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Abstract— Large-scale software-based systems warrant
lengthy development cycles during which there is a constant
evolution of user needs and technology specifications. It is
imperative that in order to function satisfactorily the system
components accommodate change. However, the traditional
process of development advises baselining requirements, as
opposed to architecting the system such that it supports
evolution. We propose the construction of systems based on
Capabilities to accommodate functional changes in a non-
intrusive manner. Capabilities are functional abstractions
designed to exhibit properties of stability — high cohesion,
low coupling, and balanced abstraction levels — which pro-
mote an underlying change-tolerant framework. To measure
these characteristics we explore two algorithms — Synthesis
and Decomposition — based on polar approaches to problem
solving. The synthesis algorithm measures stability proper-
ties of detailed rudimentary elements to determine which
aggregates are Capabilities. In contrast, the decomposition
algorithm identifies Capabilities by evaluating higher-level
abstractions that represent various functionalities of the
system to be developed. Upon empirical analysis (of a library
system) we determine that neither approach is sufficient in
isolation. Therefore, we formulate a computationally viable
algorithm by reconciling specific aspects of measurement
from the synthesis and decomposition approaches. In par-
ticular, it uses the cohesion and coupling measures as defined
by the decomposition algorithm and the abstraction level as
determined by the synthesis algorithm. We construct specific
metrics to compute cohesion and coupling. In addition, we
objectively define and illustrate the characterization of a
balanced abstraction level. An experiment with a Course
Evaluation system confirms the efficacy of Capabilities in
increasing its change-tolerance.

Index Terms— Capabilities Engineering, Change-tolerance,
requirements engineering, software process, metrics, cohe-
sion, coupling

I. INTRODUCTION

Large-scale software-based systems need to be change-
tolerant in order to permit system evolution. Various
external factors such as market demands, customer needs’
volatility, and others influence the expected system func-
tionality over lengthy development cycles. We require
the underlying framework of the system to be stable,
that is, to accommodate these changes with minimal
impact. To design such an architecture, we seek to define
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“entities” that exhibit specific properties which impart
stability to the overall system. Specifically, we consider
the three characteristics - high cohesion, low coupling
and balanced abstraction levels. We term entities with
these properties as Capabilities. The property of high
cohesion helps localize the impact of change to within a
Capability. Also, the ripple effect of change is less likely
to propagate beyond the affected Capability because of
its reduced coupling with neighboring Capabilities. An
optimum level of abstraction assists in the understanding
of the functionality in terms of its most relevant details
[1]. Thus, we conjecture that if complex emergent systems
are architected with Capabilities then they have an in-
creased change-tolerance and can accommodate changes
with minimal impact.

We explore two algorithms for measuring these char-
acteristics and determining if an aggregate is a potential
Capability. Note that we focus on needs analysis, a phase
prior to requirements specification, because Capabilities
are formulated from user needs.

• Synthesis: Based on a bottom-up approach to prob-
lem solving, this algorithm evaluates the system in
terms of its most detailed elements. It coalesces
low-level elements to form aggregates, and then
iteratively computes the measures to determine if
they are potential Capabilities.

• Decomposition: This is an algorithm based on the
top-down approach. The system is visualized in
terms of its highest level mission, which is then
systematically decomposed into abstractions that are
more detailed. Each of these abstractions are mea-
sured individually to determine Capabilities.

An empirical analysis of the two algorithms reveals
that neither approach is sufficient by itself to determine
the best set of Capabilities [2]. Therefore, we construct a
composite algorithm to establish an equilibrium between
the two polar approaches. This algorithm is based on a
complementary approach that incorporates elements of
cohesion and coupling from the decomposition strategy,
and models abstraction from the synthesis perspective.
The remainder of the paper is organized as follows:
Section II discusses related work and outlines the overall
process of engineering Capabilities. In Section III and
Section IV, we compare and contrast the three measures
that determine a Capability — cohesion, coupling, and
abstraction level — from the synthesis and decomposition
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approaches, respectively. In Section V, we describe our
composite algorithm that combines the two approaches,
and in Section VI we discuss evaluation results of a
real-world application (Course Evaluation System). Our
conclusions are presented in Section VII.

II. BACKGROUND AND RELATED WORK

A primary manifestation of evolution is in the form of
requirements volatility [3], which is known to increase the
defect density and affect project performance resulting in
schedule and cost overruns [4] [5]. Traditional Require-
ments Engineering (RE) strives to manage volatility by
baselining requirements. However, the dynamics of user
needs and technology advancements during the extended
development periods for complex emergent systems dis-
courage fixed requirements. More recently, techniques
such as the Performance based specifications [6] and
Capability Based Acquisition (CBA) [7] are being utilized
to mitigate change in large-scale systems.

We propose the construction of a stable system based
on Capabilities. Capabilities incorporate evolutionary-
friendly characteristics such as high cohesion, minimal
coupling, and pragmatic levels of functional abstraction.
Figure 1 illustrates the two major phases of the CE
process. Phase I identifies sets of Capabilities based on
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Figure 1. Capabilities Engineering Process

the values of cohesion, coupling and abstraction levels.
Techniques of modularization suggest that high cohesion
and low coupling are typical of stable units [8] [9].
Stability implies resistance to change; in the context of
CE, we interpret stability as a property that accommo-
dates change with minimal ripple effect. Ripple effect
is the phenomenon of propagation of change from the
affected source to its dependent constituents. Specifically,
dependency links between aggregates behave as change
propagation paths. The higher the number of links, the
greater is the likelihood of ripple effect. Because coupling
is a measure of interdependence between units [10] we
choose low coupling as one indicator of stability for an
aggregate. In contrast, cohesion — the other character-
istic of a stable structure — depicts the “togetherness”
of elements within an aggregate. A unit is said to be
highly cohesive if each of its elements is directed towards
achieving a single objective. As a general observation, as
the cohesion of a unit increases, the coupling between
the units decreases. However, this correlation is only
approximate, and thereby, cannot be used to estimate

the values of cohesion and coupling [9]. Therefore, we
develop specific metrics to compute these values for
potential Capabilities.

Phase II, a part of our ongoing research, further op-
timizes these initial sets of Capabilities to accommodate
schedule constraints and technology advancements. In this
paper, we focus on identifying Capabilities as outlined by
Phase I.

In the following sections, we discuss the synthesis
and the decomposition algorithms for computing the
measures. We then explain the necessity for a composite
algorithm that includes elements of cohesion, coupling,
and abstraction from both of these approaches.

III. SYNTHESIS

The objective of the synthesis algorithm is to formulate
Capabilities — functional abstractions with high cohesion
and low coupling — from user needs that are obtained
during the process of elicitation [11]. Needs are affiliated
with the problem domain and requirements are associated
with the solution domain. Capabilities are computed after
an analysis of user needs but prior to requirements spec-
ification. We envision that by doing so, Capabilities can
bridge the chasm between the problem and the solution
space, also described as the complexity gap [12]. It is
recognized that this gap is responsible for information
loss, misconstrued needs, and other detrimental effects
that plague system development [13] [14].

The synthesis algorithm is based on a bottom-up ap-
proach, and hence, envisions a system in terms of its
details. In particular, we consider system details that are
defined at low levels of abstraction and are stated from
a user’s perspective. We term these details as directives.
More specifically, a directive is a system specification
that is described using the terminology in the problem
domain. In contrast, a requirement is a system specifi-
cation stated in the technical language of the solution
domain. However, both a directive and a requirement
share the commonality of being defined at a low level
of abstraction.

Directives are a natural derivative of user needs. We
use the directives as input to the synthesis algorithm
for formulating Capabilities because they serve three
main purposes. Firstly, directives strive to alleviate loss
of domain knowledge, which has been identified as an
important problem in RE [13]. They do so by describing
system functionality in terms of the problem domain.
This assists in capturing domain information. Secondly,
directives are utilized to compute the cohesion and cou-
pling values of potential Capabilities. Recall that optimal
sets of Capabilities are to be determined from different
functional abstractions. Capabilities are essentially system
functionalities, and hence, are composed of one or more
directives. Therefore, the cohesion and coupling measures
of Capabilities are determined using directives. Lastly,
directives facilitate the mapping to system requirements.
Note that Capabilities only provide a high-level archi-
tecture based on system functionalities, and therefore,

2 JOURNAL OF SOFTWARE, VOL. 3, NO. 1, JANUARY 2008

© 2008 ACADEMY PUBLISHER



requirement specifications are still necessary to direct
system development. Directives are easily mapped to
requirements because both entities are defined at similar
levels of abstraction.

A. The Synthesis Algorithm

The synthesis algorithm aims to identify abstractions
with maximum cohesion and minimum coupling, i.e. Ca-
pabilities. In particular, it strives to maximize functional
cohesion, the most desirable cohesion among all other
types of cohesion [15]. This objective of the synthesis
algorithm is illustrated in Figure 2. If every element of a
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Figure 2. Objective of Synthesis Algorithm

unit is essential to the performance of a single function,
then that unit is said to exhibit high functional cohesion
[9]. Therefore, the first step of the algorithm enumerates
functions that possess high functional cohesion. More
specifically, we examine the significance of each directive
in accomplishing various system functions. We use these
significance values to compute the cohesion of a function
in terms of all its participating directives. However, it
is possible that the same function can be described at
multiple levels of abstraction. We represent the functions
using Venn diagrams to visually understand and resolve
the abstraction level dilemma. The algorithm is explained
in detail below:

Let d1, d2, . . . , dn, n ∈ N, denoting directives derived
from user needs, be the input to the synthesis algorithm.
For each di perform the following steps to determine the
Capabilities of a system:
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Figure 3. Example Initial Set for directive d1

Identify all possible functions to which directive di

contributes: The relevance of a directive in accomplishing
a function is estimated using the impact categories shown

in Table I. This classification is intended to assess the
impact of risks on a project [16]. The failure to implement
a directive is also a risk, and therefore, we use this clas-
sification to determine the significance of a directive in
implementing a system functionality. We assign relevance
values based on the perceived significance of each impact
category; these values are normalized to the [0,1] scale.
Formally, we enumerate the list of functions fim that di

TABLE I.
Relevance Values

IMPACT DESCRIPTION RELEVANCE

Catastrophic Task failure 1.00
Critical Task success questionable 0.70
Marginal Reduction in performance 0.30
Negligible Non-operational impact 0.10

is associated with, as InitialSeti = {fi1, fi2, . . . , fim}.
For example, let d1 help achieve functions f1j , j =
1, . . . , 7. A Venn diagram representation indicating the
different abstraction levels of the functions of InitialSet1
is shown in Figure 3.

Identify functionalities that subsume lower level func-
tionalities: Expected system functionalities deduced from
user needs can be stated at different levels of ab-
straction. Consequently, certain functions constituting
InitialSeti may be inclusive of other functions in the
same InitialSeti. For example, in Figure 3, f12 is inclu-
sive of f16. We avoid considering functional abstractions
that are partially or completely redundant as potential Ca-
pabilities by constructing Subseti ⊆ InitialSeti where
Subseti = {fix|fix ⊇ fiy,∀fiy ∈ InitialSeti; 1 ≤
x, y ≤ m}. Note that the functions in Subseti are not
encompassed by any other function in InitialSeti. This
implies that Subseti consists of functions defined at the
highest level of abstraction among all other functions
in InitialSeti. Thus, as shown in Figure 4 for d1,
Subset1 = {f1j}, j = 1, . . . , 5.
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Figure 4. Example Subset for directive d1

Coalesce functionalities that exhibit intersections: Al-
though the aggregates in Subseti are not subset to any
other aggregate, they can share common functionalities,
which is an indicator of coupling. Recall that a Capa-
bility is a self-contained functional abstraction that is
minimally coupled with other Capabilities. We strive to
minimize the coupling between abstractions by reducing
their dependencies. Specifically, in the synthesis algorithm
we use the abstraction level as an instructive factor in
constructing minimally coupled aggregates. The technique
of coalescing allows us to contain the dependencies within
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the boundaries of a higher abstraction. In particular, we
identify aggregates that exhibit overlapping functionalities
and aggregate them to form more decoupled abstractions.
Hence, we create aggregate subsets AGij(1 ≤ i ≤
n; 1 ≤ j ≤ m) from Subseti to contain aggregates with
commonalities. Specifically,

AGij = {fix, fiy|fix ∩ fiy 6= ∅; 1 ≤ x, y ≤ m}

such that Subseti = ∪
x
fix,∀fix ∈ AGij ;

We then abstract the entities of AGij to form higher
level aggregates such that AGij = {Fij} where Fij =
{fix ∪ fiy ∪ . . . ∪ fiz}; 1 ≤ x, y, . . . , z ≤ m. Fij

encompasses all aggregates in AGij . We term Fij as
core functions. Hence, we utilize core functions to derive
and represent the functionality of system aggregates at a
higher level of abstraction. For example, for directive d1,
in Figure 5, AG11 = {F11} where F11 = {∪

j
f1j}, j =

1, 3, 4, 5 and AG12 = {F12} where F12 = {f12}.
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Figure 5. Example Aggregate Subsets for directive d1

Define Core Function Sets: Let the core functions, Fij ,
of all the aggregated subsets AGij related to directive di

constitute the ith Core Function Set, CFSi, such that
CFSi = {Fi1, Fi2, . . . , Fij}; 1 ≤ i ≤ n; 1 ≤ j ≤ m.
Hence, CFSi comprises core functions that are functional
abstractions initially defined at a more detailed level.
These functional abstractions are potential Capabilities.
Thus, as shown in Figure 6, CFS1 = {F11, F12}.
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Figure 6. Example CFS for directive d1

Thus, in this manner, the synthesis algorithm defines a
Core Function Set (CFS) for each directive in the system.
Specifically, each directive di has an associated CFSi.
The elements of a CFS are core functions, which are ag-
gregates derived from a systematic process of synthesizing
directives.

B. Analysis of Synthesis Approach
Recall that Capabilities are functional abstractions that

exhibit high cohesion and low coupling. Therefore, we
now measure the cohesion and coupling values and ex-
amine the abstraction level of each core function in order
to determine the set of Capabilities.

Cohesion: For each directive the synthesis algorithm
generates a CFS comprising core functions. The cohesion
of a core function is computed as an average of the rele-
vance values of each participating directive in achieving
that function.

This implies that the list of directives associated with
each core function in every CFS be enumerated; this
necessitates substantial time and effort. Also, note that
the core functions associated with different directives may
be defined at various abstraction levels. Consequently,
core functions may be subsets of one another resulting in
redundant computations of relevance values. Furthermore,
in our empirical analysis we observe that although the
calculation of the average cohesion value is direct, the
process of eliciting relevance values for each core function
is highly cumbersome and notably subjective. These fac-
tors suggest that we need to explore alternate approaches
for determining the cohesion of potential Capabilities.

Coupling: Units are said to be coupled if changes in a
source unit affect one or more dependent entities. The
only information available for computing the coupling
between the elements of CFSs in the synthesis algorithm
is the set of common directives shared by the core
functions.

Experimental results show that determining coupling
values based merely on this number is unrepresentative
of the actual implementation. Furthermore, the synthesis
approach fails to provide information about the strength
of dependency between functions. Hence, we conclude
that the synthesis algorithm is ill-equipped to facilitate the
computation of coupling between potential Capabilities.

Abstraction Level: We know that each directive has
an associated CFS whose elements are core functions.
Empirical analysis reveals that at the abstraction level
computed by the synthesis algorithm the core functions of
a particular CFS do not share commonalities with other
functions. Any further reduction in the abstraction level
results in common intersections between aggregates.

The synthesis algorithm indicates that the abstraction
level of a core function is determined by examining its
links with other core functions. Therefore, one needs
to consider the abstraction level, and the links between
aggregates when formulating Capabilities.

In summary, the synthesis algorithm attempts to iden-
tify Capabilities from the detailed directives of complex
emergent systems. Given the large magnitude of these
systems, considerable effort is required to establish the
CFSs. We note that, although the synthesis algorithm
does provide insights regarding an ideal abstraction level
of Capability, it is difficult to automate the computa-
tion of cohesion and coupling measures. Therefore, it
seems impractical that the synthesis algorithm be utilized
exclusively for identifying Capabilities. This mandates
that we design a more objective algorithm that is far
less dependent on user input. Hence, we examine an
alternative solution — a decomposition algorithm based
on the top-down approach — in the following section.
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IV. DECOMPOSITION

The decomposition algorithm utilizes a graph-based
representation of user needs, viz. a Function Decom-
position (FD) graph, to formulate Capabilities. An FD
graph represents functional abstractions of the system
obtained by the systematic decomposition of user needs.
A need at the highest level of abstraction is the mission
of the system and is represented by the root. We use
the top-down philosophy to decompose the mission into
functions at various levels of abstraction. We claim that a
decomposition of needs is equivalent to a decomposition
of functions because a need essentially represents some
functionality of the system. Formally, we define an FD
graph G = (V,E) as an acyclic directed graph where
V is the vertex set and E is the edge set. V represents
the system functionality: leaves represent directives, the
root symbolizes the mission, and internal nodes indicate
system functions at various abstraction levels. Similarly,
the edge set E comprises edges that depict decom-
position, intersection or refinement relationships among
nodes. These edges are illustrated in Figure 7. An edge
between a parent and its child nodes represents functional
decomposition and implies that the functionality of the
child is a proper subset of the parents functionality. Only
internal (non-leaf) nodes with an outdegree of at least two
can have valid decomposition edges with their children.
The refinement edge is used when there is a need to
express a node’s functionality with more clarity, say, by
furnishing additional details. A node with an outdegree
of one symbolizes this type of relationship with its child
node. To indicate the commonalities between functions
defined at the same level of abstraction the intersection
edge is used. Hence, a child node with an indegree greater
than one represents a functionality common to all its
parent nodes. The FD graph utilizes these definitions to
provide a structured top-down representation of system
functionality, and thereby, facilitates the decomposition
algorithm to formulate Capabilities in terms of their
cohesion, coupling, and abstraction values. We discuss
the mechanics of the algorithm next.
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A. The Decomposition Algorithm
The input to the decomposition algorithm is an FD

graph, G = (V,E) that represents the functionality of
the system to be developed.

The cohesion and coupling values for each slice is
computed using the measures described next. We also
discuss the average abstraction level of nodes that possess
high cohesion and low coupling values.

Cohesion: As in the synthesis algorithm, the cohesion
of a node is computed as an average of the relevance
values of the participating directive. The relevance val-
ues are assigned based on the values listed in Table
I. However, we make a distinction between the parent
and ancestor nodes of a directive. In order to reduce
the need for user input, we elicit the relevance value of
a directive only with respect to its parent node, whose
cohesion is the arithmetic mean of the relevance values
of its directives. Figure 7 illustrates relevance values of
directives to their parents. The cohesion of an ancestor
is computed as a weighted average of the size (number
of associated directives) and cohesion of its non-leaf
children. Specifically, the cohesion measure of an internal
node n with t > 1 non-leaf children is:

Ch(n) =

t∑
i=1

(size(vi).Ch(vi))

t∑
i=1

size(vi)

such that (n, vi) ∈ E, and where

size(n) =


t∑

i=1

size(vi) (n, vi) ∈ E; outdegree(vi) > 0;

1 outdegree(n) = 0

Coupling: To measure coupling we need information
about dependencies between system functionalities. By
the virtue of its construction, the structure of the FD graph
represents the relations between different aggregates. In
particular, we compute coupling between two nodes in
terms of their directives. Two directives are said to be
coupled if a change in one affects the other. We compute
this effect as the probability that such a change occurs and
propagates along the shortest path (dist) between them.
Note that the coupling measure is asymmetric. Generaliz-
ing, the coupling measure between any two internal nodes
p, q ∈ V , where outdegree(p) > 1, outdegree(q) > 1
and Dp ∩Dq = {φ} is:

Cp(p, q) =

∑
di∈Dp

∑
dj∈Dq

Cp(di, dj)

|Dp|.|Dq|

where Cp(di, dj) =
P (dj)

dist(di, dj)
and P (dj) =

1
|Dq|

.

P (dj) is the probability that directive dj changes
among all other directives associated with the node q.

Abstraction Level: The experimental results of the de-
composition algorithm indicate that nodes which exhibit
maximum cohesion and decreased coupling are also at
higher abstraction levels. We know that abstraction level
is related to size - the higher the level of a node, the
greater the number of its associated directives. Thus, the
decomposition algorithm identifies potential Capabilities
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as sets of nodes that exhibit high cohesion and low cou-
pling but are also of increased sizes. The latter, however,
is undesirable from an implementation standpoint.

B. Analysis of Decomposition Approach

The decomposition algorithm provides an approach to
automate the cohesion and coupling measures. Prelimi-
nary experimental results indicate that values computed
using these metrics are indicative of desirable software
engineering characteristics. In particular, we observe that
on an average, potential Capabilities that have high cohe-
sion values also exhibit low coupling with other nodes.
However, the decomposition approach fails to provide
nodes at an abstraction level that are optimal with re-
spect to size. Therefore, we now explore a reconciliation
between the synthesis and decomposition algorithms to
determine Capabilities that are optimal with respect to
the abstraction levels and the computations of cohesion
and coupling.

V. RECONCILIATION

Our objective is to determine Capabilities based on
the three measures of cohesion, coupling, and abstrac-
tion level. We construct a composite algorithm which
is a derivative of both the synthesis and decomposition
approaches.

Sections III and IV describe the synthesis and de-
composition algorithms to formulate Capabilities. In par-
ticular, we observe that the computation of coupling
and cohesion values using the decomposition approach
can be easily automated. This is because the coupling
measure is a function of distance of change propagation
and probability of change, and therefore, is completely
objective. Likewise, the cohesion measure, although less
objective, is conveniently computed for all functional
abstractions. In contrast, the excessive subjectivity of the
synthesis approach presents little scope for automating
the formulation of Capabilities in complex emergent sys-
tems. However, unlike the decomposition algorithm, the
synthesis approach provides insights about the optimum
abstraction level of a Capability. Hence, we construct a
composite algorithm to formulate Capabilities such that it
incorporates elements of cohesion and coupling from the
decomposition algorithm and that of the abstraction level
from the synthesis algorithm.

A. Composite Algorithm

Step 1: Construct an FD graph
As a first step, we need to establish the input to this
algorithm. In the synthesis approach one considers all
possible directives to determine functional abstractions.
Although, an iterative process, the analysis of such a
detailed representation challenges the limited processing
capacity of the human mind [17]. On the other hand, the
decomposition approach begins with the system mission
(see Figure 7) that is easily comprehensible. Furthermore,

it follows an intuitive process of decomposing it into its
constituent functionalities.
Step 2: Determine all slices
Next, to determine the collection of nodes that are Capa-
bilities we need to compute the cohesion, coupling, and
abstraction level values of each node, in an FD graph.
However, for a large system the number of such nodes
will span several hundreds, thus, exponentially increasing
the computational complexity. To reduce the complexity
we examine only those combinations of nodes, which
form a valid set of Capabilities. For example, we remove
from consideration combinations that consist of nodes
with overlapping directives (parent-child cases) because
one is a subset of the other. We term valid combinations of
nodes slices, and are defined by the following constraints:

1) Complete Coverage of Directives: A Capability is
associated with a set of directives, which is eventu-
ally mapped to system requirement specifications
(see Figure 1). We ensure that each directive is
accounted for by some Capability, by enforcing the

constraint of complete coverage given by
m⋃

i=1

Di =

L, where
• Di is the set of leaves associated with the ith

node of slice S
• L = {u ∈ V |outdegree(u) = 0} denotes the

set of all leaves of G
• m = |S|

2) Unique Membership for Directives: To avoid im-
plementing redundant functionality, we ensure the
unique membership of directives by the constraint
m⋂

i=1

Di = {φ}.

3) System Mission/ Directive is not a Capability: The
root is the high level mission of the system, and a
directive describes low level details. Neither can be
considered a Capability as they are at extreme levels
of abstraction. Hence, ∀u ∈ S, indegree(u) 6=
0; outdegree(u) 6= 0.

Step 3: Compute Cohesion of each slice
The cohesion value of a slice is the average of the
cohesion of its constituent nodes. We use the cohesion
measure defined in the decomposition approach (Section
IV-A) to compute the cohesion of individual nodes. For
example, in Figure 9 the cohesion of n50 is 0.75, n63 is
0.6125.
Step 4: Compute Coupling of each slice
Similarly, the coupling value of a slice is the aver-
age of the coupling of its constituent nodes. Specif-
ically, this measure is a pair computation. For ex-
ample, in Figure 8, if S1= {n3, n55, n41} then
Cp(S) = Avg(Cp(n3, n55), Cp(n3, n41), Cp(n55, n41)).
Again, we adopt the coupling metric defined in the
decomposition approach (Section IV-A).
Step 4: Select slices that exhibit high cohesion or low
coupling
Note that the permutations of S1 have different coupling
values, but the same cohesion value. This is because the
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Figure 9. Course Evaluation System: No Common Functionality

coupling measure is asymmetric in nature; Cp(n3, n55) 6=
Cp(n55, n3). Thus, we rank the set of all slices and
their permutations, in accordance to their cohesion and
coupling values. We choose those slices that rank among
the top 10, either in the high cohesion or the low coupling
category. We then examine this set, selecting slices which
have cohesion values above the overall cohesion average,
and whose coupling values are below the overall coupling
average of the top 10 slices.

Step 5: Select the slice with balanced abstraction levels
as the desired set of Capabilities
We observe that as the abstraction level becomes lower,
the node sizes decrease but the coupling values increase
(size is the number of directives associated with a Ca-
pability). We strive to identify nodes of reduced sizes as
Capabilities, in line with the principles of modularization.
There are two possible scenarios when attempting to
lower the abstraction level of a node, as illustrated by
Figures 8 and 9. These graphs are subsets of the FD
graph of a Course Evaluation system. Upon computing
the cohesion and coupling values of the slices in this
graph, we find that the slice {n6, n2, n57} exhibits the
highest cohesion and lowest coupling value. However,
does this slice have a balanced abstraction level? For this,
we examine the effect of lowering the abstraction level of
n2 and n57. (Note that n6, is a node with only directives
as children, and thus, we refrain from lowering its level)

Common Functionality: In Figure 8, assume that the
size of n2 is too large, and hence, we attempt to reduce
its abstraction level to its children viz. Customized
Evaluation (n29) and Expert Template (n7),
which are of a relatively smaller size. However, we
observe that these nodes share a common functionality
in Items (n55). This implies that one of the links,
(n29, n55) or (n7, n55), needs to be broken in order to
implement Items as a part of a parent Capability. Let

(n29, n55) be broken, and Items be implemented as a
part of Expert Template. Consequently, Capabilities
n29 and n7 are content coupled [18] because n29 may
attempt to manipulate the Items part ingrained in n7.
Thus, lowering the abstraction level of Evaluation
Authoring results in Capabilities of decreased sizes but
increased coupling.

No Common Functionality: Now we consider the re-
duction of n57 to smaller-sized nodes, i.e the reduction
of a single aggregate to smaller sized nodes that have
no commonalities. Figure 9, illustrates that Results
Analysis (n57) reduces to Responses (n4) and
Reports (n63). We observe that although there is a
marginal increase in coupling, nodes n4 and n63 are of
smaller sizes when compared to n57. Thus, we choose
n4 and n63 over their parent n57. We are willing to
accommodate this negligible increase in coupling for the
convenience of increased modularity.

From the analysis above, we determine that slices con-
taining nodes {n4, n63, n2} exhibit a balanced abstraction
level. Because these nodes are also in the set of slices
resulting from Step 4, they also exhibit high cohesion
and low coupling. The slice with the highest cohesion
and lowest coupling is desired set of Capabilities for the
Course Evaluation System.

VI. VALIDATION

We empirically tested the hypothesis that a system
design based on Capabilities is more change-tolerant than
a design generated from the traditional RE approach.
Specifically, we examine the impact of changing needs
on the RE and CE-based designs of a Course Evaluation
system. The original high-level design of this system is
based on an RE approach, and is termed as RE-based
design. The CE-based design is constructed based on
Capabilities of the system. To determine the optimal
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Capability set, we construct an FD graph. Certain parts
of this graph are illustrated in Figures 8 and 9. Then,
the algorithm described in Section V is executed on the
entire FD graph. This results in a total of 1495 slices,
from which the set of nodes exhibiting high cohesion, low
coupling, and a balanced abstraction level is selected as
the desired Capabilities of the Course Evaluation System.
Finally, a CE-based design is constructed based on the
chosen Capability set.

The RE and CE-based designs are now subject to
different changes in needs. In particular, we examine the
impact of six different needs’ changes on the Course
Evaluation system. An example of a need change is “Need
information about the handicapped accessible facilities
for courses taught in Room XXX”. We propagate each
change on the CE and RE-based designs and record the
number of affected classes. We perform the Wilcoxon
Signed Rank test, the non-parametric alternative to the
paired t-test, which results in a P-value of 0.018. The P-
value indicates the probability that the population medians
of the number of affected classes in the RE and CE-based
designs are different because of chance. The very small
P-value compels us to reject the null hypothesis that the
change-tolerance of the system is indifferent to either the
CE or the RE approach. Thus, the alternate hypothesis that
the number of impacted classes in the CE-based design
is significantly lesser than that of the RE-based design is
true. This result is in agreement with our research claim
that the change-tolerance of a system improves with the
use of a design based on Capabilities.

VII. CONCLUSION

The CE approach strives to construct complex emergent
systems with the property of change-tolerance. For this,
we use a composite algorithm to compute maximally
cohesive, minimally coupled, and balanced functional
abstractions as Capabilities. The cohesion and coupling
measures of these basic building blocks are computed as
in the decomposition algorithm and the abstraction level
as defined by the synthesis algorithm. Note that the former
algorithm is based on a top-down approach and the latter,
on a bottom-up approach. Thus, the composite algorithm
is a blend of the two polar approaches. Furthermore, em-
pirical evaluation results from the experiment on Course
Evaluation system are agreement with our research claim
that the change-tolerance of a system improves with the
use of a design based on Capabilities.
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