
Representing Procedural Logic in XML

Albert D. Bethke
RTI International, Research Triangle Park, NC, 27709, USA

adb@rti.org

Abstract—Extensible Markup Language (XML) is a
powerful tool used for describing structured documents and
exchanging standardized data files over the Internet. This
article describes how using XML in an unconventional way
greatly improves the usability and effectiveness of an
authoring system for generating computer-assisted
interviewing (CAI) applications. In addition to specifying
the content, structure, and format of a questionnaire, XML
tags are used to specify the procedural elements (Boolean
expressions and simple computations) that represent the
dynamic aspects of a CAI questionnaire. These procedural
elements are represented with the creation of a set of XML
tags that embody a simple functional programming
language.

Index Terms—extensible markup language, computer-
assisted interviewing, computer-assisted self-interviewing,
functional programming

I. INTRODUCTION

Extensible Markup Language (XML) [1] is designed to
represent structured documents and data sets [2]. XML is
an open standard that allows organizations to create
special-purpose markup languages by defining a set of
XML tags. There are no predefined or “standard”
meanings for XML tags. Each special-purpose XML-
based markup language defines the structure and
meanings of its tags. By design, all of these languages
can be parsed by a single standard XML reader that is
small, fast, and simple to implement.

XML is used to exchange data in standard “streaming”
format over the Internet and elsewhere. Many
organizations have adopted XML data exchange
standards for this purpose [3]–[6]. These organizations
include the U.S. Congress, bioinformatics associations,
retail product distributors, and others. XML is also used
to describe and implement Web services [7]—which is
really an example of using XML for standardized data
exchange.

Surveys and interviews are used to collect various
kinds of information from a wide range of target
populations. Computer-assisted interviewing (CAI) [8]
allows for more flexible and effective interviews than
paper-and-pencil questionnaires.

RTI International conducts a large number of CAI
surveys on behalf of government and commercial clients.
RTI has recently designed and implemented an authoring
system for CAI surveys that uses XML as the
questionnaire specification language [9]. This system is
called the Simple Survey System (SSS).

This article describes how using XML in an
unconventional way greatly improves the usability and
effectiveness of the SSS. In addition to specifying the
content, structure, and format of the questionnaire, XML
tags were used to specify the procedural elements
(Boolean expressions and simple computations) that
represent the dynamic aspects of a CAI questionnaire.
Representing all aspects of the questionnaire in a single
XML specification file provides several advantages:
• It eliminates the need to reprogram the survey

engine for each questionnaire.
• It allows for the easy development of authoring

tools that can be used by nonprogrammers (survey
designers or research assistants) to fully develop
complete CAI systems.

• It makes it easy to deploy and maintain the CAI
application in the field.

The rest of the article frames the problems to be
solved, presents the approach used to solve them, and
gives details and examples of the XML representation
that was developed.

II. COMPUTER-ASSISTED INTERVIEWING

The federal government sponsors a large number of
surveys every year on topics ranging from drug use to
personal driving habits to the benefits of student loans. In
addition, many companies conduct marketing surveys,
customer satisfaction surveys, and other types of surveys.
Many, if not most, of these surveys are done with CAI
technology.

A. Advantages of CAI
CAI surveys offer several advantages over paper-and-

pencil surveys, including the following:
• Data are validated during collection.
• Data keying errors are eliminated.
• Complex, sophisticated routing is practical.
• Question wording can be dynamically customized

using fills to make some items easier to understand
or more specific.

With CAI, the interviewer must provide a correct
response before he or she can proceed to the next item.

This journal article is based on the conference paper, “Using XML as
a Questionnaire Specification Language,” which appeared in the
Proceedings of IEEE SoutheastCon 2007, Richmond, VA, March 2007,
© 2007 IEEE.

JOURNAL OF SOFTWARE, VOL. 3, NO. 2, FEBRUARY 2008 33

© 2008 ACADEMY PUBLISHER

For simple multiple-choice items, this means that the
interviewer must select exactly one of the options that
appear on screen. With a paper-and-pencil questionnaire,
the interviewer may mark more than one response, may
fail to mark any responses, or may mark the form in such
a manner that it is not clear which response option was
selected. For other types of CAI questions, the response
will be validated by verifying that it is within an
acceptable range of values or that it is consistent with
previous answers. If the value is not acceptable, the
interviewer is immediately informed of the problem and
prompted to enter a new value.

With paper-and-pencil surveys, it is necessary to key
the data into a data file or database after the questionnaire
has been completed. Although it is possible to achieve
very low error rates for this data entry task, it is time
consuming and expensive, and a few errors always slip
through. CAI data are directly recorded in a database or
data file, thereby eliminating the time and expense, as
well as the errors, associated with keying the data from
paper forms.

Paper questionnaires often include routing instructions
to the interviewer so that certain questions (or whole
sections) are skipped if they are not appropriate for a
specific respondent. Such instructions generally appear
immediately following a question or immediately before
a question or section. A routing instruction might be
something like, If the answer to Q6 is NO, skip to Q22.

Experience has shown that even well-trained
professional interviewers frequently fail to correctly
follow routing instructions. This failure results in missing
data for those items that were mistakenly skipped. It may
also confuse the respondent with inappropriate questions
and lead to incorrect answers later because the respondent
is annoyed or confused. CAI surveys, on the other hand,
can implement complex, sophisticated routing logic that
is followed without fail. (Achieving this standard requires
careful testing and debugging of the application.)

One more advantage of CAI surveys is that they allow
adjustment of question wording to improve understanding
and make items fit a specific respondent. For example,
after asking a respondent about his job history, a follow-
up question might ask about his experiences with a
particular employer, like so: When you worked at Bell
Labs, were you ever required to work more than 40 hours
in one week? In this question, Bell Labs has been taken
from a previous response and used as fill text.

B. Computer-Assisted Personal Interviewing
Computer-assisted personal interviewing (CAPI)

refers to in-person interviews conducted by a professional
interviewer using a laptop, tablet, or handheld computer.
A trained interviewer starts the CAPI application running
on the computer and then reads the questions to the
respondent and records the responses. The CAPI
application advances to the next item as each response is
entered.

C. Computer-Assisted Self-Interviewing
Computer-assisted self-interviewing (CASI) typically

is done with a laptop computer. A “facilitator” starts the

interview, shows the respondent how to operate the CASI
application, and then moves away and lets the respondent
directly enter his or her responses in relative privacy.

Research has shown that CASI administration
produces more honest, more complete responses to
questions about sensitive topics, such as illegal drug use,
risky or unusual sexual behavior, and similar topics [10],
[11]. So, for sensitive topics, it is customary to use CASI,
which allows the respondent to directly enter his or her
answers into a computer rather than share potentially
embarrassing information with an interviewer.

Audio-CASI (ACASI) is useful for respondents who
may have difficulty reading questions on the computer
screen. With ACASI, the computer “reads” each question
to the respondent. This administration can be
accomplished with audio files that are recorded in
advance for each question and all the response options. It
can also be accomplished with a text-to-speech
application, but this practice is much less common.

D. Authoring Systems and Self-Interviews
RTI International has completed hundreds of projects

that used CAI. Several commercial authoring systems are
available that simplify the process of developing and
conducting CAI surveys. Two of these commercial
systems are frequently used by RTI for telephone surveys
and face-to-face personal interviews: CASES [12] and
Blaise [13]. Both of these packages offer a special-
purpose questionnaire programming language, together
with tools for managing the data that are collected and for
tracking the status of interviews.

As already described, for self-interviews the CAI
application user is the respondent, not a trained
professional interviewer; therefore, the application user
has no experience with the interview application prior to
starting the interview. It is not practical to train the
respondent to use a complicated interface to operate the
application; the interface must be as simple and as
intuitive as possible.

Commercially available CAI authoring systems are
usually oriented toward telephone and face-to-face
personal interviews conducted by professional
interviewers. They provide a rich interface for controlling
the application to allow the interviewer to back up or skip
forward quickly or to break off the interview and
schedule a follow-up session and so on. This kind of
system provides desirable flexibility and power for the
interviewer but requires significant training before the
interviewer is comfortable with the application. Because
commercial CAI authoring systems do not provide the
simple intuitive interface needed for self-interviews, RTI
has developed an authoring system for this purpose. The
next section describes this authoring system.

III. THE SIMPLE SURVEY SYSTEM

A. Previous Work
Although the SSS uses XML now, it did not start that

way. A prior system was developed before XML was in
common use; looking at the implementation history and

34 JOURNAL OF SOFTWARE, VOL. 3, NO. 2, FEBRUARY 2008

© 2008 ACADEMY PUBLISHER

reasons for changing to XML is informative.
Questionnaires were represented as structured text files
made up of questions grouped into sections. Sections and
questions were delimited in the file by specially
formatted lines that effectively acted as start and end tags
with attributes, although they were not in XML syntax.
We will refer to this system as the original (authoring)
system.

CAI questionnaires are not static documents. Different
respondents will see different questions. For example, in
a questionnaire about health and lifestyles, smokers may
be asked questions that nonsmokers will not see—for
example, Have you ever tried to quit smoking? Question
text is often customized to better fit a specific respondent
by filling in phrases based on previous responses.
Routing decisions and selection of fill text are often
based on values computed from several responses. So to
fully represent a CAI questionnaire, we need to specify
how to compute these values and the routing decision
logic and fill variables that control what is presented on
screen.

In the original authoring system, routing logic, fills,
computed variables, and all procedural elements of the
questionnaire were coded in the survey engine. We
modified the survey engine for each new questionnaire,
starting each time from a standard base version of the
code.

In the original system, the survey engine read the
questionnaire specification file at the start of the
interview and created arrays of section and question
objects in memory to capture the structure, content, and
format of the questionnaire. Before and after the survey
engine presented each question, it executed routing logic
code and any code related to fills and computed variables
that may have been associated with the next question.
(This step might have changed the text to be displayed or
might have caused the particular question to be skipped.)
It is a relatively straightforward process for a C++
programmer to implement this code from the
specifications typically provided by a survey designer.

We recognized that it was desirable to include the
procedural elements in the questionnaire specification
file, but we could find no reasonable way to do so.
Commercial CAI authoring systems provide special
programming languages for this purpose. For example,
CASES uses a FORTRAN-like syntax for its
programming language, and Blaise provides an extension
to PASCAL. We considered adding such a language to
the original authoring system. However, the effort to
design and implement such a language would far exceed
the total effort for developing the original system. So we
managed by reprogramming the survey engine for each
project.

B. Why Use XML?
Recently, we redesigned and reimplemented the

authoring system, the SSS. Because a questionnaire is a
structured document and because the original system
used a specially formatted text file to represent a
questionnaire, we considered using XML for the
questionnaire specification language. We also considered

storing the questionnaire specifications in a database. In
fact, we first considered using a database, but rejected the
idea after comparing it to using XML.

Using a database to store the questionnaire
specifications is an attractive approach because the same
database can be used to store the response data. The
database schema for representing questionnaires is not
difficult to develop or implement. Using a database might
be the best choice for Web surveys or telephone surveys
that can use a single, centralized database server. But for
CASI and ACASI surveys done in the field with many
laptop computers, the XML approach offers significant
benefits:
• It is very easy to set up the field laptop computers

because there is no database management system
(DBMS) to install or configure.

• Maintaining the field computers is also easy
because there are never any problems related to the
DBMS (since there is no DBMS).

As for storing the response data, the SSS stores it in XML
data files, so no DBMS is needed for this purpose. As a
result, installing an SSS survey application consists of
simply copying a few files to the hard drive of the laptop.

C. Version 1 of the SSS
The first version of the SSS was very similar in overall

architecture to the original system. The questionnaire
specification language was more carefully designed, and
it was implemented in XML. As a result, the
questionnaire specification language parser was simpler,
more robust, and more efficient. In addition, extending
the questionnaire specification language as new types of
questions were developed or new formatting options were
requested was simple and straightforward because XML
is designed to have this flexibility.

One of the design goals for the first version of the SSS
was to simplify and standardize the way that the routing
logic and computed variables are handled. The SSS
improved on the previous system by consolidating all the
procedural elements into a single module with a very
simple structure. It was an easy job for a programmer to
add the necessary code for routing logic and computed
variables to this module as required for each
questionnaire.

This version of the SSS was used quite successfully for
a large federally funded survey project. Four versions of a
lengthy questionnaire were developed for males and
females in English and Spanish. The questionnaire was
rather substantially revised several times. The SSS
proved to be cost-effective and easy to use—a clear
improvement over the original authoring system.

D. Reducing the Programming Effort
The next project that used the SSS was even more

demanding in terms of producing a large number (35) of
lengthy questionnaires that were revised many times
before the final version was agreed upon.

One of my colleagues developed what we call the
Automated Builder [9] to enable a research assistant to
prepare the questionnaire specification files. The research
assistant was not a programmer, and she did not

JOURNAL OF SOFTWARE, VOL. 3, NO. 2, FEBRUARY 2008 35

© 2008 ACADEMY PUBLISHER

understand XML. The survey designer provided
questionnaire specifications as Word documents that
could be printed to produce a paper questionnaire.
Routing instructions, fills, and computed variables were
described in a loosely defined pseudo-code within the
document.

The Automated Builder presents a graphical interface
that the research assistant uses to enter the specifications
for the questionnaire from the Word document. After the
questionnaire is fully specified in this way, the
Automated Builder produces the XML questionnaire
specification file for the SSS with a single mouse click.

At this stage of development, we were using version 1
of the SSS, so the routing logic and computed variables
were not entered by the research assistant and were not
included in the questionnaire specification file. The
procedural elements of the questionnaire were
programmed into the survey engine by C++ programmers
after the questionnaire specification file was generated.

Nonetheless, by using the Automated Builder, the
project was able to reduce costs, reduce demand for the
limited pool of programmers, and reduce overall
development time.

E. Completing the Questionnaire Specification Language
The need to program the routing logic and computed

variables for 35 different questionnaires into the survey
engine motivated us to reconsider how the routing logic
could be represented in the XML specifications. Routing
logic is usually represented as Boolean expressions, with
the variables being previous responses. A simple example
would be, If the answer to Q6 is NO, skip to Q22.

Functional programming languages such as LISP and
Prolog facilitate the specification of complex
computations using only a very simple syntax and
semantics [14]. So the key to representing routing logic in
XML is to use a functional programming approach and to
use XML tags to represent function invocations. The
examples in the next section will be easily understood by
anyone who has experience with LISP (or other
functional) programming.

The common way that routing logic is presented is to
use forward references and to skip over questions or
whole sections. However, an alternative to skip logic that
is sometimes used is gates—expressions that specify
when a question or section should be asked rather than
when it should be skipped.

Adding a gate tag to be used as the first element of a
question or section is a simple way to implement routing
logic in XML. When survey designers use skip logic, we
just reverse the logic and create a gate instead.

Version 2 of the SSS allows the full specification of
the questionnaire, including dynamic behavior, in the
XML specification file. XML is not ideally suited as a
programming language—the code is not exactly elegant
and concise—but putting the code into XML means that
it is not necessary to create another programming
language and implement a parser and interpreter for that
language.

The implementation history of the SSS is summarized
in Table 1. The current Automated Builder does not

handle routing logic or computed variables. The
procedural elements of the specification are manually
added to the specification file by programmers after the
initial file is prepared by a research assistant using the
Automated Builder. We plan to make a future version of
the Automated Builder to allow a research assistant to
easily specify routing logic and computations and include
these in the XML file it generates, thereby eliminating the
need for manual programming related to the
questionnaires.

The next section will present the XML schema I
designed for representing a simple programming
language using XML tags. Notice how this use differs
from the normal uses of XML to represent the structure
and content (and possibly the format) of structured
documents or data sets. Consider that XML is part of the
popular AJAX [15] Web programming paradigm. In the
AJAX paradigm, JavaScript, Visual Basic, or server-side
programming languages (like Java or Perl) are used to
handle the procedural elements of the Web pages—XML
is not used for this purpose.

IV. FUNCTIONAL PROGRAMMING IN XML

Fig. 1 gives a portion of the XML schema definition
(XSD) for the SSS questionnaire specification language.
All the elements related to functional programming are
shown in Fig. 1.

TABLE I.
HISTORICAL DEVELOPMENT OF THE SSS

Version Features

Original
Authoring

System

• Text file specifies structure and content, but not
procedural aspects of questionnaire.

• Specification file is coded manually by
programmer.

• Survey engine is reprogrammed for each
questionnaire to handle routing logic, fills and
computed variables.

SSS
Version 1

• XML specifies structure and content, but not
procedural elements of questionnaire.

• Automated Builder produces specification file.
• Survey engine is reprogrammed for each

questionnaire to handle routing logic, fills, and
computed variables.

SSS
Version 2

• Complete XML specifications include routing
logic and computed variables.

• Automated Builder produces specification file, but
programmer must manually add routing logic,
fills, and computed variables to specification file.

• Same survey engine used for all questionnaires –
no reprogramming needed.

SSS
Future

Version

• Complete XML specifications include routing
logic and computed variables

• Automated Builder produces complete
specification file, including routing logic, fills and
computed variables

• Same survey engine used for all questionnaires—
no reprogramming needed

36 JOURNAL OF SOFTWARE, VOL. 3, NO. 2, FEBRUARY 2008

© 2008 ACADEMY PUBLISHER

Working through the definitions in Fig. 1, we can see
that a gate is a Boolean (integer) expression that
determines whether the associated section or item will be
presented. The XSD specifies that exactly one expression
will appear within the gate element. (It does not specify
that the expression must have an integer value.)

An expression is either a constant, variable, or function
invocation. Constants are specified using <integer> or
<string> tags, with a string representing the constant
between the start and end tags. Variables are simply
specified using an empty variable element with the name
attribute uniquely identifying the variable. (The XSD
does not specify that the variable name must be unique.)
Functions are also identified by the name attribute, and
the subelements are expressions to be evaluated as the
arguments for the function.

As the examples are presented in the next few sections,
it may be helpful to refer to this XSD.

A. Routing Logic / Gate Example
Fig. 2 shows the specifications for an unrealistically

simple survey about ice cream as they might be provided
by a survey designer. This survey consists of an
introductory informational item, two multiple-choice
questions, and a final informational item. The survey is
not divided into sections. The routing logic is embedded
as a “comment” beside the No option for Q1.

Fig. 3 shows how this survey would be represented in

the SSS query specification language using XML tags. It
was necessary to create a section (arbitrarily named “A”)
to contain the questions, because the SSS requires this
structure. Notice that the skip logic from the survey
designer’s specification has been reversed to become the
gate expression for Q2. The gate expression is the result
of invoking the function named “NE” (not equal) with
two arguments. The first argument is the variable named
“Q1.” The second argument is an integer constant with
the value 2—the same value as the No option for Q1.

As it reads and parses the questionnaire specification
file, the survey engine automatically creates the Q1
variable to represent the response value for the multiple-
choice question named “Q1.” As part of the normal
processing cycle, the SSS survey engine will save the
value of the selected option in the variable Q1
immediately after the user makes a selection for question
Q1. This value will be available thereafter. (All variables
associated with multiple-choice questions are initialized
to a special value that represents “missing” or “not
answered.”)

I decided to use a general “function” tag with the
“name” attribute to specify a particular function rather
than to create distinct tags for each function. This option
was chosen to reduce the number of XML elements,
which simplified the development of the XML parser.
The disadvantage of this approach is that the number and
type of arguments required by a specific function cannot

 <xsd:element name="gate">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref="Expression" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:group id="Expression">
 <xsd:choice>
 <xsd:group ref="Constant" />
 <xsd:element ref="variable" />
 <xsd:element ref="function" />
 </xds:choice>
 </xsd:group>

 <xsd:group id="Constant">
 <xsd:choice>
 <xsd:element name="integer" type="xsd:integer" />
 <xsd:element name="string" type="xsd:string" />
 </xsd:choice>
 </xsd:group>

 <xsd:element name="variable">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="function">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:group ref="Expression" minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 </xsd:complexType>
 </xsd:element>

Figure 1. XML schema definition for procedural elements of questionnaires.

JOURNAL OF SOFTWARE, VOL. 3, NO. 2, FEBRUARY 2008 37

© 2008 ACADEMY PUBLISHER

be validated when the questionnaire specification file is
read. Argument validation must wait until the function is
actually invoked. This limitation has not proven to be a
problem in practice; nonetheless, it may be changed in
the future because having distinct tags for each function
allows one to detect argument-type errors simply by
reading the specification file rather than by exhaustively
testing every path through the questionnaire.

As specified in the XML schema definition for the
questionnaire specification language (see Fig. 1),
expressions are either constants, variables, or function
invocations. Complex expressions are built up as nested
function calls. Expressions are evaluated recursively,
from the inside out. The recursion terminates when
variables or constants are evaluated. The survey engine
has classes for constants, variables, and functions; each of
these classes has its own function for parsing the
associated XML element and another function for
interpreting and evaluating that kind of expression. This
design results in a clean and simple implementation that
yields excellent performance.

An example of a moderately complex gate expression
is shown in Fig. 4. This gate expression illustrates the
way function calls are nested to build up more complex

expressions. In English, the expression is “(Q1 equals
YES) or ((Q2 is less than 3) and (Q6 is not equal to 7)).”

Currently, the SSS supports only integer and string
variables. In the future we will incorporate date-time
variables and currency variables into the SSS. Boolean
expressions are really integer expressions with the C
language convention that zero acts like false and nonzero
values act like true. The SSS includes functions for basic
integer arithmetic, setting and concatenating strings,
relational comparison of integers or strings, and Boolean
operators. In addition, special functions provide
procedural (sequential) control constructs such as if-then-
else and while. Although not the most elegant and
compact representation for such expressions, XML serves
well for this purpose, and we avoid needing to design and
implement a separate “computational” language with its
own special syntax.

B. Computation Example
As with gate expressions, computation is specified

with a functional representation. Assigning values to
variables is done with the “SET” function. The SET
function takes two arguments: a variable and an
expression of the same type as the variable. As one would
expect, SET changes the value of the variable to be the
value of the expression.

Fig. 5 is an example of using IF, THEN, and ELSE
functions to set a fill variable to either “he” or “she,”
depending on the gender of the respondent (as indicated
in the response to a previous question). The IF function
takes three arguments: a Boolean (integer) expression, an
invocation of the THEN function, and an invocation of
the ELSE function. As one might guess, the Boolean
expression is evaluated, and, if it is true (nonzero), the
THEN function is invoked and the ELSE function is not

<questionnaire name="IceCream" title="Ice Cream Survey">
 <section name="A">
 <textItem name="INTRO">
 <text>This is a survey about ice cream.</text>
 </textItem>
 <multipleChoice name="Q1">
 <text>Do you like ice cream?</text>
 <choice value="1">Yes</choice>
 <choice value="2">No</choice>
 </multipleChoice>
 <multipleChoice name="Q2" type="MULTIPLE_CHOICE">
 <gate>
 <function name="NE">
 <variable name="Q1">
 <integer>2</integer>
 </function>
 </gate>
 <text>What is your favorite flavor?</text>
 <choice value="1">Vanilla</choice>
 <choice value="2">Chocolate</choice>
 <choice value="3">Some other flavor</choice>
 </multipleChoice>
 <textItem name="END">
 <text>Thank you for taking the survey.</text>
 </textItem>
 </section>
</questionnaire>

Figure 3. XML representation of ice cream survey.

ICE CREAM SURVEY
INTRO: This is a survey about ice cream.
Q1: Do you like ice cream?
 1. Yes
 2. No [skip to END]
Q2: What is your favorite flavor?
 1. Vanilla
 2. Chocolate
 3. Some other flavor
END: Thank you for taking the survey.

Figure 2. Questionnaire specification from survey designer.

38 JOURNAL OF SOFTWARE, VOL. 3, NO. 2, FEBRUARY 2008

© 2008 ACADEMY PUBLISHER

invoked. On the other hand, if the Boolean expression is
false (zero), the ELSE function is invoked and the THEN
function is not invoked. So the survey engine will not
evaluate all the arguments to the IF function, which is
precisely the desired effect.

Programming like this, using XML tags, is not
difficult. The functional approach and the matched start
and end tags provide a simple, consistent, yet very
expressive structure for representing calculations and
expressions. However, the resulting “code” is rather
lengthy compared to equivalent code in a traditional
programming language. For example, the C++ code
equivalent to Fig. 5 is shown in Fig. 6: it is much more
compact than the XML version.

We need to do only relatively simple programming
within the questionnaire specification file, and the
advantages of having this code incorporated into the same
specification file in the same way as the content and
structure are specified (as XML elements) far outweigh
the disadvantage of the code’s being somewhat lengthy.
In fact, the same sort of tradeoffs can be seen when XML
is used as a standard data exchange method. Tab-
delimited text files and comma-separated values files are
much more compact than equivalent XML data files.
Nonetheless, because XML provides a simple, powerful,

flexible representation that can capture arbitrarily
complex data structures and allows for easy future
extensions, it has become the standard for data exchange
on the Internet.

V. CONCLUSION

An ideal CAI authoring system would enable a survey
designer to develop a CAI application without assistance
from a computer programmer and without understanding
anything about XML or other technical computer topics.
The SSS does not quite achieve this ideal, but it greatly
reduces the need for custom programming and allows for
the rapid development and modification of CAI
questionnaires.

Representing a simple functional programming
language in XML allows the complete questionnaire
specification to be presented in a simple, uniform manner
in a single file. Because the representation is XML-based,
developing the robust parser and interpreter for the
specification language incorporated into the SSS survey
engine was relatively easy. Finally, this solution
facilitated the development of the Automated Builder,
which allows the rapid development of CAI
questionnaires with minimal assistance from professional
programmers.

<function name="IF">
 <function name="EQ">
 <variable name="gender" />
 <variable name="MALE" />
 </function>
 <function name="THEN">
 <function name="SET">
 <variable name="pronounFill" />
 <constant type="TEXT" value="he" />
 </function>
 </function>
 <function name="ELSE">
 <function name="SET">
 <variable name="pronounFill" />
 <constant type="TEXT" value="she" />
 </function>
 </function>
</function>

Figure 5. XML specification of an if-then-else computation.

<gate>
 <function name="OR">
 <function name="EQ">
 <variable name="Q1">
 <variable name="YES">
 </function>
 <function name="AND">
 <function name="LT">
 <variable name="Q2">
 <integer>3</integer>
 </function>
 <function name="NE">
 <variable name="Q6">
 <integer>7</integer>
 </function>
 </function>
 </function>
</gate>

Figure 4. A moderately complex gate expression.

JOURNAL OF SOFTWARE, VOL. 3, NO. 2, FEBRUARY 2008 39

© 2008 ACADEMY PUBLISHER

ACKNOWLEDGEMENT

I would like to thank Rita Thissen, Susanna Cantor,
Craig Hollingsworth, and Jenny Foerst for reviewing
early drafts and providing helpful suggestions during the
preparation of this article.

REFERENCES

[1] W3C, “Extensible Markup Language (XML),”
http://www.w3.org/XML/

[2] J. Bosak, “Media-independent publishing: Four myths
about XML,” IEEE Computer, vol. 31, pp. 120–122,
October 1998.

[3] J. Guo et al., “CLAIM (CLinical Accounting
InforMation)—An XML-based data exchange standard for
connecting electronic medical record systems to patient
accounting systems,” J. Med. Syst., vol. 29, pp. 413–423,
August 2005.

[4] U.S. House of Representatives, “Drafting legislation using
XML at the U.S. House of Representatives,”
http://xml.house.gov/drafting.htm

[5] European Medicines Agency, “Data exchange standard,”
http://pim.emea.europa.eu/des/index.html

[6] HUPO Proteomics Standards Initiative, “Molecular
interaction XML format documentation version 1.0,”
http://psidev.sourceforge.net/mi/xml/doc/user/

[7] D. Booth et al., “Web services architecture,” February
2004, http://www.w3.org/TR/ws-arch.

[8] M. Couper et al., Computer Assisted Survey Information
Collection. New York: Wiley, 1998.

[9] A. D. Bethke, M. Daniels, and D. Fleischmann, “Simple
Survey System for computer-assisted interviews,” Proc. of
11th World Multi-Conference on Systemics, Cybernetics
and Informatics, Orlando, FL, July 2007.

[10] P. C. Cooley et al., “Using touch screen audio-CASI to
obtain data on sensitive topics,” Comput. Human Behav.,
vol. 17, pp. 285–293, May 2001.

[11] K. G. Ghanem, H. E. Hutton, J. M. Zenilman, R. Zimba,
and E. J. Erbelding, “Audio computer assisted self
interview and face to face interview modes in assessing
response bias among STD clinic patients,” Sex. Transm.
Infect., Vol. 81, pp. 421–425, 2005.

[12] Computer-Assisted Survey Methods Program, University
of California at Berkeley, “Computer-Assisted Survey
Execution System,” http://socrates.berkeley.edu:7504/

[13] Statistics Netherland, “Blaise Software,”
http://www.cbs.nl/en-
GB/menu/informatie/onderzoekers/blaise-
software/default.htm

[14] P. Hudak, “Conception, evolution, and application of
functional programming languages,” ACM Comput. Surv.,
vol. 21, pp. 359–411, September 1989.

[15] Wikipedia, “Ajax (programming)”,
http://en.wikipedia.org/wiki/Ajax_(programming)

Albert D. Bethke received his Ph.D. degree in Computer
and Communication Sciences from the University of Michigan
in 1980. He works as a Senior Research Programmer/Analyst
for RTI International in Research Triangle Park, NC. Dr.
Bethke is a member of Sigma Xi, the scientific research society.

if (gender == MALE)
 pronounFill = "he";
else
 pronounFill = "she";

Figure 6. C++ code for if-then-else computation.

40 JOURNAL OF SOFTWARE, VOL. 3, NO. 2, FEBRUARY 2008

© 2008 ACADEMY PUBLISHER

http://www.w3.org/XML/
http://xml.house.gov/drafting.htm
http://pim.emea.europa.eu/des/index.html
http://psidev.sourceforge.net/mi/xml/doc/user/
http://www.w3.org/TR/ws-arch
http://socrates.berkeley.edu:7504/
http://www.cbs.nl/en-GB/menu/informatie/onderzoekers/blaise-software/default.htm
http://www.cbs.nl/en-GB/menu/informatie/onderzoekers/blaise-software/default.htm
http://www.cbs.nl/en-GB/menu/informatie/onderzoekers/blaise-software/default.htm
http://en.wikipedia.org/wiki/Ajax_(programming)

