
An Algorithm for Documenting Relationships in
a Set of Reports

Roger L. Goodwin
USDA, National Agricultural Statistics Service, 3251 Old Lee Highway, Room 301, Fairfax, VA 22030

Email: Roger Goodwin@dc-sug.org

Abstract— A typical tabular business report contains a set of
cells. The cells may contain raw numeric values, character
labels, and formulas. This paper will present a bottom-up
algorithm for visually documenting the cells in a set of
tabular reports. The algorithm draws a tree-like structure
in a view port. The nodes in the tree can represent the
either a raw numeric value or a formula. The arcs in the
tree show which nodes share common variables in their
respective formulas. In a requirements driven environment,
this visual documentation allows the programmer and the
system analyst to trace the final programmed reports (i.e.
the final product) back to the requirements documentation.

Index Terms— Business planning, documentation, visual lan-
guages, trees (graphs), hidden lines

I. INTRODUCTION

Statistical agencies conduct follow-up surveys to
obtain additional data on survey respondents for a variety
of reasons. Some of these reasons might be to clarify a
respondent’s answers to the original survey, to measure
the reasons for non-response, to measure the amount of
duplicate data, etc. Consider the problem of tracking the
survey’s cost and progress. Management must monitor
the costs of the survey on a routine basis to ensure that
the actual expenditures do not exceed the budgeted dollar
amounts. Management must monitor the progress of the
survey on a routine basis to ensure that the work will be
completed on time.

Reference [3]1 described a complex programming
environment in which a set of reports needed to be
implemented. The programmer had to implement 10
reports that contained 173 cells where 7 systems were
polled weekly for the information. We documented
the report layouts and sources of the information for
the cells in the reports using the Project Management
Body of Knowledge (PMBOK). We had 127 pages of
formal documentation and no visual documentation.
Section II will give some background information on the
reporting environment. Section III will give details on
the reports. Reference [3] explained how to construct a
tree using the cell references in the tables for additional
documentation purposes. However, the paper did not
include an algorithm. This paper will begin with three

1Portions reprinted, with permission, from R. L. Goodwin, ”Convey-
ing Cell Relationships in a Reporting Environment,” IEEE Southeastcon
Conference Proceedings, Richmond, VA, 2007, pp 87-92, c©2007 IEEE.

tabular reports, then develop a syntax that is suitable
for an algorithm written in Visual Fortran (or any other
complier for the matter) to recognize. The algorithm
must recognize four situations:

1) A raw value in a report.
2) A label instead of a raw value in a report.
3) A calculation in a report.
4) A relationship between two reports.

In this paper, an algorithm will be outlined. Three mod-
ules will be presented using Visual Fortran.

• Main: After the set of tables are read into a matrix
of records, the cell type gets determined by a user-
defined function called celltype(). Then, the
Main module calls another module to draw those
cells. See the next item on Draw4.

• Draw4: This module draws cell relationship 4 de-
fined in Section III-A. Cell relationship 4 is both
a calculation and a relationship cell between two
reports. The remaining three cell relationships have
been omitted, but are much simpler to draw given
this one.

• Hidden: This module detects when a line has
been covered-up (or hidden) behind a node. This is
undesirable in the visual program being presented.
We could identify the situation by simply changing
the line style. Alternatively, we could also perform
some simple calculations and move nodes around
until the lines become fully visible. This will be
discussed in Section VI.

Finally, Section VII gives some run-time analyzes for the
above modules. The Appendix at the end of the paper
shows how the output should look for three of the reports.

II. REPORTING ENVIRONMENT

The Cost and Progress (C&P) system polls other sys-
tems for data. The data is summarized and displayed to the
survey managers. The system is developed and maintained
by Decennial Management Division (DMD) staff. It is
used to track the actual survey costs and the progress
of the survey. The progress of the survey is typically
measured by the number of questionnaires received back.
These questionnaires may be completed interviews as well
as refusals and non-responders. Figure 1 shows the flow

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 41

© 2008 ACADEMY PUBLISHER

of the forms during the operation. The majority of the
payroll costs in this system occur during the interviewing
phase. Overall, we are going to track two items.

• Production payroll costs.
• Questionnaires.

Figure 1. This figure shows how the questionnaires are tracked.
Questionnaires can be tracked either within a system or by a con-
trol file. Direct payroll costs are incurred during the interview phase
at the telephone center and in the field. Payroll costs are directly
proportional to the workload (i.e. the number of questionnaires).
c©2007 IEEE

The next two sections briefly describe each system.
Section II-A describes the systems that track costs. Sec-
tion II-B describes the systems that track progress. See
Figure 1 for an overview. A survey will not even enter the
planning stage without a budget (or a future commitment)
from the Decennial Budget Branch. Once a survey has
been funded and planned, one of the next steps is to print
the follow-up questionnaires. These questionnaires will
either be sent to the telephone centers or to the field
offices, or both (in sequential order). Telephone clerks
and enumerators will contact respondents according to
the survey protocols. Upon completion, the questionnaires
are sent back to the data capture center for check-in and
further processing. Once the questionnaires have been
received and keyed at the data capture center by the clerks,
the C& P System work ends. During the enumeration
period, the employee payroll is summarized and posted to
the C& P System. Although the names of the clerks and
enumerators are of fundamental value to their immediate
supervisors, such detailed data are not necessary to track
the cost of the survey.

The reports are complex as seven systems are being
polled each weekend. Some reports are simple while some
are very detailed. The data collected in the C&P System
can be used to create more technical information such
as calculating the average cost to follow-up on a non-
interview case, and the average cost of the interviewed
case, the variance of these costs, etc.

A. Tracking Costs

This section lists the systems and/or files used for
tracking the direct costs of the survey.

1) DMD Cost Models — The cost models contain
budgeted dollar amounts; with varying scenarios
as to staffing, workloads, etc. Some of the models
include overhead costs (such as holiday pay, and
other benefits) while some do not. Traditionally, the
C&P System uses the direct cost models without the
overheads. The term ’allocated’ in this specification
is used in the general sense. The dollar figure may
or may not include unfunded requests, and some
funding may or may not appear in the operating
plans, depending on where our requests are in the
approval process. The cost models are developed in
advance, before the survey begins.

2) Jefferson Activity Reporting System (JARS) — The
JARS system contains actual payroll data for tele-
phone center employees. The C&P System summa-
rizes the JARS data to obtain direct telephone center
payroll costs. JARS reports actual payroll hours and
direct salaries; no overheads and no benefits.

3) Census Automated Personnel and Payroll System
(CAPPS) — The CAPPS system tracks field em-
ployee payroll costs incurred during the interview
phase of the survey. The CAPPS system con-
tains actual payroll data and reimbursable data for
field employees. The C&P system summarizes the
CAPPS data to obtain direct field costs.

B. Tracking Progress

This section lists the systems and/or files used for
tracking the progress of the survey.

1) The Docu-Print System —- This is where the forms
are printed. Obtain counts of the questionnaires
printed for the survey here — exclude miss prints,
dummy-fill questionnaires, etc.

2) Telephone Center Control File — This is one of
many control files. This particular control file con-
tains the IDs of the questionnaires received by the
telephone center. The completed questionnaires may
be returned to the data capture center or may by
recycled for a field follow-up interview (but not
vise-versa).

3) Operational Control System (OCS) — This sys-
tem contains the IDs of the forms that the Field
(FLD) offices have received. Among other things,
this database contains the outcome codes for each
questionnaire sent for personal visit followup. The

42 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

C&P system summarizes the data to obtain counts
of active cases, completed cases, and non-interview
cases using outcome codes. The C&P System sums
the number of active questionnaires and completed
questionnaires to obtain the total number of ques-
tionnaires.

4) Data Capture — The data capture center is the
final destination for the questionnaires in the survey.
The check-in file contains all of the questionnaire
IDs. The questionnaires are checked-in, imaged, and
keyed by clerks.

III. THE REPORTS

Figure 2. This figure contains ten reports. The Grand Totals Report
contains high level summary information about the survey. Its four
subordinate reports contain more details about the grand totals in
regards to the dollars spent. The cell references are denoted by
letters in parentheses for each report. The relationships of the cells
to each other are not depicted in this figure. c©2007 IEEE

Fig. 2 displays ten business reports for tracking the
cost and progress of a survey from a management’s
perspective. Fig. 2 also shows the hierarchy of ten
reports. For brevity, this paper will concentrate on
the three reports that are circled. The three reports
listed below have cell relationships with-in them and
between them. The Grand Totals report has two
subordinate reports. The cell references appear in letters
in parentheses. The systems being polled appear outside
of the parentheses. Each report has a set of column and
row titles. We wish to show the cell relationships and
the between-cell relationships graphically.

Grand Totals Report:
Total Dollars Total Direct Percent
Budgeted Costs Direct Costs
--
Bud (A) CAPPS/JARS (B) Derived (C)

Sub-Totals Report:

Dollars Direct Percent Hours Hours Percent
Budgeted Costs Direct Costs Budgeted Used Hours Used

--
Telephone Bud (D) JARS(E) Derived(F) Bud (G) JARS(H) Derived(I)
Centers:

Field: Bud (J) CAPPS(K) Derived(L) Bud (M) CAPPS(N) Derived (O)
--
Totals: Bud (P) Derived(Q) Derived(R) Bud (S) Derived(T) Derived (U)

Telephone Center Details Report:

Dollars Direct Percent Hours Hours Percent
Budgeted Costs Direct Costs Budgeted Used Hours Used

--

Phone Intvrs Bud (V) JARS (W) Derived (X) Bud (Y) JARS (Z) Derived (AA)

Coaches/Montrs Bud (AC) JARS (AD) Derived (AE) Bud (AF) JARS (AG) Derived (AH)

Supervisors Bud (AJ) JARS (AK) Derived (AL) Bud (AM) JARS (AN) Derived (AO)

Othr Employees Bud (AQ) JARS (AR) Derived (AS) Bud (AT) JARS (AV) Derived (AU)
--
Totals: xxx (AW) xxx (AX) Blank (AY) xxx (AZ) xxx (BA) Blank (BB)

As input to the algorithm, the column and row titles will
be removed as well as the systems (for now). That just
leaves us with the following three shells. However, for the
program to function properly, the derived columns must
be revised to reflect those cells that they are calculated
from. So, we have the following table shells as the input
file.

A B C=B/A*100 (ITERATION 9)

D E F=E/D*100 G H I=H/G*100 (ITERATION 8)
J K L=K/J*100 M N O=N/M*100 (ITERATION 7)
P=D+J=A Q=E+K=B S=G+M T=H+N (ITERATION 6)
--
V W X=W/V*100 Y Z AA=Z/Y*100 (ITERATION 5)
AC AD AE=AD/AC*100 AF AG AH=AG/AF*100 (ITERATION 4)
AJ AK AL=AK/AJ*100 AM AN AO=AN/AM*100 (ITERATION 3)
AQ AR AS=AR/AQ*100 AT AV AU=AV/AT*100 (ITERATION 2)
AW=V+AC+AJ+AQ=D AX=W+AD+AK+AR=E AZ=Y+AF+AM+AT=G BA=Z+AG+AN+AV=H (ITERATION 1)
--

On the bottom line of the input file, the intention
of using AW=V+AC+AJ+AQ is to reduce the space
needed to draw the nodes on the graph. So, we will use
AW as a label as opposed to the actual calculation. I
know that my total dollars budgeted for the Telephone
Center on the Details Report (cell AW) must equal
to cell D on the Sub-Totals Report. However, this
relationship does not exist between the reports. How
do I include it in the input file? By creating the
syntax, where if, there are two equal signs such
that <label>=<calculation>=<between
report cell>, then <between report cell>
reference connects two tables.

The ”ITERATION” numbers listed to the far right
are reference numbers that will be explained later in
the paper. The use of the underscore ” ” is arbitrary to
delineate the three reports. Once the algorithm reads two
or more delimiters together, then it knows that it is at the
bottom of a new report (reading from the bottom up). The
reader could easily use some other character. Knowledge
of prefix, postfix, or infix evaluation algorithms is
not needed in this paper. Recall that these are simple
business reports with simple totals and percentages. We
are creating visual documentation. Knowledge of stacks
and arrays at an undergraduate level is all that is required.

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 43

© 2008 ACADEMY PUBLISHER

A. Cell Syntax

The cell content in a report can vary depending on if
it is a direct cost, a direct amount of hours used, a total,
a percentage, etc. Our cell syntax can have one of the
following forms.

1) <cell> which represents a direct cost or a direct
amount of hours used in the report. Use the cell
reference in the graphical representation.

2) <label>=<cell> which represents a direct
cost or a direct amount of hours used in the report.
Use the label in the graphical representation.

3) <label>=<calculation> which represents
a calculation in the report, usually a percentage or
a sub-total. Use the label in the graphical represen-
tation.

4) <label>=<calculation>=<between
report cell> which represents a calculation
in a report and a relationship between two reports.
Use the label in the graphical representation.

IV. IMPLEMENTATION DETAILS

The algorithm for drawing the visual documentation of
the three reports in Section III is fairly straight forward.
The business reports given in ref [3] have the typical
columnar form, with sub-totals at the bottom and percent-
ages to the right of a set of columns. Using a bottom-up
programming technique, we begin with the last report on
the input file.

1) Select last report in the list.
2) Begin with the bottom line. Place the calculations

on the graph. If labels are specified, place the labels
in replace of the calculations.

3) At the end of the line, place the operands beneath
the labels (or calculations) as close as possible to
its label (or calculation) on the graph. Draw an arc
from each operand to the label (or calculation).

4) Store any between report cell relationships (pairs)
encountered in an array. Hold them until the entire
set of reports have been placed on the graph.

5) Delete line.
6) Goto Step (1) until no more lines in the report.
7) Draw arcs for relationships between reports.
8) Verify operands are in the table. If missing, output

error message.

Ideally, we place our nodes in steps (2) and (3)
approximately close to each other so that when the
arrows have to be drawn, we do not cross arcs. This
may not always be possible. It should be minimized to
avoid a cluttered tree. Placement of the nodes is rather
arbitrary — particularly at the onset of the algorithm.
However, since this is visual documentation, centering
statements can be easily worked into the algorithm. The
reader may have noticed that some of the information in
the input tables is redundant. For example, with the label
AW appearing in the tree, we are merely verifying that
the nodes V, AC, AJ, and AQ appear in the table
somewhere. When they are read, they can be discarded.

A similar situation occurs with the labels AX, AZ, and
BA and their nodes.

The programmer does not have to add scroll bars to
the visible window — at least in Visual Fortran. The
viewport has the same dimensions as the window. It is
probably best not to make the viewport smaller than
the window. Otherwise, clipping may occur. We do not
want hidden lines behind the nodes to occur. So, some
minimal calculations must take place. Detecting hidden
lines will be discussed in Section VI. This entails saving
the coordinates of the nodes in the window. To implement
the visual documentation for the tables using Visual
Fortran, we need the following built-in procedure and
function calls.

• SETTEXTPOSITION(x, y, t) — Moves to the (x, y)
coordinate on the computer screen. The record t con-
tains the coordinate position of the text previously
displayed on the screen. This procedure only affects
the OUTTEXT and ELLIPSE procedures.

• OUTTEXT(”message”) — Writes the cell reference
letter(s).

• ELLIPSE($GBORDER, x1, y1, x2, y2) — Draws the
circle where (x1, y1) are coordinates of the upper
left-hand corner of the circle and (x2, y2) are the
coordinates of the lower right-hand corner of the
circle.

• MOVETO(x,y, xyt) — Similar to the SETTEXTPO-
SITION procedure, it moves to the (x, y) coordinate
on the computer screen. This procedure only affects
the LINETO function.

• LINETO(x,y) —- Draws a directed line (an arrow)
from the current position to the (x, y) coordinates.

With the above Visual Fortran procedure and function
calls, and our usual Fortran 90 loop and data structure
constructs, we can proceed to the pseudo code in Section
V.

V. PSEUDO CODE

This section outlines some of the pseudo Visual Fortran
code for implementing the automated documentation
for tables. The record table.lines() contains the
three reports. In the procedure main loop, we loop
through each report line, classifying each cell by its type.
Based on the cell type, a procedure is called to draw it.

main

! loop through the report lines
do i ← max lines to 1 by −1

! loop through the cells
do j ← 1 to max cells

cell ← table.lines(i, j)
! is cell a table delimeter?
if cell type(cell) �= 0 then do

- if celltype(cell)= 4 then call Draw4
- if celltype(cell)= 3 then call Draw3
- if celltype(cell)= 2 then call Draw2

44 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

- if celltype(cell)= 1 then call Draw1

end main

Two lists are maintained. One list keeps track of the
nodes that have already been drawn on the screen and it
is called s list. It contains the node labels along with
their (x, y) coordinates. This is useful for identifying the
following situations.

• Neither node appears on the screen. Draw two nodes
and one arrow.

• One node already appears on the screen. Draw one
node and one arrow.

• Both nodes already appear on the screen. Draw one
arrow.

In addition, the list s list is useful for finding hidden
lines. Hidden lines will be discussed in Section VI.

The other list is called b list and it contains those
nodes that represent between-report relationships outlined
in the syntax in Section III-A. The following pseudo code
is used for the Draw4 routine. The node on the far right
in the cell is the between-report relationship cell and will
be identified first, and added to the b list. Since the
general structure of the cell is known, we can proceed
from left to right afterwards.

draw4

- k ← max !max cell size of array
- do while cell(k) �= blank k ← k − 1
- nmax ← k
- add cell(k) to b list !first ”between” report pairs
- k ← 1

if cell(k) not in s list then !first cell to the left

- call SETTEXTPOSITION
- call OUTTEXT
- call ELLIPSE
- add cell(k) to s list
- add cell(k) to b list !second ”between” report

pairs

else call SETTEXTPOSITION
- k ← 2

do while k ≤ nmax

- if not operator(cell(k)) then
if cell(k) not in s list then

- call SETEXTPOSITION !below
- call OUTTEXT
- call ELLIPSE
- call MOVETO
- junk = LINETO
- add cell(k) to s list

else

- call MOVETO
- junk = LINETO

end do

end draw4

As one can imagine, most of the work from these
drawing subroutines will be moving around on the screen
and either writing text, drawing a circle, or drawing an

arrow. Much overhead in terms of maintaining x and y
coordinates is required. The output from the methods
outlined in this paper appears in the Appendix on page 8.
The iterations listed on the right-hand side are from the
outer loop in the main procedure. To obtain this output,
several decisions were made to keep the algorithms
easy to program. The optimal placement of nodes has
not been calculated. The optimal placement of nodes
involves minimizing the amount of hidden lines. Adding
a constant (or subtracting depending on if it is x or y)
to a coordinate is much simpler to program. The reader
can still merely detect a hidden line, and change the line
style without trying to reposition any nodes. Reference
[5, p. 89] gives the following masks for line styles.

Style Mask Internal Windows
Solid #FFFF PS SOLID
Dash #EEEE PS DASH
Dot Dot Dot #AAAA PS DOT

VI. HIDDEN LINES

Figure 3. This figure shows a numerical example of a hidden line.
The line passes through node AW and cannot be seen. To avoid this,
node X should be moved to the left until the line is out of the invisible
plane of node AW .

Hidden lines can be deduced. Take the simple example
in Fig. 3. Given two points, we can use analytic geometry
find the equation of a line using the point-slope formula
in Equation 1.

y − y1 = m(x − x1) (1)

where the slope m = y2−y1
x2−x1

. The end points of our
line are (150, 400) and (500, 110). The slope m is

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 45

© 2008 ACADEMY PUBLISHER

m = 110−400
500−150 = −290

350 . The slope is negative even though
the line appears to have a positive slope because the
upper-left corner of the window is the origin (0, 0). So,
the equation of the line is y = − 29

35x + 3670
7 subject to

150 ≤ x ≤ 500, and 75 ≤ y ≤ 400. The plane containing
the node AW is bounded by four lines — each of which
has a linear equation. If any of these four lines intersect
with our line, then our line is hidden by the plane AW.
The upper right corner coordinate of the plane AW is
(300, 300). So, using Equation 1, we obtain y = 300
subject to 200 ≤ x ≤ 300. It’s easily verified that the two
lines intersect at (201.3, 300). So, the node X needs to
be moved to the left until the system of equations is not
satisfied. Finding the point of intersection of two lines is
hard work and not necessary. This will be discussed in
the next paragraph.

Reference [2] gives a discussion of topic of hidden
lines and the mathematics for removing them in 3D.
Our problem is much simpler. We can formally state this
problem and it’s solution using Linear Algebra. Then,
write a short Visual Fortran function for determining when
two truncated linear equations intersect. The determinant
of two linear equations will let us know if a unique
solution exists. Reference [4] gives the determinant as
a11a22 − a12a21 for the system of equations:

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

So, we re-write our two point-slope equations to get

35x1 + 29x2 = 18350
1x1 + 0x2 = 300

The bounds to the line and the top line on the AW node
are given next.

Line x1 = 150 ≤ x ≤ 500 = Line x2

Line y1 = 110 ≤ y ≤ 400 = Line y2

Node x1 = 200 ≤ x ≤ 300 = Node x2

Node y1 = 300 ≤ y ≤ 300 = Node y2

In our example, the determinant is 35 × 0 − 29 × 1 =
−29 �= 0. Therefore, the solution is unique (in the case
of infinite lines). Next, we must check the bounds. Does
the line lie in the bounds of the line of the AW node?
Yes. So, we again conclude that the line from node V
to node X is hidden by node AW. But the reasoning
as to why is different than in the preceding paragraph.
We did not need to find the point of intersection this time.

The following Visual Fortran function can be used to
determine if a line is hidden by a given node.

function hidden(Line x1, Line y1, Line x2, Line y2,
Node x1, Node y1, Node x2, Node y2)

- hidden = .false.
- ! do the given coordinates make sense?
- if Line x1 > Line x2 then swap the two
- if Line y1 > Line y2 then swap the two
- if Node x1 > Node x2 then swap the two

- if Node y1 > Node y2 then swap the two
- Calculate slope
- Calculate a11, a12, a21, a22

- Calculate the determinant
if (determinant > 0) then
if (Node x1 > Line x1 and Node x2 < Line x2)
and
(Node y1 > Line y1 and Node y2 < Line y2)
then

- hidden = .true.

return hidden
...
answer = hidden(150, 400, 500, 110, 200, 300, 300,
300)

If this function returns a value of TRUE for any one of
the four lines associated with the square box around the
node, move the node that the line is being drawn to. In
our example, we would move the node X to the left. The
function should be modified by the reader where the user
only inputs the upper left-hand corner and lower right-
hand corner of the box to the node and calculates the four
lines associated with the node in question. This would
take some extra programming effort. Also, for practical
purposes, this function should be executed before a line
is drawn. Otherwise, the line would have to be erased by
re-drawing it with the background color of the computer
screen.

VII. SOME SIMPLE ALGORITHM ANALYZES

The problem presented in this paper is to draw the
relationships amongst the cells in a set of reports. This
is done by drawing a tree-like structure. How much work
is performed by the procedures presented? The following
notation will be used in this section. Let l be the total
number of lines for all of the reports. Let c be the
total number of cells for all of the reports. Let n be
the total number of nodes. Let o be the total number
of operators. Since we have four different cell types,
some kind of distribution will have to be assumed to be
able to determine how many times each of the drawing
procedures will be executed. With some insight from the
pseudo code, the following distribution will be assumed.

P (draw cell type i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
10 , if cell type i = 1.
1
10

, if cell type i = 2.
6
10 , if cell type i = 3.
2
10 , if cell type i = 4.

The distribution adds up to 100%. Now for the explana-
tion why this distribution is skewed, and why most of the
probability is at cell type 3. Cell types 3 and 4 contain
the calculations. Thus, once those cells have been parsed
and placed onto the window, then, most likely cell types 1
and 2 do not even need to be drawn. They are retained for
error checking. Cell type 3 has a much larger probability
than cell type 4 because it is not anticipated that a large
amount of the calculations will be directly related to other
report totals. Just as with the within-report relationships,

46 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

we kept the number of lines to a minimum; we also wish
to keep the number of between-report relationship lines
to a minimum.

A. Main

The Main procedure loops through the report lines
and each cell on the lines. We expect to do at most l ×
c × (n + o) iterations. Assuming two directed lines per
node, 2n lines need to be drawn. How much movement
on the screen takes place? Placing the nodes does not
require moving to any particular position. But, placing
text in the viewport and a line in the viewport does. So,
the movement on the screen will be directly proportional
to the number of lines that need to be drawn and the
number of nodes (labels alway accompany nodes).

B. Draw4

The Draw4 procedure has a loop construct in it. It
draws those cells that have cell relationships between
reports. In addition, the procedure must be executed a
number of times by the Main procedure. So, first let’s
look at the loop construct. Consider that a cell can have
a maximum of o + n characters. This includes the o
operators and n operands. The loop will do at most
(o + n − 4) iterations between the two equal signs for a
cell of type 4. Then, in the main procedure, the draw4
procedure will be executed l × 2c

10
.

C. Hidden

The Hidden function has no looping construct in it
— just a group of statements executed in sequence. It
identifies whether or not a line will be hidden behind a cell
or not. To avoid hidden lines in the tree, this function must
be executed before each node is placed in the viewport
(window). The function executes, at a minimum, when
two nodes are in the window and more nodes need to be
drawn. Each node in the list s list must be examined
for a potential hidden line problem to take appropriate
action. So, this procedure gets executed n(n+1)

2
−2 times.

VIII. CONCLUDING REMARKS

This paper outlined a simple procedure for creating
visual documentation for tables. Most of the work per-
formed by the modules involves moving around in the
viewport (window), and drawing lines, circles and writing
labels. When the reports become complex, and the nodes
have been placed in the window, then the issue of hidden
lines occur. This can be an easy situation to program
around. Simply detect the hidden lines and change their
style. An alternative and more complex program would
detect the hidden lines and move nodes until the hidden
lines are fully visible. The latter solution requires an extra
programming effort.

REFERENCES

[1] M. Etzel and K. Dickinson, Digital Visual
Programmer’s Guide, Digital Press, Woburn, MA,
1999.

[2] J. D. Foley and A. Van Dam, Fundamentals
of Interactive Computer Graphics, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1982.

[3] R. L. Goodwin, ”Conveying Cell Relationships in a
Reporting Environment,” IEEE Southeastcon Conference
Proceedings, Richmond, VA, 2007, pp 87-92.

[4] S. I. Grossman, Elementary Linear Algebra (Second
Edition), Wadsworth Publishing Company, Belmonth,
California, 1984.

[5] N. Lawrence, Compaq Visual Fortran: A Guide to
Creating Windows Applications,Digital Press, Burlington,
MA, 2002.

BIOGRAPHY

Roger Goodwin started his civil service career at the
US Census Bureau in 1999. At the Census Bureau, Mr.
Goodwin worked in the Decennial Directorate and the
Economic Directorate as a Mathematical Statistician. Cur-
rently, Mr. Goodwin works for the National Agricultural
Statistics Service at the US Department of Agriculture.
He received his BS in Computer Science in 1988 from
Old Dominion University, his MS in Applied Statistics in
1998 from Old Dominion University, and his certification
in Software Engineering Processes in 2005 from Learning
Tree. He has been the SAS Liaison for the DC SAS
User’s Group (DCSUG) since 2003. Mr. Goodwin is a
member of the Society for Industrial and Applied Mathe-
matics (SIAM), the Institute of Electrical and Electronics
Engineers (IEEE), and the Mathematical Association of
America (MAA). He has presented papers within the
agencies that he has worked for, at the Northeast SAS
User’s Group conferences, at SIAM conferences, and at
IEEE.

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 47

© 2008 ACADEMY PUBLISHER

APPENDIX

Figure 4. This figure shows the output from the pseudo code. The arrows pointing to the nodes show that those nodes are referenced
by that cell. The heavy dotted lines denote the relationships between the reports. The heavy dashed lines denote when hidden lines
occurred. The hierarchy nature of the cells in the reports has been preserved. The arrows tend to go in a single direction and have
been minimized.

48 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

