
Design and Implementation of a Version
Management System for Reference Modeling

Oliver Thomas
Institute for Information Systems (IWi)

at the German Research Center for Artificial Intelligence (DFKI),
Saarland University, Saarbruecken (Germany)

oliver.thomas@iwi.dfki.de

Abstract—The central idea in reference modeling is the
reutilization of the business knowledge contained in a
reference model. The user’s task in reference model-based
construction is the adaptation of the reference model. The
derivation of specific models from reference models
corresponds with the creation of reference model variants.
Research on the design of such variant constructions
generally assumes an unchangeable stock of reference
models. The potential inherent in the management of these
variant constructions, which reflect the changes in designed
reference models through time and in doing so, their
evolutionary development, has not yet been tapped into. The
article at hand analyzes this problem and presents a concept
for the version management of reference models as a
solution. The task to be mastered with the proposed
approach will be concretized using data structures and a
system architecture and then prototypically implemented.

Index Terms—Information model, information modeling,
reference model, reference modeling, version, version
management, reference modeling tool

I. INTRODUCTION
The systems studied in the field of information systems

research are extremely complex. It is difficult to describe
their structure or predict their behavior in detail. By
constructing models, the attempt is made to create
abstracting artifacts which make the complexity of
information systems manageable. The information
models created thereby have a tradition of more than
thirty years [3; 12; 22]. From today’s perspective, these
models have established themselves in information
systems research as a medium for describing information
systems [23; 26; 49; 51]. The application areas of
information modeling range from software design to the
configuration of ERP systems and business process
reengineering. In information systems research it is
widely accepted that conceptual models have a lasting
influence on the quality of the software developed [e.g.
52]. Moreover, from a practical point of view, a current

study from Gartner points out that the modeling of
business processes with their processing times and
respective responsibilities can lead to an increase in
productivity of more than 12 % [24].

The construction of information models is often
connected with the demand to abstract from enterprise-
specific attributes in order to make the models reusable.
These so-called reference models, provide companies
with an initial solution for organization and application
system design [19; 34; 38; 48]. Examples in the scientific
field are the reference model for industrial enterprises
from Scheer [34], as well as the SAP R/ 3 reference
model [14] resulting from commercial practice. On the
one hand, the possibility of orienting oneself on the
technical content of such reference models promises the
model-users savings in time and costs, while on the other
the quality of the model to be constructed can be
increased by the use of a reference model.

One of the main problems is that the knowledge
contained in these models is not unchangeable, so that
reference models themselves are subject to change
throughout time. These changes generally occur in two
manners for models constructed within the two processes
in reference modeling, development and usage. First, if
within an evaluation, one notices during the development
of a reference model that the model being constructed
does not fulfill the defined requirements, then one must
return to the preliminary phases. This generally results in
revisional constructions, which replace the construction
results evaluated. And second, revisional reference model
constructions are also generated when reference models
are used to derive specific models. These revisional
constructions often differ only slightly from one another,
depending on their use. Both of these aspects lead to a
differentiation between version and variant constructions.

Reference modeling literature focuses on variant
management [5; 6; 15; 29; 30; 32; 39; 44; 47] and
although the terminological difference between variants
and versions is alluded to in literature [16, p. 96; 45,
p. 260; 50, p. 63], the design of a version management for
reference models has only occurred in rudimentary form
up to now. The task of the article at hand is to meet these
concerns with the design and implementation of a version
management tool for reference models.

This paper is based on ‘Joint Reference Modeling: Collaboration
Support through Version Management,’ which appeared in the
‘Proceedings of the 40th Annual Hawaii International Conference on
System Sciences’, © 2007 IEEE Computer Society Press, and ‘Version
Management for Reference Models’ which appeared in ‘Reference
modeling’, ISBN 978–3–7908–1965–6, © 2007 Physica.

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 49

© 2008 ACADEMY PUBLISHER

II. METHODICAL CONSIDERATIONS AND THE COURSE OF
THE ANALYSIS

The goal of this analysis is the design and realization
of an information system for the support of a version
management for reference models. Established procedure
models already exist for the system development required
here. The task of these models is to secure the continuous
description of the development process, from the business
requirements to the technical implementation.

This analysis will use the phase model of the
architecture of integrated information systems (ARIS)
[35]. The ARIS phase model differentiates between the
description levels ‘requirements definition’, ‘design
specification’ and ‘implementation’. In the requirements
definition phase, the business concept to be supported is
described in semi-formal languages. The design
specification phase adapts the requirements description to
basic constructs in information technology. Finally, in the
implementation phase, the design specification is
transferred to concrete information technical components.

The requirements definition is especially important for
achieving our goal because first, it can be seen as a long-
term bearer of business concepts (sub-goal ‘design’) and
second, it acts as a starting point for further steps towards
the technical implementation (sub-goal ‘realization’).
Because this significance is also generally reflected in
information systems research, conceptual modeling is
emphasized in modern literature as an independent
research method [7; 47], in addition to its undisputed
significance as an important research topic in information
systems [20; 49; 51]. It has been selected as a method for
the scientific sub-goal ‘design’.

The results achieved through conceptual modeling
should serve as a starting point for a consistent
implementation in information technology. Due to the
scientific understanding of information systems here, they
result in a prototypical implementation. Because the
design of prototypes is widely accepted in literature as an
independent research method in information systems [9;
11; 27; 28; 33], it has been selected as a method for
achieving the second scientific sub-goal ‘realization’.

This results in the following outline for this article.
Section 3 lays a foundation for the terms used here by
first, explaining the terms ‘information’ resp. ’reference
model’ and then, differentiating between the terms
‘variant’ and ‘version’ in the context of reference
modeling. Due to the methodical procedure selected for
the design of the reference model versioning, a data
model will be constructed in Section 4, which represents
the version management of reference models on a
conceptual level. In Section 5, this description will be
adapted to general IT constructs in the form of a system
architecture in order to then, in the implementation phase
in Section 6, be transferred to IT components. In Section
7, the work discussed here will be distinguished from
related work. The article ends with a critical discussion of
its results and an outlook in Section 8.

III. BACKGROUND

A. Information and Reference Models
This analysis supports a construction-oriented

understanding of models. Information models are defined
as purpose-relevant representations of an information
system designed by way of a construction process. They
are simply referred to as models. A reference model—to
be precise: reference information model—is an
information model used for the construction of other
models. This analysis is therefore based upon a use-
oriented reference model term which focuses on the use
of reference models for the construction of enterprise-
specific models [38; 47]. The reference model terms often
found in information systems literature, based upon the
attributes which characterize these reference models—in
particular the attributes ‘universality’ and
‘recommendation character’ [45, pp. 31 ff]—will not be
used here. Every model resp. partial model that can be
used to support the construction of another model can be
seen, in this sense, as a reference model.

B. Reference Model Variants
 The user’s primary task in reference model-based

construction, which can be supported by IT tools, is the
adaptation of reference models. The derivation of a
specific model from a reference model characterized by
this term corresponds with the creation of variants of
reference models. Thus, for example, the enterprise-
specific models information model product-oriented
manufacturing enterprise E1 or information model
process-oriented manufacturing enterprise E2 could be
derived as variants of the reference model manufacturing.

In analogy to industrial variant management [34], a
variant IM’ of an information model IM is understood as
a model which differs from IM in only ‘a few’ features.
In other words: IM’ has the same feature presentation as
IM with regard to at least one feature and a different
presentation in regard to at least one other feature. Many
features are conceivable for information models. In
literature, these features, as well as their respective
feature presentation, are used for the classification of
information models. Examples of this are the distinctions
between organization and application system models, as
well as between structure (static view) and behavior
models (dynamic view) [19].

The management of the variants derived from
reference models is especially interesting on two counts
[16, p. 94]. First, the storage of the variants together with
the adaptation premises also being managed can speed up
the development of future enterprise-specific models for
comparable applications. And second, it allows a
similarity analysis of the variants, the results of which
can then be used for the development of new reference
models.

Reference modeling languages should thus, be
designed to support model variant management. Many of
the approaches discussed in literature aim at maintaining
alternative building blocks in the reference models, which
the model user then keeps, supplements or removes, with

50 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

respect to enterprise-specific facts, during the adaptation.
However, differing opinions exist on the question of
which construction techniques should be used for
reference model variant management. While for example,
some authors link variant management to the construction
technique of configuration and also refer to a variant as a
configured service [e.g. 15; 32], VOM BROCKE generally
arguments against the coupling of variant management
with individual construction techniques and recommends
aggregation, specialization, instantiation and analogy
construction as further construction techniques [45,
pp. 235 ff; 46].

C. Reference Model Versions
In literature, the creative potential contained in a

revision management and control tool connected with the
creation of versions is primarily discussed from a
technological perspective within the framework of
configuration management [8; 17]. Configuration
management has its origins in hardware development.
This field of work generally deals with the consistent
description of system components, as well as monitoring
and controlling the changes made in these components.
Since the beginning of the 1980ies the attempt has been
made to transfer this concept to software processes under
the term ‘software configuration management’ [8]. The
term configuration management, according to the
terminology of software engineering, can be understood
as the development and usage of standards and methods
for managing a system continuously under development
[37, p. 651]. The methods for configuration management
have been established: for example, how system changes
are documented and processed, as well as which relation
they bear to the system components and the methods used
for their description [37, p. 651].

The development of methods and procedures for
configuration management is seen as one of the central
challenges in the field of software engineering [17,
p. 279]. Most of the products for configuration
management are based upon a core of concepts and
mechanisms. One of these, is the concept of versioning,
mentioned above, which goes back to the middle of the
1970ies [31].

Generally, the term version refers to the state of an
object at a certain point in time [16, p. 96; 53, p. 9]. One
can differentiate between three dimensions of versioning
subject to the construction purpose: historical, logical and
cooperative versioning [13, p. 240; 18, p. 122; 53, pp. 9 f]:

1. Historical versioning: A version made to replace
another version is called a revision. With the
construction of a revision, the further development of
the original version is abandoned in favor of this new
version. In practice, the revision of a component is
made by changing a copy of the last version. Old
revisions are stored for maintenance and
documentation purposes and form the version history
of an object. Revisions have a predecessor/ successor
relationship to one another.

2. Logical versioning: In contrast to revisions, the
adjustments made to an object to fit the specific

circumstances of an application context (for example:
the company adjustment of a standard software module
or a software component with reduced functionalities
for testing purposes) are referred to as logical versions.
The term variant was already introduced for such
logical versions. Both terms will be used in the
following as synonyms. There is no
predecessor/ successor relationship between logical
versions; they exist parallel to one another.

3. Cooperative versioning: Variants that are integrated
with other variants resp. combined are referred to as
temporary variants. Temporary variants are used for
example, to change an old revision when the
development of a new revision has not yet been
concluded. Temporary variants are used primarily for
supporting cooperative construction processes.

To illustrate this, the terms above have been arranged
in a framework for reference modeling procedures (cf.
Figure 1). Because reference models are special
information models used to support the construction of
other models, the framework considers both the fact that
reference models are to be made using a modeling
language (reference model development), as well as that
reference models are made to be used (reference model
usage). In comparison with existing procedure models for
reference modeling, the framework emphasizes the
aspects relating to the construction of versions and
variants.

Reference Model Development Reference Model Usage

Referenzmodell

Evaluation
Process ERM

ReferenzmodellReference Model
(RM-Versions)

ReferenzmodellReferenzmodellEvaluation Result

Arbitrary
Model Object ORM

Arbitrary
Model Object OSM

Construction
Process DSM

Construction
Process DRM

Construction
Support

ReferenzmodellReferenzmodellSpecific Model
(RM-Variants

and SM-Versions)

ReferenzmodellReferenzmodellEvaluation Result

Evaluation
Process ESM

Figure 1. The arrangement of model versions and variants in the
procedure for the development and usage of reference models

In analogy to software engineering projects, it is
recommended that evaluations of a model be carried out
before it is ‘handed over’ to the model management via a
release mechanism. This applies to the reference models
constructed (development phase), as well as to the
variants derived from these (usage phase). To some
extent, evaluation phases are taken into consideration in
existing procedure models for the development and usage

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 51

© 2008 ACADEMY PUBLISHER

of reference models, for an overview cp. [2]. The
conception of the term ‘evaluation’ and the tasks to be
carried out by project members during the evaluation
phase differ however, in the works mentioned. In this
article, the goal of a reference model evaluation—in the
sense of the evaluation of construction results—consists
in evaluating the reference model resp. determining the
value of a reference model. The value of a reference
model is understood here as the model’s share in
achieving the reference modeling goals pursued.
Evaluation processes are run through several times,
because evaluation results can lead to a decision to return
to preliminary construction phases, in order to improve a
model.

The necessity of versioning construction results
connected to this step-by-step improvement of the model,
also known as model evolution, will be concretized in the
following section using conceptual models.

IV. REQUIREMENTS DEFINITION FOR THE MANAGEMENT
OF REFERENCE MODEL VERSIONS

A. Basis Model
The starting point for the conceptual design of the

reference model versioning is the UML class model
represented in Figure 2 (for the current specification of
the Unified Modeling Language cf.
http:/ / www.uml.org/). We have left out operations and
class attributes for reasons of simplicity.

Information
Model

Time

Information
Model

Element

Information
Model

Version

Information
Model Ele-

ment Version

0..*

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Figure 2. UML class model for managing model versions [35, p. 87]

This class model for the management of model
versions takes into account that as a rule, revisional
constructions in modeling projects are not exclusively
carried out on the model as a whole. They are, in fact,
carried out by project members on detail models—due
increasingly to the trend towards the division of work in
model development [41; 45]—and then combined to form
an improved construction. This correlation is taken into
consideration with the classes Information Model and
Information Model Element, as well as the existing part-

of-relationship between the objects of the classes
involved. Each object in the sub-class Information Model
Element can—at any time—be a component of several
objects in the aggregate class Information Model, e.g. a
function as part of a function hierarchy diagram, as well
as part of an EPC model [36], and every information
model can be composed of several information model
elements. Therefore, there is no composition between
both classes, but rather a (0.*):(0.*)-aggregation.

The information models, as well as the information
model elements which compose a model, receive a ‘time
stamp’ due to the (0.*):(0.*)-association with the class
Time. This relationship between the models, resp. model
elements and time, defines the model versions resp. the
model element versions and is therefore formulated as the
association class Information Model Version resp.
Information Model Element Version. Within the
framework of their approach to the configuration
management of models ESSWEIN, GREIFFENBERG, KLUGE
also allude to the fact that ‘a single record of the different
developmental states of a model is insufficient’ [16,
p. 96]. In fact, ‘in order to retroactively trace the changes
in a model over time, […] a record of the development of
individual model parts’ [16, p. 96] should be made. The
said classes are also connected to each other via an
aggregation, which signifies that an information model
version is composed of the versions of the information
model elements assigned to it. This was—analog to the
association between the objects of the classes Information
Model and Information Model Element—not constructed
as a composition (no limitation of the cardinality which is
annotated to the aggregate class to 1.1), so that the case
that each information model element version can be a part
of several information model versions is also taken into
account. On the other hand, the (0.*)-cardinality on the
class Information Model Element Version indicates that
a model version can be assigned to several versions of a
model element. Minor revisional constructions on model
elements do not necessarily lead to the designation of
new information model versions. This is especially
important for the management of versions of
comprehensive (reference) models.

B. Extension of the Management of Model Versions
Through Version Graphs

The graphic illustration of the development history of
an object is done in software engineering using so-called
version graphs [13, pp. 240 ff; 53, pp. 10 ff]. This article
sees version graphs as a type of modeling language. The
concept of version graphs is transferred to the
representation of the development history of information
models in the following section. A version graph model is
represented in Figure 3 and will be used as a basis for the
explanation of the basic language constructs of a version
graph, as well as their representational forms.

The basic elements of the modeling language ‘version
graph’ are nodes and edges. Nodes represent the versions
of an information model. They are depicted in Figure 3
by shaded rectangles with rounded corners. The versions
are marked with unique identifiers—also called version

52 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

numbers. In contrast to this type of versioning, referred to
in literature as extensional, the identification of versions
in the intentional manner occurs on the basis of attributes,
which describe attributes of the versioned objects [4,
pp. 102 ff]. The predecessor/ successor relationships
existing between versions express the fact that the
successors were derived from their predecessors by way
of revisional constructions. Arrows represent the
corresponding edges.

To transfer the concept of the version graph to
information modeling, the UML class model for
managing model versions must be extended. A version
graph is described as a predecessor/ successor relation of
a set of versions. In Figure 3 two association classes were
constructed for the representation of versions:
Information Model Version and Information Model
Element Version. Due to the part-of-relationship between
these classes there are two possibilities for the integration
of a version graph structure:

Version
1.0

Version
1.1

Version
1.2

Version
1.1.1.0

Version
1.2.1.0

Version
1.1.1.1

Version
1.3

Version
1.2.1.1

Version
1.4

Release
2.0

1. The definition of two structures, which are
differentiated between according to whether they
describe a relationship between models or model
elements.

2. The definition of a structure, which can be related to
both of the said classes.

The first case leads to a redundant description of a
structure, which would exist on a model level, as well as
a model element level. In the second case, this
redundancy was abolished; however, no suitable language
constructs are available in the UML class diagram—if the
construction of further classes is not considered—capable
of generating the corresponding assertion. Because of
this, the part-of-relationship between the classes
Information Model and Information Model Element, as
well as the corresponding relationship between the
association classes defined by the time stamp are
‘opened’ and replaced by the data structure in Figure 5.

The differentiation between complex and atomic
models is the central thought in this revisional
construction. While a complex information model can be
broken down into model elements, this assumption does
not apply to an atomic model. Examples for atomic
models are, in the case of an EPC, a function or in the
case of an ERM, an entity type. In this sense, an
information model can be either complex or atomic,
whereby a complex information model can, in turn,
consist of several models. This is considered in Figure 5
by the specialized relationships plotted between the
classes Information Model, Complex Information Model
and Atomic Information Model. It is however, also given
through the part-of-relationship, which guarantees the
assignment of an information model to a complex model,
whose component it represents, by way of a hierarchy
between the objects of the classes involved.

Figure 3. Example for a version graph model

Version graph models can take on different forms [13,
pp. 240 f]. In the simplest case, they consist of a sequence
of revisions where the versions can have a maximum of
one predecessor and one successor. Figure 3 represents
the fact that a version can have several predecessors, as
well as various successors. According to software
engineering terminology, a model version released and
turned over to the model management—and perhaps even
delivered to a customer—is referred to as a release.

The model versioning has now been dealt with on the
model level, as well as on the model element level by
way of the association class Information Model Version,
since this relationship was inherited by the sub-classes
Complex Information Model and Atomic Information
Model of the super-class Information Model. The
diagram-like management of versions using version
graph models—which requires not only recording the
respective construction results, but also recording the
relations existing between these (cf. also Figure 3)—can
now be annotated by a predecessor/ successor relationship
in the form of the recursive (0.*):(0.*)-association class
Version Structure using the corresponding role on the
class Information Model Version (cf. Figure 5).

Possible corresponding entity relationship models are
shown in Figure 4. The models are based on facts that
focus on the relationships between the services provided
by an enterprise and its partners on the market. In a first
step (Version 1.0), external orders for services that can be
turned over to market partners or procured from them are
defined. The entity relationship model is then detailed in
a second step (Version 1.1), so that first, the network-like
integration of services (for example, in the form of a bill
of materials) is taken into consideration and second, the
connections between services and market partners in the
form of master data are recorded through conditions. The
data structure is detailed further by using the construction
operator ‘specialization’ in a final step (Release 2.0).

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 53

© 2008 ACADEMY PUBLISHER

...Version 1.0 Version 1.1 Release 2.0

Output

Business
Partner

External
Order

Output
(Item)

Business
Partner

(External)
OrderCondition

Structure

Purchase
Article

Supplier

Supplier
Condition

Purchase
Order

Article

Customer

Customer
Order

Customer
Condition

Business
Partner

Item

Structure

(0,*)

(0,*)(0,*)

(0,*) (0,*)

(0,*)(0,*)

(0,*) (0,*)

(0,*) (0,*)

(0,*) (0,*)

(0,*)

(0,*) (0,*) (0,*) (0,*)

...

...

Figure 4. Versions of an entity relationship model

Information
Model

Complex
Information

Model

Atomic
Information

Model

Time0..*0..*

Version
Structure

0..*

0..*

Successor

Predecessor

1..*

0..*

Information
Model

Version

Figure 5. Extension of the management of model versions through
version graphs

The essential requirements on the conception of system
functionality for the management of information model
versions as a sub-aspect of reference model development
and usage are herewith defined. In addition to the
construction results represented by models, information
must be recorded about revisional constructions carried

out on a model within the framework of a modeling
project such as content, reason, time, those
responsible, etc. The chronicle of these revisional
constructions and the reasons for making them allows the
retrospective analysis of the same and provides
information for decision making processes in future
developments [16, p. 93].

This applies not only to reference model development
and usage, but also to the implementation phase of a
constructed to-be model in an enterprise or the
implementation of an application system, which both
potentially follow these processes. If for example, within
the framework of a reference process model adaptation,
the required processes are selected resp. unnecessary
processes removed using typological features of an
enterprise and an automatic control system, then the
connection between the requirements used and the
process structures selected is lost in the process. It is
however, exactly this information that is needed for
further revisional constructions, as well as for the
remodeling of a process already being carried out in an
enterprise. Information about the reasons for the structure
of a certain process, as well as for its modification—the
‘Why’—should therefore be saved with the model, in
addition to the processes themselves—the ‘What’—and
the rules for the selection of the required processes—the
‘How’. The recording of this information is guaranteed
by the data structure represented in Figure 5.

54 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

V. DESIGN SPECIFICATION FOR THE VERSION
MANAGEMENT OF REFERENCE MODELS

A. System Architecture
The primary technical aspect of the tool for versioning

reference models refers to the definition of the
technological platform, the identification of the IT
components, as well as the description of their DP logical
relationships. The architecture of the system, which will
be referred to in the following as the reference model
management system (RMMS), is illustrated in Figure 6.

The system architecture of the RMMS is a
client/ server architecture. Due to the multitude of RMMS
system elements these are ‘classically’ structured in three
layers—the data management, application and
presentation layers.

The data management layer of the RMMS system
architecture is divided up into database and file
management. While the structured data (human resource
and customer data, as well as as-is and reference models)
is managed in relational databases, the weakly structured
data (text documents, spread sheets, presentation
graphics, images, video and audio files, as well as links to
further documents) is stored in a file system.

The data management layer differentiates between four
databases—an enterprise-wide human resource database,
an enterprise-wide customer database, an as-is model
database and a reference model database. The reference

model database in particular, is a systematized collection
of reference models (reference model library). It stores
the reference model constructs, as well as their structural
relationships, model attributes such as name,
identification number, type of model (for example: EPC
or ERM), description, time of creation, originator, last
modification or last processor. The customer model
database is also a model database, as is the case with the
reference model database. It contains documented as-is
models, i. e. sections of the customer’s enterprise
structure interpreted by the creator of the model at the
time of modeling. It makes no difference whether the
customer is internal or external.

The external databases in Figure 6 are represented as a
logical unit for purposes of simplicity, which however, as
a rule, consist physically of several distributed databases.
For example, the reference model database could consist
of several external databases. This is the case when, in
modeling projects, reference models from different
modeling tools are used and each manage the models in
their own databases.

The application layer comprises the server services and
data (RMMS repository), which are used to carry out the
technical tasks. The programs in this layer receive the
user’s (clients) instructions and carry them out on the
relevant data. By using a client/ server architecture,
several applications and users can access the same
database at the same time and process it.

Transmission

 Enterprise-wide
Human Resource

Database

Enterprise-wide
Customer
Database

Customer Model
Database

(As-is Models)

Reference Model
Database

Files

Read Access

Data Management

Presentation

AnwendungssystemeAnwendungssystemeModeling and
Analysis Tool Application SystemRMMS

Application
Server

RMMS
Repository

Read Access
Access

Access

SQL
Server

XML
Processor

Transmission

Access

FTP
Server

Read Access

Application Logic

TransmissionControl

Control Control

Client

Server

Access

Figure 6. RMMS system architecture

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 55

© 2008 ACADEMY PUBLISHER

The components of the RMMS, with which the user
has contact, are assigned to the presentation layer. They
make the input and output user-friendlier and are
represented by a graphic interface. The operational
concept of the RMMS and its graphic user interface
should be adapted to the interface design of established
modeling and analysis tools. This way, for the user, the
separate systems appear to be a logical entity—from the
technological point of view. This also makes access to the
RMMS easier for users familiar with modeling tools.

While the RMMS components are used for processing
information important for the development and usage of
reference models, the creation, editing and deletion of
information models remains the task of the modeling and
analysis tool. Several different modeling and analysis
tools may be used here. In order not to focus on the inte-
gration capability of modeling tools [25], the use of only
one modeling and analysis tool will be assumed, because
it is not the interchange between several modeling tools,
but rather the general exposure to reference models, their
versions and associated information objects, which are
the subject here.

The version management for reference models is
created using the structure and transformation processes
‘inside’ the RMMS repository, which was dealt with up
to now as a black box.

B. RMMS Repository as a Central Component for Model
Versioning

The RMMS repository consists of four database
components: a user, a customer, an RMMS model and a
project database. These databases are managed by the

server plotted in Figure 6 and show relations to the
external databases described above, as well as to the
external file system. The data access and transfer of the
server has already been discussed. For purposes of
clarity, only the relations between the components of the
repository and the components of the data management
layer have been accentuated graphically in Figure 7.

The system users are created in the user database and
are authenticated with it. The user database is a database
derived from the enterprise-wide human resource
database. Beyond the ‘business card’ managed in the
enterprise-wide human resource database, the user
database of the RMMS contains the personal profile of
the user (for example: start and standard settings of the
RMMS user interface, technical interests), as well as
authorizations given to the user regarding the
manipulation of data. Basic rights of disposal are the
reading, creation, modification and deletion of objects.

The customer database is based on the external
enterprise-wide customer database. The fact that
customers appear as users of the RMMS is indicated by
the relation between the customer database and the user
database.

In addition to the ‘pure’ model data, the RMMS model
database also manages information about the construction
of versions during the project. On the one hand, it adopts
models from the external reference model database and
on the other hand, the consideration of already existing
information systems for reference model usage requires
accessing the customer’s external as-is model database
(reverse engineering).

User
Database

 Enterprise-wide
Human Resource

Database

Enterprise-wide
Customer
Database

Customer Model
Database

(As-is Models)

Reference Model
Database

Files

based on

based on

Read Access

Project
Database

Customer
Database

RMMS
Model Database

Project Member and Manager
Customer Requirements

Allocation
Allocation

based onbased on
based on based on

Figure 7. RMMS repository and databases

56 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

The transfer of the model data into a logical structure
allows the simple connection to further external model
databases in the system architecture. It also allows the
RMMS user to carry out the same functions on all
models. This comprises not only the version management
of the models, but also searching resp. navigating in the
model databases.

Because the information models are not created and
processed with the RMMS, but rather with the modeling
tool, it appears expedient to allow the RMMS read access
to only the external databases.

The project database is at the center of the RMMS
repository in Figure 7. It manages internal and external
reference modeling project tasks between organizational
units by storing data, such as the project name, type, goal,
period, status or progress. Project documents, such as the
project commission, structure plan, and schedule,
proceedings from meetings, status reports or requirement
specifications are not stored directly in the RMMS
repository. These documents are created by the users
locally and managed in an external file directory.

The project database also supports the project
management by managing the number, type and logical
sequence of measures with which a reference modeling
effort should be realized, as well as by storing model
histories (version management). With the help of
relations to the user database, each reference modeling
project is assigned a project leader and a group of project
employees. Associations to the customer database take
service-specific customer requirements into account. The
project-related new or revisional construction of
reference models and the documentation of changes in
the knowledge basis require access to the reference model
database.

VI. IMPLEMENTATION OF THE REFERENCE MODEL
VERSION MANAGEMENT TOOL

A. Selecting a Basis Modeling Tool
Up to now, the concept introduced for the version

management of reference models was developed
independent of modeling languages, methods and tools.
This applies to the construction of the conceptual models
in Section 4, as well as to the design of the system
architecture and the RMMS repository in Section 5.

Because established products exist in the field of
modeling [10], a complete new development of the
RMMS is not necessary, but rather an extension of the
existing systems. The functionalities necessary for the
development and usage of reference models, which for
example, make the revisional construction of models
possible, have already been implemented in the
respective tools. Functionalities which, on the other hand,
serve the documentation of the construction process or a
certain procedure in reference model usage must be re-
implemented as necessary. The RMMS is therefore
implemented as an integrated component of a
professional tool for modeling business processes. The
ARIS-Toolset from IDS Scheer, Inc. has been selected as
a basis modeling tool. The ARIS-Toolset is a software
system for the analysis, creation and navigation of

business processes [1]. It is based on the research of the
Institute for Information Systems (IWi) in Saarbruecken,
Germany. The following are factors decisive for the
selection of the ARIS-Toolset as the basis modeling tool:

1. IDS Scheer, Inc. and the Institute for Information
Systems (IWi) are both located in Saarbruecken. This
naturally facilitates the intensive dialogue between
employees and software developers on the topic of
reference modeling, as well as the support of reference
modeling with tools as seen by the user.

2. Since 1994, IDS Scheer, Inc. has provided several
reference models created with the ARIS-Toolset.
These were made available by the company and used
for testing purposes within the research project that
forms the foundation of this article.

B. Graphic Representation of the Models
The work area of the RMMS is divided up into an

explorer and a viewer (cf. Figure 8). All of the
information models managed by the RMMS are displayed
in the explorer. This applies to the reference models
constructed in development projects, as well as
enterprise-specific models created in application projects.

The index card system of the RMMS serves the
management of important information for the
development and usage of reference models. The
information models managed by the RMMS are
characterized on the index card ‘Overview’. The other
index cards serve the graphic model representation
(‘Graphic’), the representation of model attributes
(‘Attributes’) and the support of distributed construction
processes (‘Collaboration’). In Figure 8, the index card
‘Graphic’ is activated. It gives users access to the
versioning functionalities. The functionalities that support
the graphic representation of the models in the RMMS
will therefore be discussed first.

While the graphic representation of the information
model is displayed in the left part of the index card, the
attributes of the model components selected by the user
are displayed on the right side. For navigation within the
graphic, the user is given different functionalities. In the
example in Figure 8, the version 1.2 of a reference model
framework for event management which, due to its form,
is referred to as ‘Event-E’, is selected. The project, which
serves the development of a reference model for the
application domain ‘event management’, was carried out
at the Institute for Information Systems. Here, we will
abstract from the functional aspects of this reference
model. The event management reference model is
documented in [40].

The user has selected the sector ‘Event Strategy’ in the
framework. The attributes of this sector can be viewed in
the attribute window that can be navigated though using a
vertical scrollbar. In addition to the general attribute
group and the attribute group on the model status, which
can be seen in Figure 8, further attributes exist to
characterize the model components such as, creator, date
created, inspector, date of inspection, person responsible
for release, date of release, validity period, etc.

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 57

© 2008 ACADEMY PUBLISHER

Figure 8. Graphic model representation

C. Interaction Design with the Basis Modeling Tool
If the user wishes to carry out changes on a model

version he must first open the modeling tool. This can be
done by clicking the button ‘Edit’. This command opens
the file assigned to the information model component
marked on the ‘Graphic’ card. In Figure 8, the user has
marked the component ‘Event Strategy’ of the reference
model framework ‘Event-E’. Using the ‘Edit’ button he
can open the process model assigned to ‘Event Strategy’
in its current version. This ‘jump’ to the modeling tool is
represented in Figure 9. In addition to reading, changing
or deleting models and model elements, the user can now
use further functionalities of the modeling tool. This
pertains for example, to the graphic arrangement and
grouping of model elements, the creation of model
elements and element attributes, the placing of attributes
or the connection of a model with OLE objects, such as
for example, text documents or slides.

D. Managing Model Versions
The management of the model and model element

versions made in the course of a reference modeling
project (model history) is carried out via the dialog
reachable using the button ‘Versions’ of the graphic
index card (cf. Figure 8). In addition to the most
important model data such as name, type or time of
creation and modification, those responsible for the
change, the type, reason, priority and status of the model
changes, as well as the associated project activities are
recorded. After pressing the button ‘Versions’, the
version management dialog opens for the model

displayed in the ‘Graphic’ window resp. for the model
element selected in the representation window. Figure 10
shows an open version management dialog. The case
represented here is the following: the user ‘Johann
Spuling’ wishes to retrace the history of the model ‘Event
Strategy’ after confirming the adoption of the
modifications he had made to the EPC model ‘Event
Strategy’. For this purpose, he has opened the
corresponding path in the model explorer and called up
the ‘Version Graph’ dialog.

The graphic displayed in the dialog ‘Version Graph’ in
Figure 10 represents the structural relationships stored in
the RMMS database between the versions of the active
EPC model in the ‘Graphic’ window. It can be navigated
using the vertical and horizontal scrollbar. With a simple
mouse click, the user selects the version element
constructs. The attributes of the marked version element
are displayed in the right side of the window
(‘Attributes’). By double-clicking, one can display the
model assigned to the version construct in the ‘Graphic’
window. This way, the user can retrace the complete
developmental path of the constructed information
models. Using the toolbar at the top of the ‘Version
Graph’ window, the user can create new models or model
element versions (‘New’), save attribute changes
(‘Save’), remove marked version constructs (‘Remove’)
or reject respective changes and close the window
(‘Cancel’). The version numbers are automatically
generated by the RMMS. They can however, be changed
by the user at a later point in time.

58 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

Figure 9. Interaction design between RMMS and the ARIS-Toolset

Figure 10. Managing model versions

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 59

© 2008 ACADEMY PUBLISHER

VII. RELATED WORK
Within the framework of a study on method

engineering GREIFFENBERG et al. introduced an approach
for the configuration management of information models
[16; 21]. On the basis of available standards, as well as
the corresponding experience reports (‘best practices’)
from software development, the authors systematized the
requirements on a model versioning tool. The natural
language depictions are represented by diagrams of the
so-called E3-method [21, pp. 99 ff]—and thus, transferred
to a system specification for the versioning of
information models. Which requirements are necessary
for the integration of the approach in professional
modeling tools was not dealt with by the authors.

VOM BROCKE differentiates between new
constructions, version constructions and variant
constructions in his studies on the design and distribution
of construction processes according to the technical
construction theory [45; 46; 46; 47]. Furthermore, the
author emphasizes the versioning of reference models and
enterprise-specific models, on the basis of so-called
reference model components, as noteworthy in
comparison to ‘conventional’ methods for the
construction of reference models [45, pp. 262 f]. He
relates this to the documentation of the evolution of a
stock of models achievable with the version relationships
between constructions in all levels of the construction
process. However, he does not say how these
relationships are to be fashioned.

WARNECKE et al. also allude, within the framework of
an evolution concept for reference models, to the fact that
‘the increasing range of reference models, as well as the
multitude of versions to be managed […] complicate the
use of a reference model’ [50, p. 63] and state that ‘in
addition […] all versions of a reference model must be
managed and available at any time’ [50, p. 63]. The
authors do not however, answer the questions as to how
the versioning of information resp. reference models can
be designed.

Further related work generally deals with the
systematization of reference models, whereby it is, in
fact, the tabulation of reference models that is meant here
and not so much the survey-like textual description of the
actual stock of reference models found in literature [19;
42; 43].

It is indisputable that a model management, based on
the cataloging of reference models, is very useful for the
developers and users of reference models. It systematizes
and facilitates access to the models and is suitable for
supporting the search and selection of reference models.
The said form for the model management is however
based, as a rule, on the assumption of a given stock of
models. Which advanced requirements must be made to
model management, when the changes in a model over
time (model evolution) are also to be considered, is not
dealt with in the said studies.

VIII. DISCUSSION OF THE RESULTS AND OUTLOOK
Procedure models for reference modeling

predominantly give recommendations for an incremental
construction, i. e. the creation of a model step by step,
whereby the development of the model progresses with
each step—they are quasi constructed as a sequence of
‘increments’. Despite this connection, few studies exist
that deal with the problem of model versioning connected
with this incremental development of reference models.
The article at hand has accommodated this fact by
designing an information system that supports the version
management of reference models. The illustrated
approach corresponds to an evolution concept for
reference models, in which know-how from previous
modeling tasks can be ‘conserved’, in order to make it
available within the framework of other problems or
tasks. The concept was designed on the basis of data
structures and a system architecture and implemented in
the form of an application system.

It became clear in the design phase, that the creative
potential in the revisional management and control of the
development and usage of reference models is justified
from the perspective of a basic information model term,
as well as from the perspective of a specific reference
model term. Due to the use-oriented understanding of
reference models in this article, as well as the generally
heterogeneous stock of models, the formation of the
concept and data structures had to be geared toward the
versioning of information models, instead of solely to
reference models. Based on this, the version management
could be designed as a function whose performance in
modeling projects is first permanently carried out, second
serves the evolution of the results to be produced in these
projects (information and reference models) and third
supports the development, as well as the usage of
reference models.

The central thoughts in the prototypical
implementation were first, the implementation of the
versioning as an ‘integrating’ component in a
professional modeling tool and second, the use of version
graphs taken from the field of software engineering. It is
especially these graphs that form a basis for the
navigation of model versions, enriched thanks to their
graphic representations. The result is a prototype that
allows system users to retrace model histories.

It must however, be criticized that the existing
relationships between the information models and model
elements resp. information model versions and element
versions which were used, are ultimately a simplified
interpretation of the relationships existing between a
model and the elements of a model. They provide no
information as to how model elements resp. element
versions are to be aggregated to form a model resp. model
version. The author sees a future challenge in the
extension of the approach to the construction techniques
currently “discussed” in the field of reference modeling,
as well as in the embedding of other forms of version
graphs, such as for example, sequences, trees and acyclic
graphs.

60 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

ACKNOWLEDGMENT
This work has been funded by the German Research

Foundation as part of the research project “Fuzzy-
Customizing” (SCHE 185/25–1).

REFERENCES
[1] IDS Scheer AG (ed.), ARIS Design Platform : Whitepaper,

Saarbruecken: IDS Scheer AG, 2007
[2] Fettke, P. and Loos, P. (eds.), Reference Modeling for

Business Systems Analysis, London: Idea Group
Publishing, 2007

[3] Abrial, J.-R., “Data Semantics,” in: Klimbie, J. W. and
Koffeman, K. L. (eds.), Data Base Management :
Proceeding of the IFIP Working Conference Data Base
Management, Cargèse, Corsica, France, 1–5 April, 1974,
Amsterdam: North-Holland Publ., 1974, pp. 1–60

[4] Asklund, U., Bendix, L., Christensen, H. B., and
Magnusson, B., “The Unified Extensional Versioning
Model,” in: Estublier, J. (ed.), System configuration
management : 9th international symposium ; SCM–9,
Toulouse, France, September 5–7, 1999, Berlin: Springer,
1999, pp. 100–122

[5] Becker, J., Algermissen, L., Delfmann, P., and Niehaves,
B., “A Web Based Platform for the Design of
Administrational Reference Process Models,” in: Zhou, X.,
Su, S. , Papazoglou, M. P., Orlowska, M. E., and Jeffery,
K. G. (eds.), Web information systems – WISE 2004: 5th
International Conference on Web Information Systems
Engineering, Brisbane, Australia, November 22–24, 2004 ;
proceedings, Berlin: Springer, 2004, pp. 159–169

[6] Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., and
Kuropka, D., “Configurative Process Modeling – Outlining
an Approach to Increased Business Process Model
Usability,” in: Khosrowpour, M. (ed.), Innovations through
information technology: 2004 Information Resources
Management Association International Conference New
Orleans, Louisiana, USA ; May 23–26, 2004, Hershey:
Idea Group Publ., 2004, pp. 615–619

[7] Becker, J. and Niehaves, B., “Epistemological perspectives
on IS research: a framework for analysing and
systematizing epistemological assumptions,” Information
Systems Journal 17 (2007), no. 2, pp. 197–214

[8] Bersoff, E. H. , Henderson, V. D., and Siegel, S. G.,
Software configuration management : An investment in
product integrity, Englewood Cliffs: Prentice Hall, 1980

[9] Bischofberger, W. and Pomberger, G., Prototyping
oriented software development : concepts and tools,
Berlin: Springer, 1992

[10] Blechar, M. J. and Sinur, J., Magic Quadrant for Business
Process Analysis Tools, Stamford: Gartner Research, 2006

[11] Budde, R., Prototyping : an approach to evolutionary
system development, Berlin: Springer, 1992

[12] Chen, P. P.-S. , “The entity-relationship model – toward a
unified view of data,” ACM Transactions on Database
Systems 1 (1976), no. 1, pp. 9–36

[13] Conradi, R. and Westfechtel, B., “Version models for
software configuration management,” ACM Computing
Surveys 30 (1998), no. 2, pp. 232–282

[14] Curran, T. A., Keller, G., and Ladd, A., SAP R/ 3 business
blueprint : Understanding the business process reference
model, Upper Saddle River: Prentice Hall PTR, 1998

[15] Delfmann, P. and Knackstedt, R., “Towards Tool Support
for Information Model Variant Management – A Design
Science Approach,” in: Österle, H. , Schelp, J., and Winter,
R. (eds.), Proceedings of the Fifteenth European

Conference on Information Systems, University of St.
Gallen, 2007, pp. 2098–2109

[16] Esswein, W., Greiffenberg, S. , and Kluge, C.,
“Konfigurationsmanagement von Modellen,” in: Sinz, E. J.
and Plaha, M. (eds.), Modellierung betrieblicher
Informationssysteme : MobIS 2002, 9.–11. September
2002, Nürnberg, Bonn: GI, 2002, pp. 93–112 (in German)

[17] Estublier, J., “Software Configuration Management: A
Road Map,” in: Finkelstein, A. (ed.), The future of software
engineering 2000 : [part of the] 22nd International
Conference on Software Engineering, New York: ACM
Press, 2000, pp. 279–289

[18] Estublier, J. and Casallas, R., “Three Dimensional
Versioning,” in: Estublier, J. (ed.), Software Configuration
Management, ICSE SCM– 4 and SCM–5 Workshops,
Selected Papers, London: Springer, 1995, pp. 118–135

[19] Fettke, P. and Loos, P., “Classification of Reference
Models – A Methodology and its Application,”
Information Systems and e-Business Management 1
(2003), no. 1, pp. 35–53

[20] Frank, U., “Conceptual Modelling as the Core of the
Information Systems Discipline – Perspectives and
Epistemological Challenges,” in: Haseman, W. D. and
Nazareth, D. (eds.), Proceedings of the Fifth Americas
Conference on Information Systems (AMCIS 1999) :
August 13–15, 1999, Milwaukee, Wisconsin, Atlanta: AIS,
1999, pp. 695–698

[21] Greiffenberg, S. , Methodenentwicklung in Wirtschaft und
Verwaltung, Hamburg: Kovac, 2004 (in German)

[22] Grochla, E., Garbe, H. , Gillner, R., and Poths, W.,
“Grundmodell zur Gestaltung eines integrierten
Datenverarbeitungssystems : Kölner Integrationsmodell
(KIM),” in: Grochla, E. and Szyperski, N. (eds.),
Arbeitsberichte des BIFOA an der Universität zu Köln, no.
71/ 6, Köln: WISON Verl., 1971 (in German)

[23] Hirschheim, R., Klein, H. K., and Lyytinen, K.,
Information Systems Development and Data Modelling :
Conceptual and Philosophical Foundations, Cambridge:
Cambridge Univ. Press., 1995

[24] Melenovsky, M. J., Business Process Management’s
Success Hinges on Business-Led Initiatives, Stamford:
Gartner Research, 2005

[25] Mendling, J. and Nüttgens, M., “EPC Markup Language
(EPML) – An XML-Based Interchange Format for Event-
Driven Process Chains (EPC),” Information Systems and e-
Business Management 4 (2006), no. 3, pp. 245–263

[26] Mylopoulos, J., “Information Modeling in the Time of the
Revolution,” Information Systems 23 (1998), no. 3/ 4,
pp. 127–155

[27] Noorani, R., Rapid prototyping: principles and
applications, Hoboken: Wiley, 2006

[28] Ram, S. and Ramesh, V., “Collaborative Conceptual
Schema Design: A Process Model and Prototype System,”
ACM Transaction on Information Systems 16 (1998), no. 4,
pp. 347–371

[29] Recker, J., Rosemann, M., van der Aalst, W. M. P., Jansen-
Vullers, M., and Dreiling, A., “Configurable Reference
Modeling Languages,” in: Fettke, P. and Loos, P. (eds.),
Reference Modeling for Business Systems Analysis,
London: Idea Group Publishing, 2007, pp. 22– 46

[30] Recker, J., Rosemann, M., van der Aalst, W. M. P., and
Mendling, J., “On the Syntax of Reference Model
Configuration – Transforming the C-EPC into Lawful EPC
Models,” in: Bussler, C. and Haller, A. (eds.), Business
Process Management Workshops : BPM 2005
International Workshops, Nancy, France, September 5,

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 61

© 2008 ACADEMY PUBLISHER

2005 ; Revised Selected Papers, Berlin: Springer, 2006,
pp. 497–511

[31] Rochkind, M. J., “The Source Code Control System,”
IEEE Transactions on Software Engineering 1 (1975), no.
4, pp. 364 –370

[32] Rosemann, M. and van der Aalst, W. M. P., “A
configurable reference modelling language,” Information
Systems 32 (2007), no. 1, pp. 1–23

[33] Scheer, A.-W., “A Software Product is Born,” Information
Systems 19 (1994), no. 8, pp. 607–624

[34] Scheer, A.-W., Business Process Engineering : Reference
Models for Industrial Enterprises, 2nd ed. Berlin: Springer,
1994

[35] Scheer, A.-W., ARIS – business process frameworks, 2nd
ed. Berlin: Springer, 1998

[36] Scheer, A.-W., Thomas, O., and Adam, O., “Process
Modeling Using Event-driven Process Chains,” in: Dumas,
M., van der Aalst, W. M. P., and ter Hofstede, A. H. M.
(eds.), Process-aware Information Systems : Bridging
People and Software through Process Technology,
Hoboken: Wiley, 2005, pp. 119–145

[37] Sommerville, I., Software Engineering, 6th ed. Munich:
Pearson, 2001

[38] Thomas, O., “Understanding the Term Reference Model in
Information Systems Research: History, Literature
Analysis and Explanation,” in: Bussler, C. and Haller, A.
(eds.), Business Process Management Workshops : BPM
2005 International Workshops, Nancy, France, September
5, 2005 ; Revised Selected Papers, Berlin: Springer, 2006,
pp. 484 – 496

[39] Thomas, O., Adam, O., and Loos, P., “Using Reference
Models for Business Process Improvement: A Fuzzy
Paradigm Approach,” in: Abramowicz, W. and Mayr, H. C.
(eds.), Business Information Systems : 9th International
Conference on Business Information Systems (BIS 2006) ;
May 31-June 2, 2006, Klagenfurt, Austria, Bonn: Köllen,
2006, pp. 47–57

[40] Thomas, O., Hermes, B., and Loos, P., “Towards a
Reference Process Model for Event Management,” in: 10th
International Workshop on Reference Modeling at the 5th
International Conference on Business Process
Management (BPM 2007), 24 –28 September 2007,
Brisbane, Australia, 2007 (to appear)

[41] Thomas, O. and Scheer, A.-W., “Tool Support for the
Collaborative Design of Reference Models – A Business
Engineering Perspective,” in: Sprague, R. H. (ed.),
Proceedings of the 39th Annual Hawaii International
Conference on System Sciences : 4 –7 January 2006,
Kauai, Hawaii, Los Alamitos, CA: IEEE Computer
Society Press, 2006

[42] van Belle, J.-P., A Framework for the Analysis and
Evaluation of Enterprise Models, Cape Town, South
AfricA, University of Cape Town, Dept of Information
Systems, PhD Thesis, 2003

[43] van Belle, J.-P., “Evaluation of Selected Enterprise
Reference Models,” in: Fettke, P. and Loos, P. (eds.),
Reference Modeling for Business Systems Analysis,
London: Idea Group Publishing, 2007, pp. 266–286

[44] van der Aalst, W. M. P., Dreiling, A., Gottschalk, F.,
Rosemann, M. and Jansen-Vullers, M. H. , “Configurable
Process Models as a Basis for Reference Modeling,” in:
Kindler, E. and Nüttgens, M. (eds.), Business Process
Reference Models : Proceedings of the Workshop on
Business Process Reference Models (BPRM 2005), Nancy,
France, September 5, 2005, Nancy, 2005, pp. 76–82

[45] vom Brocke, J., Referenzmodellierung : Gestaltung und
Verteilung von Konstruktionsprozessen, Berlin: Logos,
2003 (in German)

[46] vom Brocke, J., “Design Principles for Reference
Modeling: Reusing Information Models by Means of
Aggregation, Specialisation, Instantiation and Analogy,”
in: Fettke, P. and Loos, P. (eds.), Reference Modeling for
Business Systems Analysis, London: Idea Group
Publishing, 2007, pp. 47–75

[47] vom Brocke, J. and Buddendick, C., “Reusable Conceptual
Models – Requirements Based on the Design Science
Research Paradigm,” in: Hevner, A. R. (ed.), First
International Conference on Design Science Research in
Information Systems and Technology : February 24 –25,
2006, Claremont, CA ; Proceedings, 2006

[48] vom Brocke, J. and Thomas, O., “Designing Infrastructures
for Reusing Conceptional Models – A General Framework
and its Application for Collaborative Reference
Modelling,” in: Abramowicz, W. and Mayr, H. C. (eds.),
Business Information Systems : 9th International
Conference on Business Information Systems (BIS 2006) ;
May 31-June 2, 2006, Klagenfurt, Austria, Bonn: Köllen,
2006, pp. 501–514

[49] Wand, Y. and Weber, R., “Research Commentary:
Information Systems and Conceptual Modeling – A
Research Agenda,” Information Systems Research 13
(2002), no. 4, pp. 363–376

[50] Warnecke, G., Stammwitz, G., Hallfell, F., and Förster, H. ,
“Evolutionskonzept für Referenzmodelle,” Industrie
Management 14 (1998), no. 2, pp. 60–64 (in German)

[51] Weber, R., Ontological foundations of information
systems, Melbourne : Coopers & Lybrand, 1997

[52] Wolff, F. and Frank, U., “A Multi-Perspective Framework
for Evaluating Conceptual Models in Organisational
Change,” in: Proceedings of the 13th European Conference
on Information Systems, Information Systems in a Rapidly
Changing Economy, ECIS 2005, Regensburg, Germany,
May 26–28, 2005, pp. 1283–1294

[53] Zeller, A., Configuration Management with Version Sets :
A Unified Software Versioning Model and its Applications,
Braunschweig, Techn. Univ., PhD Thesis, 1997

 Dr. Oliver Thomas was a research assistant at the Institute

for Information Systems at the Saarland University from 1999
to 2002. In 2002, the institute was integrated into the German
Research Center for Artificial Intelligence (DFKI) as a
department. Dr. Thomas has been the deputy head of the
research department and a senior researcher in this department
since 2003. He also heads the Business Process Management
research cluster at the Institute for Information Systems. His
main research fields are ‘Integrated information systems for
manufacturing, service industries and administration’, ‘Methods
and tools for business process management’, ‘Information
modeling and reference modeling’ and ‘Product-service
systems’. He also lectures at the Saarland University and holds
the courses ‘Information Modeling’ and ‘Reference Modeling’
for the study paths ‘business administration’ and
‘bachelor/ master of information systems’. In addition, Dr.
Thomas holds university teaching positions at University of
Hamburg (Germany), Martin Luther University Halle-
Wittenberg (Germany), and at the Aoyama Gakuin University,
in Tokyo (Japan). Since 2004 Dr. Oliver Thomas is visiting
associate professor at Aoyama Gakuin University.

62 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

