
Secure Set Union and Bag Union Computation
for Guaranteeing Anonymity of Distrustful

Participants
Stefan Böttcher and Sebastian Obermeier

Department of Computer Science, University of Paderborn, Fürstenallee 11, Paderborn, Germany
Email: {stb, so}@uni-paderborn.de

Abstract— The computation of the union operator for differ-
ent distributed datasets involves two challenges when partic-
ipants are curious and can even act malicious: guaranteeing
anonymity and guaranteeing security. Anonymity means
that the owner of a certain data item cannot be identified
provided that more than two participants act. Security
means that no participant can underhandedly prevent data
items of other participants from being included in the union.
We present a protocol for computing both, the set union
and the bag union of data sets of different participants that
guarantees both properties: anonymity and security even if
participants act malicious, i.e.modify messages or change or
stop the protocol. We prove the correctness of the protocol
and give experimental results that show the applicability of
our protocol in a common environment.

Index Terms— distributed databases, multiparty computa-
tion, secure anonymous union computation, sovereign infor-
mation sharing

I. INTRODUCTION

The technique of sovereign information sharing [1]–
[7] is used for database operations involving sets of
sensitive data from different curious partners. The purpose
of sovereign information sharing is that only the result of
a database operation is revealed, but not the complete
database contents of each partner that have been used for
the database operation. For example, for intersection com-
putation, only the common data tuples shall be revealed.
However, when the union of the data sets D1 . . . Dn, i.e.
D = D1 ∪D2 . . .∪Dn, must be calculated and returned,
there are different requirements that must be fulfilled:
anonymity and security.

The anonymity property ensures that it is impossible to
identify which data set D1 . . . Dn contains a certain data
item found in the resulting union set D. In other words, it
is impossible to identify the owner of a certain data item
of the union in scenarios with more than two participants
as long as less than n − 1 partners cheat. Additionally,
the sizes |Di| of the data sets Di are concealed.

The security property ensures that if one user stops the
protocol at an arbitrary point in time, the damage to the

This paper is based on “Secure Anonymous Union Computation
Among Malicious Partners,” by S. Böttcher and S. Obermeier, which
appeared in the Proceedings of the Second International Conference
on Availability, Reliability and Security (ARES 2007), Vienna, Austria,
April 2007. c© 2007 IEEE.

other users should be minimized, i.e. the malicious partici-
pant should not be able to prevent other participants from
contributing their data to the union. This also includes
strategies to avoid that one user can steal information
and then stop the protocol. Whenever users may act not
only curious but also malicious, it is important to detect
that users act malicious, i.e. that they modify messages
or change the protocol.

However, the approaches [1]–[7] neither guarantee
anonymity nor security for the union operator. This moti-
vates the use of our proposed union computation protocol,
which is described in this article.

A. Example

As an example, we consider several banks that want
to share the names of customers who received loans, but
cannot pay the instalments.

Although the banks want to warn each other about
customers that are not creditworthy anymore, no bank
wants the other banks to know that it was the bank
that has lent money to a non-paying customer. Although
the number and sum of all outstanding credits of a
customer shall be revealed, the outstanding credits of each
singular bank shall be hidden. Thus, the banks focus on an
anonymized union computation. To make sure that a bank
B cannot delete data from the union that is not owned by
B itself, a computation that guarantees that all contributed
data will appear in the union is necessary. For example,
if a bank A is in debt at bank B, A could try to prevent
B from contributing A’s name to the union.

Whenever the amount of outstanding credits per cus-
tomer is important, the computation of the bag union
ensures that all credits of a customer are revealed and
thus can be summed up, while the computation of the set
union would only reveal the fact that a customer went
bust.

Furthermore, we assume that the banks do not fully
trust each other, i.e. no bank wants to risk that another
bank gets knowledge about its particular outstanding
unsafe credits. For this reason, our protocol must take
into consideration that participants might cheat and even
alter the protocol or fake or modify messages in order to
get to know which customers have also non-payed credits
at certain competitors.

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 9

© 2008 ACADEMY PUBLISHER

B. Contributions

We present a solution to the problem of computing the
union D of different data sets D1 . . . Dn of the partic-
ipants P1 . . . Pn that may act malicious. The particular
contributions of our protocol are that our protocol
• does not let participant Pi conclude which other

participant Pj contributes a certain data tuple and
even keeps |Dj | secret

• prevents that a malicious participant Pi excludes
another participant Pj from contributing Pj’s data
Dj to the union D

• does not depend on the use of a third party
• detects when participants change data, or invent or

delete messages
• limits damage to other participants when some par-

ticipants change or delete data or messages or stop
the protocol at an arbitrary point in time

Beyond our previous contribution [8], this article fur-
ther,
• addresses the problem of computing the bag union,

which allows to perform further operations on the
bag union, e.g. sum computation.

• extends the algorithms proposed in [8] by also
computing a secure and anonymous bag union, and
provides an overview algorithm

• shows a business application that benefits from the
proposed protocol

• defines adversary models and argues why the proto-
col is resilient against these attacks

Furthermore, we show experimental results on the time
that is needed for the secure union computation.

II. PROBLEM DESCRIPTION

Definition II.1 A data item d belongs to the set union of
different datasets D1 . . . Dn if it belongs to at least one
data set Dj .

Definition II.2 A data item d occurs k times in the bag
union of different datasets D1 . . . Dn if d is in total k times
contained in the data sets or data bags D1 . . . Dn.

Definition II.3 Anonymity means that Pj cannot identify
the owner or the owners of a data tuple d besides itself.

Definition II.4 Security means that a participant Pk can-
not prevent that a data tuple d of participant Pj occurs
in the computed set union or in the computed bag union,
respectively.

The problem considered is to provide a secure anony-
mous computation of set union or bag union, respectively.

III. ASSUMPTIONS AND REQUIREMENTS

We have the following assumptions regarding each
participant’s behavior:
• Participants contribute the data that they want to

contribute, i.e. a participant Pi that wants to hide
some of its data can exclude this data from its data
set Di before the protocol starts.

• Participants may change messages.
• Participants may stop the protocol execution at every

point in time.
• Participants exchange public keys securely before the

protocol starts.
• Each honest participant stops the protocol when

cheating is detected and notifies the other partici-
pants.

Our protocol must fulfill the following requirements:
• Compute the set union or the bag union D = D1 ∪

D2 . . . ∪Dn of the data sets D1 . . . Dn

• Do not allow the owner of Dj , i.e. Pj , to conclude
which participant Pk owns a data item d.

• Conceal size information |Dj | for all participants Pk

with k 6= j.
• Conceal how many parties own a certain data item

for set union computation.
• Do not use or trust third parties.
• Detect cheating of participants, i.e.

– detect message manipulation,
– detect faulty decryption, and
– detect message suppression.

• Furthermore, if a participant stops the protocol ex-
ecution or is excluded due to cheating, this must
either result in no exposure of data tuples at all, or
the union of the remaining participants’ data must
be completely revealable. After excluding malicious
participants and restarting the protocol, the remain-
ing participants should not be able to change their
contributed data or add new data if data has already
been decrypted, e.g. when using voting schemes.

• Finally, before revealing any data of the union, each
participant must be able to verify that its contributed
data will be considered in the revealed union during
a verification phase. Furthermore, each participant
must be able to check whether the final revealed
union of all data corresponds to the (encrypted) data
on which all participants agreed before, i.e. it must
be able to check whether each other participant acted
fair.

Note that the requirement for anonymity especially
means that it is not possible to detect whether a participant
contributed any data at all. Thus, our protocol explicitly
tolerates participants that only want to learn the union,
but do not contribute any data.

IV. SOLUTION

We first give an overview of the key ideas of our
protocol, and then explain the details of each algorithm
used in our protocol. Section V proves the correctness of
our algorithm.

A. Overview

Our solution can be structured into three phases, where
each phase implements different key ideas to fulfill the
requirements:

10 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

The Anonymous Exchange Phase ensures the anonymi-
zed cyclic exchange of encrypted data records. Depending
on whether the set union or the bag union shall be
computed, the initialization of this phase is different. A
key idea of this initialization is to add dummy data that
can be identified as such after decryption in order to hide
the number of data items that have been contributed by a
participant.

In order to avoid that other participants can conclude
where a data item originated, a second key idea is to
randomly select either an own data tuple, or an already
received data tuple for sending it to the next participant.
This ensures that the receiving participant cannot con-
clude whether the received data tuple originated from the
sending participant or from any other participant. Further-
more, to prevent that participants may successfully group
together and observe the incoming and outgoing data of
a single participant to detect the data that originated from
this participant, a third idea is that each data tuple is sent
along an exchange cycle that is determined by the data
tuple itself.

The Verification Phase verifies that no participant is
excluded from receiving the union. The goal is to check
whether participants cheated during the cyclic exchange
phase, i.e. to detect data suppression or manipulation.
Therefore, first, each participant checks whether he re-
ceived its own tuples in the cyclic exchange phase, and
each honest participant, as soon as he detects cheating,
stops the protocol and notifies the other participants about
the reason.

Whenever the participant has verified that all of its
tuples are contained in the encrypted union, it computes
the result of a hash function hash() to the lexicograph-
ically ordered union D. Second, each participant sends
a part of the calculated hash value hash(D) to all other
participants. Only if all participants have the same union
data and thus the same hash value, this phase is successful.

The Decryption Phase ensures a verifiable decryption
of each encrypted record. The key idea is that after a
participant Pi decrypted the union with its own key, i.e. it
takes away a layer of decryption, the next participant Pi+1

encrypts the data with Pi’s public key in order to check
whether the decryption function was applied correctly.

To simplify our algorithm descriptions, we omit to
repeat the following details for each phase:

• Whenever a message must be sent from participant
Pi to participant Pj , the message is encrypted with
Pj’s public key and signed with Pi’s private key.

• Encryption does not rely on random variables, i.e.
encrypting a value d with public key pk always
results in the same ciphered text.

• The used encryption mechanism is commutative,
i.e. the application order of multiple encryption and
decryption functions does not matter.

B. Anonymous Exchange Phase

Depending on whether the set union or the bag union
should be computed, the initialization of the Anonymous
Exchange Phase differs. Algorithm 1 shows the Set Union
Initialization Phase. First, an amount of dummy tuples
is created for each participant Pi (line 1). Then, it is
shuffled with the real ownData (line 2) and stored into
the sendQueue to hide the size information |Di| of the
data contributed by Pi. To be able to identify the dummy
records later on, each dummy record starts with the word
“dummy” and a random value is appended. Each entry of
the sendQueue is sequentially encrypted with the public
keys of all participants (line 4 - 6).

Algorithm 1 Set Union Initialization Phase for Pi

1: dummy = createDummyRecords()
2: sendQueue = new Queue(shuffle(dummy, ownData))
3: . shuffle tuples and store them in send queue
4: for k=1 to n do
5: encrypt each j ∈ sendQueue with publicKey(Pk))
6: end for
7: return sendQueue()

Algorithm 2 shows the initialization phase for the Bag
Union Computation. As in the set union, the participants
create dummy records which are used for anonymization.
However, in order to ensure that the resulting data in the
sendQueue is unique among all participants, in the bag
union initialization, each data item is concatenated with
a separator “–%–” and sufficiently long randomly created
value (line 3 - 5).

Algorithm 2 Bag Union Initialization Phase for Pi

1: dummy = createDummyRecords()
2: usedData = new Queue()
3: for each j ∈ ownData do
4: usedData.add(concatenate(j, “–%–”, drawRandom()))
5: end for
6: sendQueue = new Queue(shuffle(dummy, usedData))
7: . shuffle tuples and store them in send queue
8: for k=1 to n do
9: encrypt each j ∈ sendQueue with publicKey(Pk))

10: end for
11: return sendQueue()

Then as in the set union, the data is merged and shuffled
with the dummy tuples and encrypted (lines 6 to 10).

After protocol initialization, the cyclic exchange phase
starts, which is shown in Algorithm 3.

To prevent that incoming and outgoing data tuples are
monitored and data origin is inferred from this, each
data tuple is sent on a different cycle which prevents
monitoring even if malicious participants group together
for the following reason. Each message that is sent is
encrypted with the receiver’s public key. The function
computeRecipient(tuple) (Algorithm 3, line 21) assigns
to each data tuple a different cycle along which it is
sent. Therefore, tuples are not passed on the same cycle,
which would imply that all tuples are always sent to the
same next participant, but for each tuple a different next
participant is calculated. For this purpose, each participant
Pj sends an encrypted tuple to that participant that is

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 11

© 2008 ACADEMY PUBLISHER

determined by the function computeRecipient(tuple),
which takes the tuple as input. This function computes
a permutation of the n participants which depends on
the concrete data tuple. A possible implementation of
the function computeRecipient(tuple) is the following:
Hash the tuple into n numbers of the domain Zn, i.e.
s1 . . . sn. To compute a permutation, start with the se-
quential order of all participants and shift participant Pj

by sj units to the right.

TABLE I.
DIFFERENT EXCHANGE CYCLES FOR DIFFERENT TUPLES

Tuple Encr. Tuple Shift Permutation
Smith, John a4fa3 . . . 1,3,1,2 P1P3P2P4

Miller, Tom hu3kj . . . 1,2,0,2 P1P4P3P2

Table I demonstrates the computation of different ex-
change cycles for n = 4 participants. The second column
contains the data tuples encrypted with the public keys
of all four participants. The “shift” column is computed
by applying a hash function on the second column, and
the result of this is cut into n pieces and each piece
is transformed to Z4. The resulting values indicate the
number of positions by which a participant is shifted. The
first permutation results from the following operations
P1P2P3P4 (initial), P2P1P3P4 (P1 shifted 1 position),
P1P3P4P2 (P2 shifted 3 positions), P1P4P3P2 (P3 shifted
1 position), P1P3P2P4 (P4 shifted 2 positions). Whenever
a participant receives a tuple that it has not seen before, it
calculates the permutation, locates its own position within
the permutation, and sends the tuple to the next participant
when the algorithm selects this tuple.

The primary goal of Algorithm 3 is to collect and
distribute the n times encrypted tuples from all partic-
ipants to all other participants in a way that hides the
real owner of a data tuple and eliminates duplicates.
Therefore, each participant sends each n times encrypted
data tuple exactly once to the next recipient indicated by
the computed permutation path.

After computing the queue of tuples to be sent by Pi,
Pi creates a new queue, sendQueueOther for storing
received data tuples (line 2). Furthermore, a receive
thread is started (line 4) that stores the received data
at a random position into sendQueueOther (line 13).
However, a data item that is already present in one of the
queues sendQueue or sendQueueOther is not inserted
a second time (line 12).

First, a random amount of encrypted dummy tuples of
the sendQueue is taken (line 29) and sent to the next par-
ticipant by using the sendTuple procedure. This method
marks each tuple that it is going to send (line 20) to
avoid loops, which would occur due to a repeated sending
of the same tuples again and again. Then, it computes
the recipient of the tuple (line 21) as explained before.
Furthermore, the algorithm computes the difference of
the number of sent and received data tuples, and waits
until this difference drops below a specified threshold
value (line 22 - 23). This synchronization avoids that
a participant flushes its own sendQueue too fast, i.e.

Algorithm 3 Cyclic Exchange Phase for Participant Pi

1: procedure EXCHANGE PHASE(sendQueue)
2: sendQueueOther = new Queue() . store rcv. tuples
3: receivedTuples = 0; sentTuples = 0
4: RECEIVETHREAD.START()
5: SENDTHREAD.START()
6: end procedure
7:
8: procedure RECEIVETHREAD.RUN()
9: repeat

10: tuple = receiveTupleFromOtherParticipant()
11: receivedTuples++
12: if tuple /∈ (sendQueue ∪ sendQueueOther) then
13: sendQueueOther.addAtRandomPosition(tuple)
14: end if
15: until no tuple is received for time t > abort time
16: end procedure
17:
18: procedure SENDTUPLE(tuple)
19: sentTuples++
20: markTupleAsSentInItsQueue(tuple)
21: sendMessage(tuple, computeRecipient(tuple))
22: while (sentTuples - receivedTuples) > threshold do
23: wait() for receivedTuples increase
24: end while
25: end procedure
26:
27: procedure SENDTHREAD.RUN()
28: for random(1n) times do
29: tuple = SendQueue.getUnmarkedDummyTuple()
30: SENDTUPLE(tuple)
31: end for
32: while ∃ unmarkedTuple ∈ sendQueue do
33: if random(1 . . . #participants) == j) then
34: SENDTUPLE(sendQueue.getUnmarkedTuple())
35: else
36: tuple = sendQueueOther.getUnmarkedTuple()
37: if tuple 6= NULL then SENDTUPLE(tuple) end if
38: end if
39: end while
40: repeat . forward data
41: tuple = sendQueueOther.getUnmarkedTuple()
42: if tuple 6= NULL then SENDTUPLE(tuple) end if
43: until no tuple is received for time t > abort time
44: end procedure

without having received other participants’ tuples. Since
this would give malicious participants the possibility to
draw conclusions regarding the data origin, our algorithm
prevents this behavior.

After the dummy tuples have been sent (line 28 - 31)
and while the sendQueue contains tuples that have not
been sent yet, i.e. unmarked tuples (line 32), a random
number is drawn (line 33), and used to determine whether
an own tuple or a tuple of a different participant is
sent next. With a chance of 1

#participants , an unmarked
data tuple of the sendQueue is sent and marked as
sent by the procedure sendTuple (line 34). Otherwise,
a tuple of the queue sendQueueOther is taken and
sent (line 36). When the while-loop is completed, the
sendQueue does not contain unmarked items anymore,
but the sendQueueOther may contain new and un-
marked data tuples, and tuples can be received later. These
tuples must also be forwarded to the other participants
(line 40 - 43). In order to avoid that participants can draw
conclusions on the number of provided data tuples, our
algorithm prevents the notification of other participants
when the sendQueue is empty. Thus, the algorithm
terminates when for a sufficiently long time no data tuple

12 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

has been received.
Since each participant sends by chance an own tuple or

somebody else’s tuple, a participant Pj cannot definitely
determine whether the received tuple originates from the
previous participant of the permutation cycle, or from
another participant of the permutation cycle. Furthermore,
the tuple owner may appear at any position within the
permutation cycle.

C. Verification Phase

Algorithm 4 is used for verifying that no participant
cheated in Algorithm 3, e.g. by suppressing or manipu-
lating another participant’s data tuples. If no participant
cheated, all participants have the same data tuples and
the contributed data of each participant, which can be
found in the sendQueue, is found in the resulting union
set D (line 1). After that, each participant sorts the
received data lexicographically (line 2), and generates
a hash value by applying a hash function (line 3) on
which all participants agreed prior to protocol execution.
To prove that a participant has not cheated, it cuts out a
participant specific substring of the complete hash value
(line 4) and broadcasts it (line 5). After receiving all other
participant’s substrings (line 6), a comparison between
the concatenated received hash-substrings (line 7) and the
self-generated hash value is done (line 8). If no participant
has cheated, these values correspond to each other.

Algorithm 4 Verification Phase for Participant Pj and a
Set D of All Received Data Tuples

1: if D does not contain all tuples of the sendQueue then error
2: D = sortLexicographically(D)
3: hash = hash(D)
4: proof = hash.substr(fromPos:

“
(j − 1) ·

l
|hash|

#participants

m”
+ 1,

toPos: j ·
l

|hash|
#participants

m
)

5: broadcast(proof)
6: while not received all other proofs do wait()
7: completeProof = proofOf(P1)+proofOf(P2)+. . .+proofOf(Pn)
8: if completeProof == hash then ok else error

Example IV.1 The following example demonstrates the
concept of the verification:

Hash = l9j3sflkj2︸ ︷︷ ︸
P1

ki87fre3nj︸ ︷︷ ︸
P2

. . .8jht42dr4s︸ ︷︷ ︸
Pn

Participant P1 broadcasts the first part of the union’s hash
value, P2 the second part, etc.

D. Decryption Phase

The Decryption Phase (Algorithm 5) is started only
if the prior Verification Phase has been successfully
completed.

The participant P1 is the first to decrypt the complete
union and send it to P2 (line 3). Pi with i > 1 then
receives all data tuples of the union (line 5), and checks
whether Pi−1 decrypted correctly (line 6) by encrypting
the received plain text with the public keys of all par-
ticipants that decrypted before, and comparing whether

Algorithm 5 Decryption Phase for Participant Pj and
Union D

1: procedure DECRYPTION
2: if j=1 then
3: sendData(decrypt(D), To: P2)
4: else
5: receivedUnion = receiveTuples(from: Pj−1)
6: CHECKDECRYPTION(receivedUnion, j − 1)
7: sendData(decrypt(receivedUnion), To: Pj+1)
8: end if
9: receivedUnionPlain = receiveTuples(from: Pj−1)

10: CHECKDECRYPTION(receivedUnionPlain, j)
11: sendTuples(receivedUnionPlain, To: Pj+1)
12: end procedure
13:
14: procedure CHECKDECRYPTION(ReceivedTuples, k)
15: decryptCheck = ReceivedTuples
16: for i=1 to k do
17: encrypt each j ∈ decryptCheck with publicKey(Pi)
18: end for
19: if not decryptCheck equals (D) then error
20: end procedure

the encrypted values correspond to those values that Pi

received (line 14 - 20). If this test is successful, Pi

decrypts the tuples, i.e. one more layer of the encryption
is decrypted, and sends them to the next participant
Pi+1 (line 7), where Pn sends to P1. After one cycle,
participant P1 will be the first that receives the plain
text and executes line 9. Again, P1, checks for correct
decryption and forwards the plain text of the union to the
next participant. In the end, all participants have learned
the union.

If one of the CHECKDECRYPTION calls (line 6 and 10)
is not successful, the participant that detects the cheating
will announce that the previous participant Pj−1 has not
decrypted correctly and has cheated, and thus Pj−1 is
excluded in a second run of the Union Protocol. If Pj

wrongfully accused Pj−1 of cheating, Pj−1 itself can
broadcast the decryption to prove that it acted fair.

To ensure that the tuples of the fair participants can still
be decrypted but not changed anymore like it would be
possible if the complete algorithm would be restarted, the
following optional check of Algorithm 6 can be included
after the restarted protocol has finished.

Algorithm 6 Optional Tuple Check for Restarted Algo-
rithm After Excluding a Cheating Partner Pc

1: procedure CHECK(plainUnionNew, encryptedUnionOld)
2: return {t ∈ plainUnionRestart |
3: encrypt(t, keys(P1 . . . Pn)) ∈ EncryptedUnionOld}
4: end procedure

Algorithm 6 prevents participants from adding data
to the union when the algorithm is restarted and the
participants may know parts of the union as follows.
First, it restarts Algorithms 1 to 5 of the protocol and
encrypts the plain union data received by this repeated
protocol execution with the public keys of all participants
including the cheaters (line 3). Second, it selects only
those tuples of plainUnionRestart that have been in the
encrypted union encryptedUnionOld of the first protocol
run (line 2-3). Tuples of plainUnionRestart that have
no corresponding encryption in encryptedUnionOld

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 13

© 2008 ACADEMY PUBLISHER

have been added in the second execution of the union
algorithm, and should not be considered. Encrypted tuples
of encryptedUnionOld that have no corresponding plain
text in the union plainUnionRestart of the restarted
protocol are either tuples of the cheating participant Pc,
or the owner of the data deleted its own data. However,
a cheating participant cannot prevent that the data of
another fair playing participant Pj is excluded from the
union if the fair playing participant Pj wants these data
to be considered within the union.

The complete protocol can be found in Algorithm 7.
Depending on whether the set union or the bag union must
be computed, Algorithm 1 or Algorithm 2 is executed for
initialization. After the successful execution of Algorithm
3, each participant owns the encrypted union (line 6).
Only when the Verification Phase is successful, tuples
are decrypted by Algorithm 5 (line 8). If cheating is
detected within this phase, the cheater is expelled, and the
complete protocol is restarted (line 12). However, since
some participants may already know the encrypted union,
only those tuples that have been in the initial union are
considered (line 13 - 14).

Algorithm 7 Protocol Overview
1: if SetUnion then
2: sendQueue = Algorithm 1
3: else
4: sendQueue = Algorithm 2
5: end if
6: EncryptedUnion = Algorithm 3 (sendQueue)
7: if Algorithm 4 (sendQueue, EncryptedUnion) is ok then
8: PlainUnion = Algorithm 5 (Union)
9: if Algorithm 5 is ok then

10: return plainUnion
11: else
12: plainUnionRestart = Algorithm 7(w/o cheater)
13: return Algorithm 6 (plainUnionRestart,
14: EncryptedUnion)
15: end if
16: end if

V. CORRECTNESS

We define the behavior of several adversary models and
argue why these malicious attacking models do not harm
our protocol. In the following, we call the cyclic exchange
phase of our protocol, i.e. Algorithm 3, “Phase 1”, and
the decryption phase, i.e. Algorithm 5 and Algorithm 6,
“Phase 2”.
The observer inspects all messages, but does not con-
tribute any data. He wants to learn the union and the data
that is contributed by certain participants.
The phase 1 deleter deletes some messages that he is
requires to route in the cyclic exchange phase in order to
reduce the number of data items in the union.
The phase 1 modifier modifies data within the cyclic
exchange phase without knowing what he is actually
modifying.
The phase 2 deleter stops the protocol in phase 2 after
he learned about data items.

The phase 2 modifier tries to modify the message in
phase 2 after he learned about the plain text in order to
let other participants see a different union than he sees.

Lemma V.1 The origination of an encrypted data tuple
d containing relevant information is disguised during and
after the execution of Algorithm 3 if participants do not
form cheating groups.

Proof: The first data tuple that is received by a
participant Pj is a dummy tuple, this does not violate any
privacy. The second tuple that is received may originate,
with a chance of 1

n , by Pprevious. The chance that this tuple
originates from a different participant is therefore n−1

n .
A participant that receives a data tuple can therefore not
exactly know where a certain tuple originated.
Even if participants group together in order to cheat,
and monitor the incoming and outgoing data of a certain
participant Pj in order to get to know all data tuples
originating at Pj , all remaining participants must group
together to learn of Pj’s data since Pj may send encrypted
messages to all participants depending on the permutation.
This, however, would also be possible when all partici-
pants but Pj run the union algorithm a second time on
the data of {P1 . . . Pn}\Pj and compare with the union
{P1 . . . Pn} to which Pj contributed its data. Therefore,
this kind of deanonymizing that appears when participants
group together is inevitable for the union operator.

Lemma V.2 For set union computation, the number of
participants owning a certain data tuple d is disguised
during and after the execution of Algorithm 3.

Proof: Assume, two or more participants Pj and
Pk own the data tuple d. The encryption of d results in
the same encrypted tuple de and in the same permutation
of participants, i.e. the same cycle where the tuple is
sent. Let Pj be the first participant who sends the tuple
de. Each participant that receives the tuple and has not
seen de before, forwards de some time when the random
function chooses de. However, a participant Pk that owns
de as well will not add the received tuple de to any send
queue, since Pk’s own data item – which is equal to de

– is already in the sendQueue or has already been sent.
Therefore, a tuple de is only sent once by each participant,
no matter how many participants own the tuple.
The only information that may be leaked is that a partic-
ipant Pj that has a tuple d may get to know that some
other participant Pk has the tuple as well, but it will not
know how many other participants also have d.

Lemma V.1 and V.2 ensure that the observer cannot
identify the data tuples contributed by a certain par-
ticipant. However, the observer’s behavior to reject to
contribute any own data except dummy tuples is tolerated
by the anonymity assumption.

Lemma V.3 After the successful execution of Algorithm
4, (a) each participant’s encrypted data is found in the
resulting union set, and (b) each participant received the
same data.

14 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

Proof: If some participant would not find its data
in the union, it would stop the algorithm and never
decrypt something. In this case, Algorithm 4 would not
be successful, therefore (a) is fulfilled.

(b) is fulfilled since each participant contributes a part
of the union’s hash value. If a participant Pj would have
a different union set, the resulting hash value and cor-
responding substring that Pj calculated would extremely
unlikely match the concatenated hash value calculated by
another participant Pi. Since different hash values indicate
that cheating occurred, the protocol would stop without
revealing any plain text data.

Lemma V.3 ensures that the occurrence of a phase
1 deleter and phase 1 modifier is detected in the
verification phase, and thus no tuple will be decrypted.

Lemma V.4 If a participant Pc stops protocol execution
in Phase 2, i.e. after the Verification Phase was successful,
all tuples (except the tuples of Pc) are decryptable, and no
further tuples can be provided anymore.

Proof: If a participant Pc cheats and stops the
protocol during the Decryption Phase, Pc is identified
and the complete protocol is started again without Pc. To
ensure that the other participants’ data is still decryptable,
i.e. the union verified in algorithm 4 can be decrypted
(except the tuples of Pc), only those tuples that can be
found in the first and in the second run of the protocol
are considered (Algorithm 7, line 12 - 14). This ensures
that in the second run, participants cannot change their
own tuples or add new tuples.

Lemma V.4 ensures that the phase 2 deleter cannot
harm the data of other participants. A refused decryption
of the phase 2 deleter does not lead to data loss since
each participant can identify its own data. Thus, the restart
of the protocol having the deleter expelled will reveal
the same data excluding the data of the phase 2 deleter.
Although the phase 2 deleter may have learned the union
in this case, the behavior of the phase 2 deleter leads to
the same result as the observer’s behavior does.

The phase 2 modifier will be identified by the next
participant in the decryption phase, since the proof of
correct decryption will fail (Algorithm 5, line 5).

If a participant combines multiple attacks, the first of its
attacks could be detected as described, and the attacking
participant is excluded.

VI. EXPERIMENTAL RESULTS

We have implemented our protocol as a prototype in
order to evaluate what impact the size of the union and
the number of participants have on the exchange speed.

We have used Java as programming language and the
Bouncycastle Cryptographic Provider [9] to encrypt and
decrypt each tuple by using RSA encryption. Furthermore,
we have used SHA-1 as hash function for verifying that
each participant has the same data.

To generate the test set, we have extracted a part of
the Paderborn telephone directory containing about 6,000
entries, each entry containing between 150 and 300 bytes.

0

2

4

6

8

10

12

14

16

0,3 MB 0,6 MB 1 MB 1,5 MB 3 MB

Time in s

Total Union Size (3 Participants)

Decryption

Exchange and Verification

Encryption

Figure 1. Varying union size and constant number of 3 participants.
c©2007 IEEE

0

1

2

3

4

5

6

3, 0.33 MB 5, 0.2 MB 7, 0.14 MB 10, 0.1 MB

Time in s

Nr. of Participants, Data of each Participant

Decryption

Exchange and Verification

Encryption

Figure 2. Varying number of participants and 1MB constant union size
c©2007 IEEE

In total, the set has a size of approximately 1MB. When
we vary the number of participants, we split this data
into n parts of equal size, so each participant owns 1

n th
of the 1MB union. The experiments have been performed
on Intel Core2Duo 6700@2,66Ghz machines with 4 GB
RAM and have been repeated 20 times to get the average
execution times.

Figure 1 shows the time needed for each phase when
we vary the total size of the union, but hold the number of
participants constant to three. The decryption phase takes
very long compared to the other phases because it uses the
RSA algorithm, which is known to be time consuming.
However, our investigation focuses on the impact of an
increasing union size and of an increasing number of
participants on the total time. Our solution does not rely
on RSA, therefore, cryptographic public-key algorithms
like elliptic curve algorithms [10] that are known to be
faster can speed up the encryption and decryption phase.
To conclude this experiment, we can see that the time
needed is linear to the union size.

Figure 2 shows the time that is needed for each phase
of the algorithm execution having a constant union size
but a varying number of participants. This means, for an
increasing number of participants, the amount of data each
participant contributes decreases. We can see that the total
time of the algorithm execution is almost independent
of the number of participants. This can be explained
as follows: Each participant receives and sends only
the amount of data of the resulting union size. Having

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 15

© 2008 ACADEMY PUBLISHER

an increasing number of participants in total, a single
participant still sends each tuple only once to the next
calculated participant. This means, the parallelism in the
exchange phase increases to the same extend as the overall
data transfer.

To summarize the experiments, we have seen that the
exchange time is almost independent of the number of
participants, and grows linearly to the total union size.

VII. RELATED WORK

Several multiparty computation approaches have been
proposed in order to implement database operators that
reveal no more than the result, e.g. [1]–[7]. These ap-
proaches are called sovereign information sharing, since
each participant will not reveal more data than shown in
the query result. However, current approaches have the
shortcoming that participants must act fair and are not
assumed to change the protocol. For example, algorithms
for computing the intersection of two databases [1]–[4]
reveal the intersection only to a single participant and
assume that this participant will send the intersection
to the second partner as well. Our approach focuses on
participants who may try to cheat and stop the protocol
at an arbitrary point in time, e.g., after they received
the union of the data. Thus, our assumed participant
behavior follows [11], [12], which propose a solution for
intersection computation that reduces the damage in case
that participants cheat or stop the protocol.

[7], [13] propose a special co-processor hardware for
the encryption and the calculation of sovereign joins.
However, special purpose hardware must be bought and
participants have to trust the manufacturer of the hardware
chip.

[14] proposes a technique for privacy preserving query
processing using third parties, but does not consider
malicious partners. The use of third parties, which is also
proposed by [15], [16], involves the risk that third parties
behave malicious in terms of deleting data or forming
cheating groups, which may be the case if control over
third parties is reached by a computer virus or trojan
horse.

In addition, approaches tackling the sovereign infor-
mation sharing problem do not consider data anonymity,
i.e. to keep the origin of each data tuple secret. When the
union operator must be applied, this property is especially
relevant in order to preserve the origin of the data.

Data anonymity for voting and election mechanisms
is also a topic in the cryptographic community, e.g.
[17]–[20]. However, these mechanisms are proposed for
counting the number of votes for a previously fixed set of
possible candidates, and not for the database union oper-
ator. [19], e.g., proposes a voting protocol in combination
with a broadcast protocol. The approach is comparable
with a physical black box containing padlocks. Every
time a participant casts his vote, he removes a padlock
until in the end all votes are visible to the last voter,
who passes the result in addition to a voter’s proof to
each participant. However, this protocol relies on the fact

that the last participant must play fair. If he dislikes the
result, he could stop the protocol execution and prevent all
other participants from learning the result. To solve this
problem, [18] proposes a special trusted voting authority
that always plays fair, which is in fact a trusted-third party.
In comparison, our protocol works correctly without such
a trusted authority.

If an untrusted third party is available, [21], [22]
show how to use this untrusted third-party for fair data
exchange. A fair exchange can be guaranteed for items
belonging to the categories revocable or generatable.
However, since database content is information that is
in many cases neither revocable nor generatable, the
proposal of [21], [22] to revoke the information does
not work. In contrast, our protocol does not rely on a
certain item category; it is useful for non-revocable and
non-generatable items as well.

Other cryptographic approaches focus on receipt-
freeness, which means that a voter must not be able
to prove that a particular vote was casted by him in
order to prevent “vote buying” or vote extortion [20],
[23]. Therefore, vote mechanisms should have no means
to construct a receipt that allows a participant to prove
the content of his vote to a third party. However, within
our scenario, participants may act malicious and change
other participants’ data if they get in contact with them.
Thus, each participant must be able to stop the complete
protocol in case his encrypted data was changed or deleted
before it is possible to decrypt the first vote.

To guarantee anonymity, mix-networks have been pro-
posed by [24], [25]. However, the voting authority and the
mix-networks could manipulate by aborting the complete
voting process in case of an unpopular result. Addition-
ally, the authority may publish a “trend” before it stops the
protocol in order to make participants change their vote in
a renewed voting when the participants know such a trend.
Furthermore, when practical applications within business
environments come into consideration, third parties are
often rejected due to political reasons. In comparison, our
approach does not need any third party authority and is
also usable for sets with previously unknown data.

Our approach computes the union of different partici-
pants’ databases and guarantees that size information like
|Dj | is concealed. It also guarantees that a participant Pk

is not able to conclude which other databases Pj contain
a certain data tuple d of the computed union in scenarios
with more than two independent participants.

To summarize, our protocol does not rely on third
parties and it allows to detect whether participants act
malicious, i.e. whether a participant changes the protocol
and modifies messages. If a participant stops the protocol,
either no tuple of the union is revealed, or the tuples of the
fair playing participants may still be revealable, but not
changeable. This ensures that malicious participants can-
not prevent the union from containing other participants’
data.

16 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER

VIII. SUMMARY AND CONCLUSION

Union computation among multiple participants that
may behave malicious involves two challenges that have
been addressed in this article: data anonymity and mali-
cious participant behavior.

We have presented both, a set union and a bag union
computation protocol, both of which preserve data tuple
anonymity and detect cheating of participants. Further-
more, our approach allows each participant to verify the
occurrence of its data within the union before a single
data item of the union is revealed in plain text. Our
algorithm consists of three phases, namely the exchange
phase to guarantee anonymity, the verification phase that
detects cheating, and the decryption phase that ensures
that all participants get to know the computed union by
a verifiable decryption of the unified data in a distributed
fashion.

In order to prove the correctness of our protocol, we
have defined several adversary models, and have shown
that our protocol is resilient against these kinds of attacks.

Our experimental results have shown that the execution
time of the algorithm mostly depends on the size of
the union. Since increasing union sizes mean increasing
gain for each individual participant, the additional time
for growing union sizes is still reasonable and linearly
scaling, like the experimental results pointed out.

Thus, our contribution is useful for many problems that
require a union computation of different data sources, and
must rely on both data anonymity and security.

REFERENCES

[1] R. Agrawal, A. Evfimievski, and R. Srikant, “Informa-
tion sharing across private databases,” in SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data. New York, NY, USA:
ACM Press, 2003, pp. 86–97.

[2] C. Clifton, M. Kantarcioglu, X. Lin, J. Vaidya, and M. Zhu,
“Tools for privacy preserving distributed data mining,”
2003.

[3] M. Freedman, K. Nissim, and B. Pinkas, “Efficient private
matching and set intersection,” in Advances in Cryptology
— EUROCRYPT 2004., 2004.

[4] B. A. Huberman, M. Franklin, and T. Hogg, “Enhancing
privacy and trust in electronic communities,” in ACM
Conference on Electronic Commerce, 1999, pp. 78–86.

[5] L. Kissner and D. X. Song, “Privacy-preserving set op-
erations.” in Advances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference, 2005,
pp. 241–257.

[6] R. Agrawal and E. Terzi, “On honesty in sovereign in-
formation sharing.” in 10th International Conference on
Extending Database Technology, Munich, Germany, 2006,
pp. 240–256.

[7] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li,
“Sovereign joins,” in Proceedings of the 22nd International
Conference on Data Engineering, Atlanta, USA, 2006.

[8] S. Böttcher and S. Obermeier, “Secure anonymous union
computation among malicious partners,” in ARES ’07:
Proceedings of the The Second International Conference
on Availability, Reliability and Security. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 128–138.

[9] “Bouncy castle open source cryptographic package,”
http://www.bouncycastle.org, 2006.

[10] V. S. Miller, “Use of elliptic curves in cryptography,” in
Lecture notes in computer sciences; 218 on Advances in
cryptology—CRYPTO 85. New York, NY, USA: Springer-
Verlag New York, Inc., 1986, pp. 417–426.

[11] S. Böttcher and S. Obermeier, “Sovereign informa-
tion sharing among malicious partners.” in Secure Data
Management, ser. Lecture Notes in Computer Science,
W. Jonker and M. Petkovic, Eds., vol. 4165. Springer,
2006, pp. 18–29.

[12] S. Obermeier and S. Böttcher, “Secure computation of
common data among malicious partners,” in Interna-
tional Conference on Security and Cryptography (Secrypt),
Barcelona, Spain, 2007.

[13] S. W. Smith and D. Safford, “Practical server privacy with
secure coprocessors,” IBM Syst. J., vol. 40, no. 3, pp. 683–
695, 2001.

[14] F. Emekci, D. Agrawal, A. E. Abbadi, and A. Gulbeden,
“Privacy preserving query processing using third parties,”
in Proceedings of the 22nd International Conference on
Data Engineering, ICDE, Atlanta, USA, 2006.

[15] S. Ajmani, R. Morris, and B. Liskov, “A trusted third-party
computation service,” MIT, Tech. Rep. MIT-LCS-TR-847,
2001.

[16] N. Jefferies, C. J. Mitchell, and M. Walker, “A proposed
architecture for trusted third party services,” in Cryptog-
raphy: Policy and Algorithms, 1995, pp. 98–104.

[17] J. D. Cohen and M. J. Fischer, “A robust and verifiable
cryptographically secure election scheme,” in FOCS85.
Portland: IEEE, 1985, pp. 372–382.

[18] A. Kiayias and M. Yung, “Self-tallying elections and
perfect ballot secrecy,” in Public Key Cryptography — 5th
International Workshop on Practice and Theory in Public
Key Cryptosystems, 2002, pp. 141–158.

[19] J. Groth, “Efficient maximal privacy in boardroom voting
and anonymous broadcast,” in Financial Cryptography,
LNCS 3110, 2004, pp. 90–104.

[20] J. Benaloh and D. Tuinstra, “Receipt-free secret-ballot
elections (extended abstract),” in Proceedings of the 26th
annual ACM symposium on Theory of computing. New
York, NY, USA: ACM Press, 1994, pp. 544–553.

[21] M. K. Franklin and M. K. Reiter, “Fair exchange with
a semi-trusted third party (extended abstract),” in ACM
Conference on Computer and Communications Security,
1997, pp. 1–5.

[22] N. Asokan, M. Schunter, and M. Waidner, “Optimistic
protocols for fair exchange,” in Proceedings of the 4th
ACM conference on Computer and communications secu-
rity. New York, NY, USA: ACM Press, 1997, pp. 7–17.

[23] M. Hirt and K. Sako, “Efficient receipt-free voting based
on homomorphic encryption,” in Eurocrypt, ser. Lecture
Notes in Computer Science, vol. 1807, 2000.

[24] M. Abe, “Mix-networks on permutation networks,” in
ASIACRYPT ’99: Proceedings of the International Con-
ference on the Theory and Applications of Cryptology and
Information Security, 1999, pp. 258–273.

[25] Y. Desmedt and K. Kurosawa, “How to break a practical
MIX and design a new one,” Lecture Notes in Computer
Science, vol. 1807, 2000.

Stefan Böttcher is a professor of computer science at the
University of Paderborn, Germany. He works in the areas of
databases, XML, query optimization, mobile transactions, access
control, security and privacy.

Sebastian Obermeier received his Diploma in computer science
from the University of Paderborn, Germany, in 2005.

He is currently a doctorate candidate at the University of
Paderborn and a fellow of the International Graduate School
“Dynamic Intelligent Systems”. His research interests include
database security and privacy, as well as distributed transaction
execution within mobile ad-hoc networks.

JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008 17

© 2008 ACADEMY PUBLISHER

