filter, and only one feature from the co-

occurrence matrix. Conversely, all of FS5’s features are 

from the co- occurrence matrices, except for one; 

nevertheless, the performances of the two sets are 

identical. 

The feature set with the best classifier performance is 

FS1. It has a classification error rate of 3.3% on the test 

images as well as on the training image set. The feature 

numbers are referenced in Table I, but are explained in 

more detail here. The features in FS1 are: the valley 

depth between the two highest peaks of the L-channel 

TABLE I.

DESCRIPTION OF CONSIDERED FEATURES

Feature    Feature Description 

1 Variance of RMS normalized L-channel image 

2 - 5 Features related to peaks of the L-channel image ODH 

6 - 8 Features  related to peaks of the baseband ODH 

9 - 13 Variance of Dom energies over 6 Fan directions 

14 - 18 Range of Dom energies over 6 Fan directions 

19 - 21 Variance, range and mean of f Fan energy slopes 

22, 23 Magnitude of flattest and steepest slopes of linear fits to 

fan filter energies  

24 - 26 Variance, range and mean of Fan filter slopes 

27, 28 Maxima of ODH for L-channel image, and baseband 

filtered L-channel image 

29 - 48 0-deg. co-occurrence features at d=1,4,8,16  pixels 

49 - 68 45-deg. co-occurrence features at d=1,4,8,16 pixels 

69 - 88 90-deg. co-occurrence features at d=1,4,8,16 pixels  

89 - 108 135-deg. co-occurrence features at d=1,4,8,16 pixels 
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ODH as a percentage of the highest peak (feature 3); the 

full width at half maximum (FWHM) of the highest peak 

in the L-channel ODH (feature 5); the mean of the slopes 

of the linear fits to the log of fan filter energies (feature 

21); the mean intercept of these lines (feature 26). It is 

evident that those features perform very well and are 

computationally inexpensive, for they only require 

computations on the ODH and cortex fan filters. 

Conversely, the co-occurrence matrix feature sets e 

and FS3, with a test set error of 10%, perform about three 

times worse than FS1 features. It has been observed, that 

most of the misclassifications were for images of the 

random class that were assigned to the texture class. This 

indicates that the co-occurrence features are sensitive to 

subtle changes, on the pixel level, in random fields and 

weigh those more heavily than desired.  

This idea is supported by the performance 

improvement of FS5 over FS2 and FS3; here, FS5 

includes a single feature not belonging to the co-

occurrence matrix features (feature 21 - the mean of the 

fan filter energy slopes), which helps separate random 

fields from textures. This is due to textures tending to 

have higher low-frequency content than random fields, 

i.e. the fan filter energies have a steeper roll-off (or slope) 

in the case of textures. 

The FS2 features are detailed as follows: the energy at 

0 degrees and d=16 (feature 40); the entropy at 0 degrees 

and d=4 (feature 42); the correlation at 90 degrees and 

d=16 (feature 76); the homogeneity at 90 degrees and 

d=1 (feature85). In addition, FS3 features are: energy at 

45 degrees and d=1 (feature 57); correlation at 90 degrees 

and d=4 (feature 74); entropy at 90 degrees and d=1 

(feature 81); entropy at 135 degrees and d=16 (feature 

104). 

The category of mixed features (ODH, cortex filter, 

and co-occurrence matrix) includes the sets FS4 and FS5. 

With a test set error of 4.4%, these features outperform 

the co-occurrence features alone and come close to the 

performance of FS1. Note that FS4 and FS5 perform 

equally well, and that all but one feature in FS4 is from 

the ODH and cortex filter - the opposite is true for FS5. 

Contrasting the performance of FS5 with those of FS2 

and FS3, it can be concluded that the addition of feature 

21 (a cortex filter feature), to the three co-occurrence 

features in FS5, dramatically improved the classification 

performance – namely from 6.7% training and 10% 

testing errors to 1.7% and 4.4% respectively. This 

indicates that co-occurrence features alone cannot 

separate textures and random fields well (as applied in 

this work). The addition of cortex filter slope information 

(feature 21), helped discriminate between the steeper 

texture energy roll-off and the flat random field energy 

signature. 

V. WINDOW SIZE AND CLASSIFIER PERFORMANCE

This section describes the classifier performance as the 

region size is reduced. Five window sizes were 

considered: 256 x 256; 128 x 128; 64 x 64; 32 x 32; 16 x 

16 pixels. It is expected that zooming into image content 

will affect the amount of structural content. For example, 

a line texture such that of a brick wall, looks more like 

transients as the window size decreases (or resolution 

increases). Likewise, processing a quasiperiodic texture 

with a smaller window size will capture less periods of 

the texture, which favors an assignment to the random 

class. Also, regions with random content can be seen as 

textures as the region shrinks due to pixelization 

introduced by the camera.  

To measure the classification performance at various 

window sizes, the same training and test images as in 

Section II were used, with the difference that the images 

were cropped to the desired window sizes. Initial 

investigation showed that the classifier features that 

performed well on the 256 x 256 level, do not work well 

on the higher resolutions. To work around this, it was 

necessary to find new features for every region size level. 

This is achieved by repeating the Monte Carlo search for 

the best features for every resolution level.   

The results show that features from the co-occurrence 

matrix do not significantly improve on features from the 

ODH and cortex filter. For this reason, only features from 

the latter feature pool are used. The classifier 

performances at different window sizes and the best 

features are shown in Table III. 

As the window/region size decreases, the classification 

problem becomes more difficult. This is evident by the 

increased number of features required to discriminate 

between the 3 classes as the region sizes shrink. At the 

two largest sizes, four features are sufficient to achieve 

good classification; however, at the smaller region sizes 

the required number of features increase. As many as 

eight features do not produce good results. These 

classifiers are also computationally more expensive. At 

the same time, the misclassification rate increases rapidly 

with decreased region size, as illustrated in Fig. 4.  

TABLE III. 

WINDOW SIZE AND CLASSIFICATION PERFORMANCE

Window Size 

(pixels)

Etest 

(%)

Classifier  

Feature Sets

256 x 256  3.3   {3, 5, 21, 26}

128 x 128   7.8   {5, 13, 14, 16}

64 x 64 13.3   {1, 11, 16, 17, 20, 28}

32 x 32 18.9   {6, 13, 17, 18, 21, 24, 26, 27}

16 x 16 32.2   {3, 15, 18, 19, 20, 23, 25, 27}

TABLE II. 

FEATURE SET PERFORMANCES AT THE LARGEST WINDOW SIZE

Feature Set Etrain (%) Etest (%) 

FS1 = { 3, 5, 21, 26 } 3.3  3.3 

FS2 = { 40, 42, 76, 85 } 6.7 10 

FS3 = { 57, 74, 81, 104 } 6.7 10 

FS4 = { 3, 4, 22, 88 } 1.7 4.4 

FS5 = { 21, 35, 57, 101 } 1.7 4.4 
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Figure 4. Classifier errors for different region sizes  

VI. HIERARCHICAL CLASSIFICATION APPROACH

In order to combine these classifiers to segment image 

content, a hierarchical implementation is presented.  It 

operates on the levels of 256 x 256, 128 x 128, and 64 x 

64 pixels, which results in low misclassification errors 

using only 6 features. Higher resolution classifiers at 32 x 

32 and 16 x 16 are not used because they performed 

poorly. 

The implementation combines the classification results 

from the 3 resolutions by utilizing a classification 

confidence rule [10]. This rule is derived from the 

training data sets for each classifier. For each of the 

classifiers, it is necessary to compute the averages 

distances, and variances of these distances, between the 

training image regions and the means of the 3 classes. 

After normalizing the class scatters by the respective 

covariance matrices, it is possible to formulate a 

classification confidence rule.  

Analytically, the classification of a feature vector V

assigned to class Ci is confident if the following 

inequality holds: 

iiV DD , (11) 

where D
V
 is the distance between the feature vector of the 

classified image region and the class mean. Di is the 

average normalized distance of training feature vectors 

form the mean of class Ci, and i is the standard deviation 

of the distribution of those distances. The factor  is used 

to vary the upper bound of the confidence interval. For a 

specific classifier, this rule essentially defines a 

hypersphere in the feature space at each class 

center/mean. When a test image region is assigned to a 

specific class, a corresponding confidence is also 

computed. The classification is confident if the feature 

vector (or point) lies within the sphere, and not confident 

if it lies outside. 

Fig. 5 shows a hierarchical classification algorithm, 

which utilizes the classification confidence rule at each 

region window size to classify the image content. When a 

region contains characteristics of more than one class, the 

classification will likely be labeled as not confident. This 

prompts the algorithm to divide the region into four non-

overlapping quadrants, or subregions. These subregions 

are then classified individually using the next smallest 

window size classifier. The algorithm presented here 

operates on 3 window sizes, but can be extended to more.  

The procedure starts with the 256 x 256 level, and 

further divides the window into four 128 x 128 windows 

if the classification was not confident at the 256 x 256 

level. Similarly, if a classification on the 128 x 128 level 

is not confident, the window is divided into four 64 x 64 

subregions, on which the appropriate classifier for this 

resolution is applied. If at this last level, a classification is 

not confident, the region is not classified and is assigned 

to a default fourth class of unclassifiable image content.      

VII. MULTI-RESOLUTION PERFORMANCE

This section illustrates some classification examples 

using the hierarchical classifier algorithm. Fig.’s 6, 7 and 

8 have a similar format. The original image is shown on 

top and the segmented categories are shown below for 

random, texture, and transient. A fifth image shows all 

content classified confidently, where the regions that 

were not confidently classified are blacked-out. The 

blacked-out areas in this last image are the areas that the 

classification algorithm was unable to assign confidently 

to any of the three classes. All these areas are regions of 

the smallest window size (64 x 64 in this work) because 

they cannot be subdivided further.  

These examples show relatively good performance. In 

Fig. 6 the random image shows content that lacks 

for every image segment of size 256x256 pixels

    => classify the region: random, texture, or transient 

    => apply the classification confidence rule 

    if the classification was confident at the 256x256 level, 

        => report this classification as final for this region 

    else 

        for every subregion (quadrant) of size 128x128 pixels

            => classify the region: random, texture, or transient 

            => apply the classification confidence rule 

            if the classification was confident at 128x128, 

                => report the classification as final for the subregion 

            else 

                for every sub region (quadrant) of size 64x64 pixels

                    => classify the region: random, texture, or trans. 

      => apply the classification confidence rule 

                    if the classification was confident at 64x64, 

                        => report this classification for the subregion 

                    else 

                => do not assign the subregion to any class 

                    end 

                end 

             

            end 

        end

    end 

end

Figure 5. Pseudo code for a hierarchical multi-resolution 

classification algorithm 
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structure, such as the sky, distant dense tree leaves, and 

incoherent elements of the building that might be blurred. 

The texture result captured the quasiperiodic elements 

such as the tree branches, text, and brick wall. Here, some 

parts of the sky were incorrectly detected as textures. The 

transient image shows all the structure dominated 

content, such as light pillars on a dark background, and 

areas where the building or vegetation meets the sky.  

The last image shows the confidently classified 

portion of the content. It is a relatively large portion and 

the black-out areas (not classifiable) is small. The 

unclassified content includes the areas where the dark 

branches meet the lighter sky. These areas resemble 

textures and transients at the same time. Similarly, the 

screened arched windows above the clock also have 

features of transients and textures. 

The image in Fig. 7 shows comparable results. The 

transient content appears to have been captured well in 

the transient result image; however, some of the regions 

classified as random might be better described as 

transient. It is interesting to note that the darker portions 

of the basket are correctly classified as texture, where the 

overexposed portions are assigned to the random class. 

This might be due to the reduced contrast, and thus 

weaker textural signatures in the overexposed portions. 

Most of the content in the Fig. 8 image is confidently 

assigned to the 3 classes. The content consists of mostly 

transients and textures, and few random areas. The output 

correctly shows that most of the brick work facing the 

camera is considered transient, while it appears more 

texture-like when viewed at a wider angle. Also, the brick 

lined ground is texture-like; however, it is more blurred 

and random at longer viewing distances. 

The performance of the proposed hierarchical 

classification algorithm is assessed by two metrics; first, 

the rate of misclassified content. It is the area incorrectly 

classified as a percentage of the total image area. 

Secondly, the rate of unclassified content, which is the 

percentage of the total image area that could not be 

confidently classified. The misclassifications were based 

on disagreements with visual inspection. Overall, the 

results show that the hierarchical algorithm performs 

relatively well with a misclassification rate of 4.8%, and 

an unclassified content rate of 4.1%. In other words, 

about 95.9% of the image area can be classified with 

95.2% accuracy. This amounts to 91.3% of the original 

test image area being correctly classified.  

The classification confidence rule mentioned in 

Section V allows for some control (using the  parameter 

in (11)) over the likelihood of dividing a region into 

smaller subregions for classification on a higher 

resolution level. Variation of this parameter can slightly 

affect the algorithm’s performance [10].  

For example, if  is reduced, classification results are 

trusted less, which increases the likelihood of subdivision 

of regions into smaller ones for classification. This will 

cause more image area to be classified at higher 

resolutions, where the classifier performance is worse. As 

a result, more image content is classified at the highest 

(64 x 64) resolution level, and thus, more content is likely 

to fall into the “not confident” category. This is 

detrimental to the classification performance over the 

image content as a whole. 

VIII. CONCLUSIONS

This work designed linear discriminant image-region 

classifiers and evaluated their performance using images 

with complex content. Three image region classes were 

considered - a random field, texture, and transient. 

Classifier features were selected using Monte Carlo 

searches form groups of features from the optical density 

histogram, the cortex transform, and co-occurrence 

matrix. 

Various window sizes were applied to develop a 

multi-resolution hierarchical classifier algorithm. The 

algorithm combined classifier results at several window 

sizes for overall image content classification by the 

localized structure of image content. It allowed 

ambiguous regions to be divided into smaller subregions, 

which were then classified individually at the new 

resolution level. A powerful feature of this algorithm is 

the identification of image content that remained 

ambiguous and could not be classified confidently at the 

smallest window size.  This is important for image 

quality metrics in that these regions can be excluded from 

the metric computations. They may also not impact the 

correlation with subjective evaluations because the 

human observer does not look at every region in making 

a quality judgment, especially complex regions where 

artifacts are harder to detect.  

The content classification algorithm performs well 

with an overall misclassification rate of 4.8% and 

unclassifiable content corresponding to 4.1% of the total 

image area. This amounts to 91.3% of the original test 

image area being correctly classified. The classification 

confidence rule the hierarchical algorithm uses is tunable. 

By varying a single parameter, the likelihood of accepting 

a classification result at lower resolutions can be 

controlled, resulting in variable performances and 

different amounts of unclassified content.   
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Figure 6. Example hierarchical image segmentation: building 
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Figure 7. Example hierarchical image segmentation: fruit 
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Figure 8. Example hierarchical image segmentation: statue
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