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Abstract— Intrusion detection systems (IDS) are considered
nowadays as one of the most important components in
the security architecture of information systems. For a
Misuse-based IDS, also known as signature based IDS, the
efficiency of detection is highly correlated to the quality of
signatures. It is therefore very important to select a suitable
formal language that provides both high expressiveness
and simplicity when specifying attack signatures. It is also
fundamental to have a user friendly and automatic tool
allowing the specification and the verification of these si-
gnatures. This paper shows the efficiency and the suitability
of the ADM-logic as a formal language to specify properties
characterizing a large variety of attack scenario, and focus
on the design and implementation details of our intrusion
detection prototype based on this logic.

Index Terms— intrusion detection system, ADM-Logic, TCP-
IP based attacks

I. INTRODUCTION

Considering the increasing number of attacked systems
and their financial effects, information systems must be
henceforth protected against intrusions attempts. This
protection is provided by several tools including Intrusion
Detection Systems : IDS. These detection systems are
divided into two families : anomaly-based detection and
misuse-based detection. Regarding the second approach,
protection is usually provided by parsing the traffic or
audit files in order to detect matches with patterns that
are previously defined in what we call database of attack
signatures. It is therefore very important to have a formal
and expressive language to specify these signatures.

The main purpose of this paper is to propose the use
of the ADM-Logic [1] as a formal language for misuse-
based IDS. A wide variety of TCP/IP attacks will be
specified using this logic showing its suitability and its
expressiveness. Finally, a prototype of an IDS, called
GTM-System, using this logic will be detailed.

The remainder of this paper is organized as follows :
Section 2 introduces the ADM-logic as a signature spe-
cification language, some TCP/IP attacks and their speci-
fication using this language are given in Section 3, while
Section 4 presents the GTM-System. Section 5 discusses
related work, and finally, some concluding remarks on
this work and future research are ultimately sketched as
a conclusion in Section 6.

II. SIGNATURE SPECIFICATION LANGUAGE

The IDS proposed in this paper uses the classical model
checking technique to verify whether or not a model
satisfies a formula, i.e. M |= φ, where M is a model
and φ is a formula. Intuitively, the model is an abstraction
of events in some audit files and the formula is specified
in the ADM-Logic. The satisfaction relation |= can be
seen as a function that takes a model and a formula and
returns true or false. In the case of false, some additional
information could also be returned to help the user finding
the reasons behind the failure.

Hereafter, we formally define the model together with
the syntax and the semantics of the ADM-logic.

A. Model
One of the basic steps of intrusion detection is the

audit trail analysis. It allows to record and analyze some
particular actions that have been performed on a system
during a given period of time. An example of these
analyses is to make detection of particular sequence of
events characterizing an attack signature.

Following the approach presented in [2], we use a linear
based-trace model, where trace is defined as a sequence
of events (actions) collected from an audit source. The set
of traces, denoted by T , is defined as follows :{

ε ∈ T
if τ ∈ T and a is an action, then τ.a ∈ T

Where ε stands for the empty trace and "." is the
concatenation operator in sequences.

Since most of network-based attacks are due to TCP/IP
related protocols we define internet actions as an abstract
notation of packet represented by a sequence of fields
denoted as following :

- TCP actions : (tcp.ipsrc.ipdest.portsrc.portdest.flags.frags)
- UDP actions : (udp.ipsrc.ipdest.portscr.portdest)
- ICMP actions : (icmp.ipsrc.ipdest.type.code.frags)
- ARP actions : (arp.ethsrc.ethdest.opcode.macsrc.macdest)
Where :
- ipsrc, ipdest = a1.a2.a3.a4, with ai ∈ {0, . . . , 255}.

(Source and Destination IP addresses).
- ethsrc, ethdest = e1.e2.e3.e4.e5.e6, with ei ∈ {\x00,
. . . , \xFF}. (Source and Destination MAC addresses in
the Ethernet header).
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- macsrc, macdest = m1.m2.m3.m4.m5.m6, with
mi ∈ {\x00, . . . , \xFF}. (Source and Destination
MAC addresses in the ARP header).

- flags = urg.ack.psh.rst.fin.syn (TCP flags).
- frags = fo.mf (fragment offset and more fragment fields).

B. ADM-Logic

The ADM-Logic, proposed in [1], can be viewed
as a special variant of µ-calculus [3] that requires a
linear model (trace-based model). Initially designed for
the specification of electronic commerce properties, it is
also very appropriate for the intrusion detection issue.
Compared to the Linear Temporal Logic (LTL) [4], the
ADM-logic provides more expressiveness. For example,
the ADM-logic allows the specification of properties that
require counting (e.g. number of action "a" is equal to the
number of action "b"), which is not possible with the LTL
or the µ-calculus. The logic has a denotational semantics
and it is endowed with a tableau-based proof system that
leads to a modular denotational semantics and local model
checking which is useful for an efficient implementation.

Syntax. The syntax of this logic is based on patterns that
are sequences of actions and pattern variables as shown
by the following BNF-grammar :

p := a.p | v.p | ε

where ε stands for empty pattern, a is an action (actions
themselves may contain variables) and v is a pattern
variable. More precisely a pattern is an abstraction of a
trace, where some actions are replaced by variables. They
are the basic element used to specify formula in this logic.

The syntax of the logic is defined by the BNF grammar
given by Table I.

There is a syntactic restriction on the body of νX.Φ
stipulating that any occurrence of X in Φ must occur
under the scope of an even number of negations. We also
assume that the set of variables in p2 is included in the set
of variables in p1 (no new variables appearing in p2). For
instance [x # x.y]νX.X is not a formula since {x, y} 6⊆
{x}.

From now on, we use the standard abbreviations given
by Table II, where Φ[Γ/X] represents the simultaneous
replacement of all free occurrences of X in Φ by Γ.

Semantics. Let L be the set of possible formula of the
logic, V the set of variables, T the set of traces, Sub
the set of substitutions and Env the set of all possible
environments in [V → 2T ]. The semantics of formulas is
given by the function [[_]]_,__ :

[[_]]_,__ : L × T × Sub× Env → 2T

This function is inductively defined on the structures of
formulas as shown in Table III , where t↓ is the smallest
set of traces defined as follows :

(i) t ∈ t↓
(ii) t1.a.t2 ∈ t↓ ⇒ t1.t2 ∈ t↓

TABLE I.
LOGIC SYNTAX

φ ::= X | ¬φ | [p1 # p2]φ | φ1 ∧ φ2 | νX.φ

TABLE II.
ABBREVIATION OF FORMULA

tt ≡ νX.X
ff ≡ µX.X
〈p1 # p2〉Φ ≡ ¬[p1 # p2]¬Φ
µX.Φ ≡ ¬νX.¬Φ[¬X/X]
Φ1 ∨ Φ2 ≡ ¬(¬Φ1 ∧ ¬Φ2)
Φ1 → Φ2 ≡ ¬Φ1 ∨ Φ2

Φ1 ↔ Φ2 ≡ Φ1 → Φ2 ∧ Φ2 → Φ1

and e[X 7→ U ] denotes the environment e′ defined as
follows :

e′(Y ) = e(Y ) if Y 6= X
e′(X) = U

Environments are used to give a semantics to the for-
mula X and to deal with recursive formula. Substitutions
are internal parameters used to give a semantics to the
formula [p1 # p2]Φ. Given an environment e (we start
generally with an empty environment) and a substitution
σ (we start generally with an empty substitution), we say
that a trace t satisfies Φ if t ∈ [[Φ]]t,σe .

Intuitively, the trace t satisfies the formula [p1 # p2]Φ
if for all substitutions σ such that p1σ = t, the new
trace p2σ (the modified version of the trace t) satisfies
the remaining part of the formula (Φ). In this respect, the
notation [p1 # p2] has principally two effects. First, the
part p1 allows us to verify if something has happened
somewhere in the trace t. Second, the part p2 allows
us to modify the trace (delete some actions, substitute
some actions by others, add some actions) in such a way
the remainder of the formula (Φ) will be verified on the
modified version of the trace described by p2.

Example. The following example, given in [1], is helpful
to better understand the intuitive meaning of some for-
mula.

Suppose that we want to verify if t |= φ, where t and
φ are defined as follows : t = b.a.c.b.d.a

φ = 〈X1.a.X2.b.X3 # X1.X2.X3〉〈X4.b.X5.d.X6 #
X4.X5.X6〉tt

Then, the verification process involves the following
steps :

1) Verify if there exists at least one substitution σ1

such that the trace t is equal to (X1.a.X2.b.X3)σ1.
This part is satisfied, since the substitution σ1 =
{X1 7→ b,X2 7→ c,X3 7→ d.a} fills the required
condition.

2) Verify if the second version of the trace defined
by t1 = (X1.X2.X3)σ = b.c.d.a satisfies the
second part of the formula (〈X4.b.X5.d.X6 #
X4.X5.X6〉)). This part is also satisfied, since there
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TABLE III.
DENOTATIONAL SEMANTICS.

[[X]]t,σe = e(X)

[[¬Φ]]t,σe = t↓ − [[Φ]]t,σe

[[Φ1 ∧ Φ2]]t,σe = [[Φ1]]t,σe ∩ [[Φ2]]t,σe

[[[p1 # p2]Φ]]t,σe = {u ∈ t↓ | ∀σ′ : p1σσ′ = u⇒ p2σσ′ ∈ [[Φ]]p2σσ
′,σ′◦σ

e }

[[νX.Φ]]t,σe = νf where

(
f : 2T −→ 2T

U 7−→ [[ Φ ]]t,σ
e[X 7→U ]

exists another substitution σ2 = {X4 7→ ε,X5 7→
c,X6 7→ a} such that t1 = (X4.b.X5.d.X6)σ2.

3) Verify if the third version of the trace defined by
t2 = (X4.X5.X6)σ2 = c.a satisfies the final part
of the formula (tt). This part is also satisfied, since
the formula is satisfied by any trace.

We conclude that the trace t satisfies the formula φ.

III. TCP/IP ATTACK SPECIFICATION

In [5] we have shown that it is possible to specify
a large variety of IP based attacks using our approach.
In this paper we are focused on ARP based attacks. We
describe hereafter how to detect this kind of attacks by
specifying properties using the ADM-logic. To explain the
intuitive meaning of formula we give some illustrative
examples. Finally we recall some properties characteri-
zing IP based attacks previously defined in [5].

Note that, in the following we consider these two
points. All properties are defined in such manner that,
the returned result is true if the trace contains the attack
scenario described by the property, and false in the other
case.

The terms in bold in formula represent action constants,
those in capital letter with subscript annotations (X1, X2,
etc.) represent pattern variables (do not confuse with the
formula variable X), and the terms in small letter represent
action parameter variables.

A. ARP based attacks

ARP Cache Poisoning. This attack consists on the
corruption of the ARP cache of the victim host (A) by
introducing a spurious IP to MAC address mapping. Then
if (A) sends out a packet for the host (B) this traffic is
diverted to the attacker host (C). To perform this attack,
the attacker sends an ARP request to the host (A) having
his MAC address and the IP address of the host (B).
This request is unicast to avoid suspicion of (B). Then
if (A) receives this request it concludes that (B) wants to
communicate with it, and so will update its ARP cache
entry with the false mapping.

To detect this attack we define the formula φ1 :

¬(νX.(〈X1.(arp.eths.ethd.1.macs.macd).X2 # ε〉tt→
〈X1.(arp.eths.ethdbr.1.macs.macd).X2 # X1.X2〉)X)

ethdbr = FF.FF.FF.FF.FF.FF (Ethernet broadcast address).

This signature detects an ARP request where the Ether-
net destination address is not a broadcast address.

To explain the meaning of this formula, we suppose
that we want to verify whether the trace t given in Table
IV satisfy φ1 = ¬φ′1.

The first part of the formula
(〈X1.(arp.eths.ethd.1.macs.macd).X2 # ε〉tt) aims to
verify whether the trace contains an ARP request action.
If this condition is satisfied, then the second part of this
formula (〈X1.(arp.eths.ethdbr.1.macs.macd).X2 #
X1.X2〉X) requires that the trace must contain an
ARP request action where Ethernet source address is a
broadcast address, and if we remove one occurrence of
this action, the remaining trace still satisfies the whole
formula.

It is clear that the trace t does not satisfy the formula
φ′1. Indeed, if we remove the first occurrence of ARP
request action from this trace, the remaining trace t′

(trace t without the first action) does not satisfy again the
formula φ′1. Finally, we conclude that the trace t satisfies
the formula φ1.

Note that this kind of attack is possible because there is
no coherence control mechanism between the ARP header
and the Ethernet header. To guarantee this coherence we
specify the following additional properties φ2 and φ3 :

¬(νX.(〈X1.(arp.eths.ethd.1.macs.macd).X2 # ε〉tt→
〈X1.(arp.as1.eths.1.as1.macd).X2 # X1.X2〉)X)

¬(νX.(〈X1.(arp.eths.ethd.2.macs.macd).X2 # ε〉tt→
〈X1.(arp.as1.ad1.2.as1.ad1).X2 # X1.X2〉)X)

Formula φ2 verify whether the trace contains an ARP
request where the Ethernet source address is different
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TABLE IV.
TRACE T

Trace Event
(arp. 11.11.11.11.11.11. FF.FF.FF.FF.FF.FF. 1. 11.11.11.11.11.11. 00.00.00.00.00.00). ARP request
(arp. 22.22.22.22.22.22. 11.11.11.11.11.11. 2. 22.22.22.22.22.22. 11.11.11.11.11.11). ARP reply
(arp. 33.33.33.33.33.33. 11.11.11.11.11.11. 2. 33.33.33.33.33.33. 11.11.11.11.11.11). ARP reply

(icmp. 192.168.1.1. 192.168.1.4. 8.0.0.0). ICMP echo request
(tcp. 192.168.1.2. 192.168.1.4. 2002. 80. 0.0.0.0.0.1. 0.0). TCP SYN
(tcp. 192.168.1.4. 192.168.1.2. 80. 2002. 0.1.0.0.0.1. 0.0). TCP SYN/ACK

(icmp. 192.168.1.4. 192.168.1.1. 0.0. 0.0). ICMP echo reply
(arp. 33.33.33.33.33.33. 22.22.22.22.22.22. 1. 33.33.33.33.33.33. 00.00.00.00.00.00). ARP request (Unicast)
(arp. 22.22.22.22.22.22. 33.33.33.33.33.33. 2. 22.22.22.22.22.22. 33.33.33.33.33.33). ARP reply

from the source address in the ARP message, and for-
mula φ3 verify if there is an ARP response where the
Ethernet source/destination address is different from the
source/destination address in the ARP message.
ARP Spoofing. The ARP works as follows. A host (A)
that wants to resolve an IP address of a host (B) broadcast
an ARP request. When receiving this packet host (B)
replies by sending an ARP response containing its MAC
address. Host (A) can subsequently communicate directly
with host (B) using the MAC address. However, host (C)
(the attacker) can also reply to the ARP request that will
have as a consequence the update of the ARP table of the
host (A) with the false mapping extracted from the ARP
response sent by host (C).

To detect this attack we propose a formula φ4 that
detects an ARP response that are not preceded by an ARP
request (i.e. for each ARP response we need to have its
corresponding ARP request).

¬(νX.(〈X1.(arp.eths.ethd.2.macs.macd).X2. # ε〉tt→
〈X1.(arp.as1.ethd.1.as1.macd).X2.(arp.eths.as1.2.macs.

as1).X3 # X1.X2.X3〉X))

Note that trace t (see Table IV) satisfy the formula φ4.

B. IP based attacks

Crafted Packets. Abnormal packets [6] are used by
attackers to probe networks or to crash systems. For
example, there are several flag combinations that can be
classified as abnormal like SYN/FIN packet and Null
packet. To detect such attacks, we define the following
formulas :

〈X1.(tcp.as.ad.ps.pd.flags1.frags).X2 # ε〉tt

flags1 = f1.f2.f3.f4.1.1 (flags SYN and FIN are set).

〈X1.(tcp.as.ad.ps.pd.flags1.frags).X2 # ε〉tt

flags1= 0.0.0.0.0.0 (Null packet)

Land attack. This attack [7] consists in sending a spoofed
packet with the SYN flag set, the same source and desti-
nation addresses and also the same source and destination
ports.

To detect this attack we define the following formula :

〈X1.(tcp.a.a.p.p.flags1.frags).X2 # ε〉tt

flags1 = f1.f2.f3.f4.f5.1 (flag SYN is set).

Smurf attack [8]. Attackers forge an ICMP echo request
message (ping) that contains the spoofed source address
of the victim, and then direct this packet to IP broadcast
addresses. The result is that the victim is flooded by
several ICMP echo reply (pong). To detect this attack we
define the following formula :

¬(νX.(〈X1.(icmp.as.ad.0.0.frags).X2. # ε〉tt→
〈X1.(icmp.as.ad.8.0.frags1).X2.(icmp.ad.as.0.0.frags2).

X3 # X1.X2.X3〉X))

ping =icmp.as.ad.8.0.frags1
pong =icmp.as.ad.0.0.frags2

This signature considers as an attack any trace contai-
ning an ICMP echo reply (pong) that is not preceded by an
ICMP echo request (ping). We also define the following
formula to detect an ICMP echo request (ping) having as
destination address a broadcast address.

((〈X1.(icmp.as.ab1.8.0.frags).X2 # ε〉tt)∨
(〈X1.(icmp.as.ab2.8.0.frags).X2 # epsilon〉tt))

ab1 = b1.b2.b2.0 (broadcast address)
ab2 = b1.b2.b2.255 (broadcast address)

SYN Flooding attack [9]. The attack occurs when many
SYN packets are sent to the target in order to fill its
backlog queue with pending connections. From this time,
the target machine ignores all further connections attempts
(DoS attack). To prevent this attack we define the follo-
wing formula :

νX.(〈X1.(tcp.as1.ad1.ps1.pd1.f lags1.frags).

X2.(tcp.as2.ad2.ps2.pd1flags1.frags).X3.

(tcp.as3.ad3.ps3.pd1.f lags1.frags).X4 # ε〉tt→
(〈X1.(tcp.as1.ad1.ps1.pd1.f lags1.frags).X2.

(tcp.as1.ad1.ps1.pd1.f lags2.frags).X3 # X1.X2.X3〉X
∨〈X1.(tcp.as1.ad1.ps1.pd1.f lags1.frags).X2.

(tcp.ad1.as1.pd1.ps1.f lags3.frags).X3 # X1.X2.X3〉X))
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flags1 = f1.f2.f3.f4.f5.1 (SYN flag is set)
flags2 = f1.1.f2.f3.f4.f5 (ACK flag is set)
flags3 = f1.f2.f3.1.f4.f5 (RST flag is set)

This signature states that if the number of half-open
connections is over a fixed threshold (threshold = 3)
then considers this as an attack. Half-open connection is
detected if there are SYN packets not followed by ACK
or RST packets.
Echo-Chargen Loop attack. This attack [10] is based on
UDP. It consists in setting up a loop between the echo and
chargen ports. To detect this attack, we propose a formula
that detects packets having a source or a destination port
set to 7 and 19.

〈X1.(udp.as.ad.7.19).X2 # ε〉tt∨
〈X1.(udp.as.ad.19.7).X2 # ε〉

Scan. There are several techniques for surveying ports
on which a target machine is listening. Among these
techniques, we find TCP FIN scan [11]. It is a furtive scan
that detects closed ports to deduce opened ones. This scan
is carried out by sending FIN packets without opening
connections. If the port is closed, the target machine sends
RST packet. Otherwise, no answer will be turned back.
For this kind of attack, we define the following formula,
which detects FIN packets that are not preceded by SYN
packets. Furthermore, a one-to-one association between
SYN and FIN should be established (i.e. for each SYN
we need to have its corresponding FIN).

¬(νX.(〈X1.(tcp.as1.ad1.ps1.pd1.f lags2.frags).X2 # ε〉
→ 〈X1.(tcp.as1.ad1.ps1.pd1.f lags1.frags).X2.

(tcp.as1.ad1.ps1.pd1.f lags2.frags).X3 # X1.X2.X3〉)X)

flags1 = f1.f2.f3.f4.f5.1 (SYN flag is set)
flags2 = f1.f2.f3.f4.1.f5 (FIN flag is set)

Notice that this kind of properties could not specified
using LTL for example.
Ping of Death [12]. The attacker sends a stream of
ICMP echo request fragments that, if assembled, they
create an IP datagram longer than 65535 bytes. To prevent
this attack we suggest the following formula that detects
fragmented pings :

¬(νX.(〈X1.(icmp.as.ad.8.0.frags).X2 # ε〉tt→
〈X1.(icmp.as.ad.8.0.frags1).X2 # X1.X2〉)X)

frags1 = 0.0 (non fragmented packet)

Tiny fragments and fragment overlapping attacks [12].
These attacks consist in requesting a TCP connection
fragmented into two IP packets. To detect them, we
proceed in the same manner as for the Ping of Death
attack, i.e., we look for fragmented SYN packets.

¬(νX.(〈X1.(tcp.as.ad.ps.pd.flags1.frags).X2 # ε〉tt
→ 〈X1.(tcp.as.ad.ps.pd.flags1.frags1).X2 # X1.X2〉)X)

flags1 = f1.f2.f3.f4.f5.1 (SYN is set)
frags1 = 0.0 (non fragmented packet)

IV. IMPLEMENTATION

Another important advantage of using the ADM-logic
comes from it tableau-based proof system that has been
proved, in [1], to be sound and complete with respect
to the denotational semantics. In fact, this tableau-based
semantics leads to a local model checking which is useful
for an efficient implementation.

In this section, we give an overview of our IDS
prototype, written in Java and called GTM-system (after
its authors Ghorbel, Talbi and Mejri) which is based on
the ADM-logic. The GTM-system can be seen as a model
checker that verifies user properties against models. In this
paper, we focused on models that abstract audit trail, but
the system can be used to verify any sequence of events
(linear models).

A. Tableau-Based Proof System

This verification is based on the tableau-based proof
system given in the Table V. The idea behind the tableau
rules is to capture in a deductive way whether a trace
t satisfies a formula φ or not. The proof rules operate
on sequents of the form H, b, e, σ ` t ∈ φ, where H is
a mapping in [V → 2T ], b is a variable in {ε,¬}, σ a
substitution, e an environment, t a trace and φ a formula.

A sequent θ has a successful tableau if there exists a
finite tableau having θ as a root and all its leaves are
successful. A leaf θ is successful when it meets one of
the following conditions :

– θ = (H, ε, e, σ ` t ∈ X) and t ∈ e(X).
– θ = (H, ¬, e, σ ` t ∈ X and t ∈ e(X).
– θ = (H, ε, e, σ ` t ∈ νX.φ) and t ∈ H(X).
– θ = (H, ε, e, σ ` t ∈ [p1 # p2]φ) and {σ′|p1σσ

′ =
t} = ∅.

It follows that an unsuccessful leaf θ, will denote
sequents that are not successful leaves and there are no
rules of the tableau system that could be applied on them.
More precisely, a sequent θ is an unsuccessful leaf, if one
of the following conditions holds :

– θ = (H, ε, e, σ ` t ∈ X) and t ∈ e(X).
– θ = (H, ¬, e, σ ` t ∈ X and t ∈ e(X).
– θ = (H, ¬, e, σ ` t ∈ νX.φ) and t ∈ H(X).
– θ = (H, ¬, e, σ ` t ∈ [p1 # p2]φ) and {σ′|p1σσ

′ =
t} = ∅.

For further details about the rules of the Table V, see
[1].

B. GTM-System Architecture

An overview of the GTM-System architecture is pre-
sented in Figure 1. It is composed of three modules :
compiler, abstracter and checker.

Compiler. It checks the syntax of the given formula and
reports errors, if they exist, to the end-user. This procedure
is implemented by means of Flex and Bison tools [13].
If the properties are free of syntax errors, they will be
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TABLE V.
TABLEAU-BASED PROOF SYSTEM

R¬
H, b, e, σ ` t ∈ ¬φ
H,¬b, e, σ ` t ∈ φ

R∧
H, b, e, σ ` t ∈ (φ1 ∧ φ2)

H, b1, e, σ ` t ∈ φ1 H, b2, e, σ ` t ∈ φ2
b1 × b2 = b

Rν
H, b, e, σ ` t ∈ νX.φ

H[X 7→ H(X) ∪ t], b, e, σ ` t ∈ φ[νX.φ/X]
t ∈ H(X)

R[]
H, b, e, σ ` t ∈ [p1 # p2]φ

H, b1, e, σ1 ◦ σ ` p2σσ1 ∈ φ ... H, bn, e, σn ◦ σ ` p2σσn ∈ φ
C2

C2 =

0@ {σ1, ..., σn} = {σ′|p1σσ′ = t} 6= ∅
and

b1 × . . . . . . . . . . . . . . ×bn = b, n > 0

1A

Figure 1. GTM-System Interface

transformed according to abbreviations given by Table II.
The idea behind these abbreviations, is to implement only
a few numbers of operators (those of the ADM-logic), the
rest can be derived from macros.

Abstracter. It allows to abstract the audit file by keeping
only relevant events specified by a given filter. By default,
the filter extract from an audit file (tcpdump file [14]) only
ARP, ICMP, TCP and UDP packets and then structure
them to form the final trace (model) following the action
format defined in section 2. The extraction process is
implemented using the jpcap package [15].

The role of the abstracter module is very important. The
fact that it is parameterizable (through the use of filter),
we can easily extend our model to specify new signatures,
such those related to application layer protocols (HTTP,
SMTP, DNS, etc.). For instance, suppose we want specify
properties related to HTTP protocol. This can be done
by simply adding this protocol in the abstracter filter and
specifying the HTTP action format. Thus, if the abstracter
find a web packet (TCP packet having destination port
equal to 80, 8080), then it will generate an HTTP event
from the packet data field.

Checker. This is the main part of the system and it
implements the tableau-based proof system of the ADM-
logic. In other word, this part implements the satisfaction

relation "|=" of the model checker. It takes a model M
(trace) and a formula φ, and verify whether M |= φ
or not. At the end of this stage, the system give us the
detection results : true indicates that the trace contains
the attack-evidence described by the specified formula.

To show how we can verify if a formula is satisfied or
not by a trace using the tableau-based proof system, let
us give a concrete example :

Let t = a.b.c be a trace where the actions a, b and c
represent respectively, SYN packet, SYN FIN packet and
SYN ACK packet.

TABLE VI.
PROOF TREE

R¬
∅, ε, ∅, ∅ ` a.b.c ∈ ¬[X1.b.X2 # X1.X2]¬νX.X)
∅,¬, ∅, ∅ ` a.b.c ∈ [X1.b.X2 # X1.X2]¬νX.X

R[] ∅,¬, ∅, σ ` a.c ∈ ¬νX.X

R¬ ∅, ∅, ∅, σ ` a.c ∈ νX.X

Rν [X 7→ {a.c}], ∅, ∅, σ ` a.c ∈ νX.X

Consider now the formula φ = 〈X1.b.X2 # X1.X2〉tt
which allows to detect if the trace t contains a SYN FIN
packet (abnormal packet [6] used by nmap [16] to probe
networks).

Proving that the formula φ is satisfied by the trace
t, amounts to show that the sequent ∅, ε, ∅, ∅ ` a.b.c ∈
〈X1.b.X2 # X1.X2〉tt leads to a successful leaf.

We know that :
〈X1.b.X2 # X1.X2〉tt ≡ ¬[X1.b.X2 # X1.X2]¬νX.X

Now, let σ denote the set {X1 7→ a,X2 7→ c}.
The proof associated with the sequent ∅, ε, ∅, ∅ `

a.b.c ∈ ¬[X1.b.X2 # X1.X2]¬νX.X is given in Table
VI.

The leaf of the derivation sequence is a successful
sequent because it satisfies the condition :
θ = (H, ε, e, σ ` t ∈ νX.φ) and t ∈ H(X)
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Figure 2. GTM-System Interface

We conclude that the trace t satisfies the formula φ.

C. GTM-System Interface

As shown by Figure 2, the GTM-system has a simple
and user-friendly interface allowing the end-user to spe-
cify his security policy and an audit file and then the tool
make the analysis. First, the user defines his variables1

with the clause VAR. Then, properties using these va-
riables can be specified using the reserved word SPEC.
A name can be attributed to a property so that it could
be referred later in other formula or in the output of the
analysis.

V. RELATED WORK

Many works presented in the literature are dedicated
to the intrusion detection issue. In this section we are
limited to works based on formal approaches since they
are closely related to our work. Such approach consists on
the use of a given logic for the specification of properties
characterizing attack scenario. These properties are then
checked against a model (linear or arborescent model)
that abstract the audit trail (network, host or application
based audit data).

The choice of the appropriate logic depends on the
security objectives. As example, the logic used in [17]
is especially conceived for the specification of properties
characterizing polymorphic shellcodes (ADMmutate [18],
Clet [19], etc.). This logic combines two temporal logics
LTL (Linear-Time Temporal Logic) and CTL (Computa-
tional Tree Logic) [4]. In [2] author propose a new logic
to detect variants of known attacks. This logic is inspired
from LTL to which some new features are added.

Although LTL and CTL logics are simple and easily
comprehensible by users, it is less expressive than ADM

1Notice that variables are sorted : type1= pattern variables, type2=
event variables and type3= event parameter variables.

logic which is endowed with several interesting features
for intrusion detection such as modalities, linearity and
recursive formulas. For example, some formulas defined
in section 3 such as φ1 and φ2 could not be specified
using LTL.

VI. CONCLUSIONS

In this paper, we have introduced a model-checker cal-
led GTM-system that can be used as an intrusion detection
system. In fact, the GTM-system is based on ADM-Logic
which is appropriate to specify a large variety of attacks
and in particular those based on Internet protocols (TCP,
UDP, ICMP and ARP). Thanks to the tableau-based proof
system of ADM, the implementation of the GTM-system
was made simple and efficient.

In addition, this work can be improved by studying
these two considerations. Firstly, we can specify pro-
perties related to application layer based attacks (attacks
based on protocols such HTTP, DNS, SMTP, etc.). This
can be done by specifying the action format of these
protocols in our model, and by making some modifi-
cations to the abstracter. Secondly, we can evaluate our
properties in terms of false positives and false negatives.
This evaluation can be done either by using the arsenal
of tools available in Internet ( [20], [16]), or by having
recourse to an attack description language such as STATL
[21].
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