

aODC: Agile Orthogonal Defect Classification and Analysis
for Quality Improvement

Eric Abuta1 and Jeff Tian2*
1 Client Computing Group, Intel Corporation, Portland, Oregon, USA.
2 Department of Computer Science, Southern Methodist University, Dallas, Texas, USA.

* Corresponding author. Tel.: +1 214-768-2861; email: tian@smu.edu
Manuscript submitted March 4, 2025; revised April 11, 2025, accepted April 28, 2025, published May 22,
2025.
doi: 10.17706/jsw.20.1.24-36

Abstract: In-process feedback is essential in providing useful information to stakeholders to improve
software quality in an agile development environment, where development decisions are often made quickly
with access to limited measurement data and timely feedback is needed for progress monitoring and for
quality assurance, all under fluid, rapidly changing market conditions. This study adapts the original
Orthogonal Defect Classification (ODC), initially developed and deployed in large commercial software
systems following the traditional waterfall process, to aODC, or our adapted ODC for agile development, and
demonstrates its ability to provide valuable in-process feedback for a semiconductor software using data that
is normally available from the agile development process in a small company. To assess the impact of aODC,
1) we first define our defect and quality metrics, including total defect count, in-field defects discovered by
customers, defect distribution, product reliability, and reliability growth; 2) we then quantify the baseline
using these metrics for the early versions of this software system prior to the deployment of aODC; and 3)
lastly, we quantify the quality improvement using the same metrics after aODC deployment. The comparison
results show: 1) a more than 50% reduction in total defects and a 16% reduction of defects found by
customers; 2) a significantly higher share of defects discovered in the early part of the process by the
developers, at 38%, up from 24.7% in the baseline, and a significantly lower share of defects discovered later
by the testers, at 46.5%, down from 66.3% in the baseline; and 3) a higher reliability, with a success rate of
0.914 compared to 0.884 in the baseline, and a more significant reliability growth, quantified by the
purification level of 0.99 as compared to 0.91 in the baseline. These results demonstrate that aODC, our
adapted ODC to the agile development environment, offers valuable early in-process feedback leading to
quantifiable quality improvement.

Keywords: Orthogonal Defect Classification (ODC), defect analysis, software reliability, agile development,
in-process feedback and improvement.

1. Introduction

Defect classification and analysis is a useful process of classifying defects into meaningful categories
tailored for specific software products or systems under study, and then analyzing them to identify
problematic areas, usually those associated with abnormally high numbers or shares of defects, for correction,

mitigation, and quality improvement. This can be achieved by using techniques such as Orthogonal Defect
Classification (ODC), a systematic classification scheme based on defect data related to execution failures,
internal faults, as well as possible causes, collected from testers, inspectors, and developers, to provide in-

Volume 20, Number 1, 202524

Journal of Software

process feedback to stakeholders [1]. ODC has been successfully used in large scale software development
projects, where the traditional waterfall process is typically used, in identifying problems and improving
software quality. It can potentially be adapted to improve quality for various other systems, as demonstrated

by studies adapting ODC for NASA (National Aeronautics and Space Administration) and Web-based
applications [2, 3]. However, ODC has not been adapted to provide the same type of benefit for small
companies who predominantly follow some variation of the agile development process to deal with the
rapidly changing market environment, compressed development schedule, and limited access to
measurement data [4, 5].

This study uses the standard defect data normally available to many small software development
organizations to carry out an adapted ODC analysis. By systematically pairing the data availability with the
original ODC data attributes and attribute values, we develop aODC, our adapted ODC suitable to the agile
development environment, to meet our needs for quality assurance and improvement. The defect data, used

as the basis for developing our aODC and as a case study to validate our approach, are from May 2001 through
June 2014. This study is a continuation of our previous work on defect analysis and software reliability
modeling for a semiconductor Optical Endpoint Detection (OED) software system [6–8].

The remainder of this paper is organized as follows: Section 2 describes the background of this study and
provides a problem statement. Section 3 outlines our solution strategy and research methodology, as well as

our defect/quality metrics and the hypotheses to be used to validate our approach. Section 4 presents our
aODC, or the adapted ODC for agile development. Section 5 establishes the baseline for defects by analyzing
the defect data for product versions before the deployment of aODC. Section 6 presents the results on defect
metrics after the deployment of aODC, comparing them to the baseline. Section 7 compares results using our

quality metrics before and after the deployment of aODC. Section 8 summarizes our paper, discusses its
implications, and outlines possible future work.

2. Background and Problem Statement

In contrast with large software development companies, where the traditional waterfall process is typically
used and the corresponding defect data can be classified and analyzed using the original ODC [1], small

companies typically employ the agile development process to deal with the dynamic, fluid, and volatile
market environment and compressed development cycle, accompanied by various other limitations on
data [4, 5]. The development environment for the semiconductor Optical Endpoint Detection (OED) software
system in this study is a typical case in this latter category.

OED is an endpoint detection system that communicates to a process tool through a customer’s chosen

communication method. OED sends commands to a spectrometer on how to collect and transmit data. It then
runs the appropriate proprietary algorithm in the customer’s recipe. When the condition to stop the process
is reached, it sends an appropriate command to the process tool to stop the process.

The overall product development and release cycles resemble that in agile development [4, 5]. The feature

sets are controlled through code freezes and branches (major versions). Once a targeted major feature is
implemented and necessary verification carried out, a branch would be created. All the software changes are
controlled by a Software Change Control Board (SCCB) that determines changes to be made based on
customer needs and company priorities. Upgrades and deployments are end-user controlled. This raises
challenges on applying needed defect fixes unless compelling evidence is presented.

The data used for this study are the individual defects discovered and associated information extracted
from a defect reporting database, covering the period from May 2001 to June 2014. The OED/agile data are
organized by branches and months, with the branches denoted by the first digit of the release numbers. For
example, branch 4.X contains releases 4.01, 4.1, 4.2 etc. Typically for OED and for agile development in general,

Volume 20, Number 1, 202525

Journal of Software

there are several incremental or rolling releases per year, as compared to a single release developed over
several years for large software systems [1]. Each branch contains between 477K and 848K lines of source
code (477-848 KSLOC).

The magnitude of defects reported in the early years of the system’s life cycle caused concerns to
stakeholders. Due to the negative impact to customers, management was particularly concerned about the
relatively larger number of defects discovered in the field by customers. Consequently, ODC was adapted to
analyze OED/agile defect data and multiple recommended changes were implemented to address these

concerns, such as through enhanced unit tests and additional regression tests.

Historically, most testing activities had been left to testers, with very limited unit tests carried out by
developers. This led to a prolonged cycle of defect-fixing and re-testing. In addition, unit tests had been
proven to be vital in catching logic errors that were difficult to catch in the system test environment.
Consequently, a policy change was implemented in OED to require developers to carry out significantly more
unit tests before transitioning to other forms of testing performed by professional testers. This policy change

would also offer more opportunities to collect early defect data to provide actionable feedback to the
development process.

Therefore, under this particular product development environment with limited data availability, there is
a strong need to analyze the available defect data to provide actionable feedback. However, the suitability and

applicability of the original ODC are in doubt due to the significant differences in the development
environments and data availability. Similarly, previous work in adapting ODC beyond traditional commercial
software systems to NASA and Web-based systems [2, 3] cannot be used directly due to similar reasons.
However, a similar approach along the line of the previous work is possible: namely, adapting the original
ODC to the agile development environment to fulfill the need for actionable feedback for quantifiable quality

improvement, and demonstrating its applicability and effectiveness through a case study on OED.

3. Solution Strategy: Methodology, Metrics, Models, and Hypotheses

Our overall solution strategy consists of three major stages: 1) development of a new defect classification
scheme, aODC, or our adapted ODC for agile development, by adapting the original ODC to the needs of
OED/agile development under its unique environmental constraints; 2) deployment of aODC to classify and

analyze defect data from OED, and to provide actionable feedback; and 3) quantification of the impact of aODC
on defects and product quality. This three-staged solution strategy, illustrated in Fig. 1, can be considered as
an adaptation of the quality improvement paradigm [9] to achieve our goal of quantifiable quality
improvement.

To develop aODC, our adapted ODC for OED/agile development, we first analyze the needs for defect

classification and analysis under this specific environment, particularly under the constraint of limited data
availability. This analysis can be guided by the Goals-Questions-Metrics (GQM) paradigm [9], where the needs
and the environmental constraints can be aligned with the Goals and the Questions in GQM, while the specific
defect attributes and attribute values can be aligned with the Metrics in GQM. On the other hand, the needed

defect attributes and attribute values for this environment can be identified and organized through a
systematic examination of the existing defect attributes and values in the original ODC [1], as illustrated in
Fig. 1 by the pairing of ODC attributes to the limited data available from OED/agile. Once aODC is constructed,
we could deploy it in OED, which we did for 5.X branch and thereafter. The analysis of defect data collected

from OED according to aODC and the feedback provided to its development process form a feedback loop,
also illustrated in Fig. 1.

To quantify the impact of aODC on defects and product quality, several defect and quality metrics need to
be defined and assessed for OED releases before (4.X branch and earlier) and after (5.X branch and later) the

Volume 20, Number 1, 202526

Journal of Software

deployment of aODC. The defect metrics of interest to our environment and obtainable from available data
include the following:

1. Total defect count by release and aggregated by year, which includes both defects reported by

customers after product release (in-field) and defects discovered during product development (in-
house).

2. Number of in-field defects reported by customers after product release. Arguably, in-field defects
should be more of a concern to software development organizations, as is the case for OED
development (see Section 2 above).

3. Distribution of in-house defects. It is desirable to have a front-loaded distribution, i.e., more defects
discovered early in the agile development process by programmers and fewer defects discovered
later in the process by testers. In general, earlier discovery of defects would minimize the chances
for additional defect injections due to chain-effect. The defect detection and fixing effort would also

be reduced due to the closer proximity between the defect sources and the expertise needed to
identify and fix these defects, such as in the case with logic errors in OED described in Section 2.

Fig. 1. Solution strategy and steps.

Our quality metric selected is product reliability, or the probability of failure-free operations of a software

system for a given period of time or a given set of input under a specific environment [10, 11]. Reliability is a
quality metric from the customer’s perspective, characterizing the likelihood of problem-free operations
desirable to its customers. Reliability can be assessed and predicted based on defect, timing, and input data
using various reliability models, including time domain Software Reliability Growth Models (SRGMs) and

Input Domain Reliability Models (IDRMs) [10, 11]. The specific SRGMs used in this study are Goel-Okumoto

Stage 1.
aODC development

Stage 2.
aODC deployment

Stage 3.
impact & validation

aODC: ODC
for OED/agile

Post-aODC OED
branches

Pre-aODC
OED branches

OED/Agile
environment

Quality
goals

Quality metrics

Original
ODC

Pre-aODC
quality metrics

Post-aODC
quality metrics

Comparing
results &
validating

hypotheses

aODC feedback loop

Volume 20, Number 1, 202527

Journal of Software

(GO) [12] and Musa-Okumoto (MO) [13] models, with:

GO SRGM 𝜇(𝑡) = 𝑎൫1 − 𝔢ି௧൯

MO SRGM 𝜇(𝑡) =
ଵ

ln(𝜆𝛩𝑡 + 1)

where 𝜇(𝑡) is the expected number of defects at time t; a, b, 𝜆, and Θ are the model parameters.

For a given set of input or test runs, typically over a short period of time, Input Domain Reliability Models

(IDRMs) [10, 11] can be used to assess system reliability, such as the Nelson model [14] used in this study:

Nelson IDRM 𝑅 =
ௌ

ே
=

ேିி

ே
= 1 −

ி

ே

where R is the estimated reliability or the success rate, S is the number of successful executions or test runs,
N the total number of runs, and F the number of failed runs.

Reliability growth, or the improvement in reliability due to defect discovery and fixing as testing progresses,
can be visualized by the cumulative failure arrival curve over time bending towards the upper-left corner and

a flattened tail [15]. To quantify reliability growth, we use the purification level 𝜌 [11], the ratio of failure
rate reduction over a given test period, define by:

𝜌 =
𝜆 − 𝜆்

𝜆
= 1 −

𝜆்

𝜆

where 𝜆 is the failure rate at the start of testing and 𝜆் is the failure rate at the end of testing, calculated

from SRGMs fitted to defect data over time. A higher value of 𝜌 indicates a more significant reliability growth.
Using the defect and quality metrics defined above, we can compare the impact of aODC in three steps, also

illustrated in Fig. 1: 1) We can establish a pre-aODC baseline by determining the defect and quality metrics

values based on the data from 4.X branch and earlier; 2) post-aODC assessment can be carried out using the
same set of metrics on the data from 5.X branch and later, after aODC has been deployed therein; and 3) we
compare the two sets of results and draw some conclusions about the impact of aODC. This quantitative
comparison will be used to validate three main hypotheses regarding the desired impact of aODC:

1. Defect impact hypothesis (Hd): If in-process feedback is provided in the life cycle of a system through
the use of aODC, then the overall defect count would decrease (Hd1). A related hypothesis is that in-
field defect count reported by customers would decrease too (Hd2).

2. Early defect discovery hypothesis (He): Deployment of aODC would increase the share percentage of
early defects discovered by developers and decrease the share percentage of late defects

discovered by testers.
3. Reliability impact hypothesis (Hr): Deployment of aODC would lead to increased reliability (Hr1) and

more significant reliability growth (Hr2).
These hypotheses will be tested by comparing the post-aODC defect and quality metrics against the pre-

aODC baseline to validate our approach and its positive impact on quantifiable quality improvement.

4. aODC: Adapting ODC for OED/Agile

The original ODC groups defect attributes into two major categories, the opener and closer sections. The
opener section refers to the information collected when a defect is first detected by a tester, an inspector, or
other development personnel, and a defect record is created (or opened). The closer section refers to the
information collected when a defect gets resolved (or closed) by a developer, with concurrence by its

discoverer/opener or the manager in charge. The former includes several ODC attributes: activity, trigger,

Volume 20, Number 1, 202528

Journal of Software

severity, impact, discovered-by, time-of-discovery, etc. For the closer section, there are several attributes:
target, defect-type, age, source, fix-type, fix-action, phase-injected, etc.

We have adapted the standard ODC attributes to the OED/agile system analysis needs under agile

development in our adapted ODC, or aODC. Table 1 highlights the ODC attributes that are meaningful to the
OED/agile system, categorized under opener and closer sections just like in the original ODC. Under the
opener section, we have adapted the original ODC attributes {Defect Removal Activity, Triggers, Severity, and
Discovered-by} as {Activity, Trigger, Severity, and Discovered-by} attributes respectively for the OED/agile
system in aODC. Similarly in the closer section, we have adapted the original ODC attributes {Defect Type,

Source, and Target} as {Defect Type, Branch, and Component} attributes respectively in aODC.

Table 1. Adapted ODC attributes in aODC for OED/Agile

Section
Attribute Attribute Value

Original OED/Agile OED/Agile

Opener

Defect Removal Activity Activity

Unit Test
System Test

Customer Usage
Other Activities

Triggers Trigger

Logic
Hardware

Backward Compatibility
Other Triggers

Severity Severity
Production Stop

Average
Minor

Discovered-by Discovered-by

End User
Developer

Tester
Other Personnel

Closer

Defect Type Defect Type

Algorithm
Communication

Processing
Other Functions

Source Branch

4.X branch
5.X branch
6.X branch

Other branches

Target Component

Processor
Computational Component

Sensor Communicator
Tool Communicator
RF Communicator

The original Defect Removal Activity attribute covers defects found during activities such as design review,

code inspection, and different types of testing during product development. The corresponding aODC
attribute Activity only covers defects discovered during Unit Test and System Test activities applicable to

OED/agile. Defects discovered outside of the development-cycle are typically tracked separately in the
original ODC. However, in agile development, user participation in the development process and the
incremental or rolling product releases would blur the line separating in-process and out-of-process defect
discoveries. Therefore, we also use Customer Usage attribute value to track defects reported based on the

customer’s usage and Other Activities attribute value to track other defects found based on activities not
accounted for by the above attribute values.

The original Triggers attribute relates a defect to the specific circumstance of it discovery, such as the test
case or the usage scenario that led to the detection of this particular defect. Our corresponding aODC attribute

Volume 20, Number 1, 202529

Journal of Software

Trigger covers specific triggers from unit and system test only, including Logic, Hardware, Backward
Compatibility, and Other Triggers attribute values to track defects detected while testing for logic problems in
the source code, hardware problems, backward compatibility related problems, and other problems not

falling into the above categories.
The original Severity attribute measures the negative impact of a defect. For the corresponding aODC

attribute Severity, we use Production Stop and Average attribute values to track the major and average level
of impactful defects respectively. The remainder of the defects are classified as Minor severity defects.

The original Discovered-by attribute records the personnel who discovered the defects. Since this attribute

is applicable to the OED/agile system, we adopted the original attribute as is, while using aODC specific
attribute values End User, Developer, Tester, and Other Personnel to track defects reported by these personnel
groups respectively.

The original ODC Defect Type attribute in the closer section uses attribute values Algorithm/Method,

Interface/O-O Messages, Timing/Serialization, etc., to indicate the specific type of internal problems and
corresponding corrections applied to the defects being fixed. This defect attribute is applicable to the
OED/agile system. Therefore it is used as is in aODC, but with updated attribute values Algorithm,
Communication, Processing, and Other Functions to track defects related to proprietary algorithms, protocol
and general communication, general data processing, and other minor functions not already categorized.

The original Source attribute indicates the defects origins in the context of development history, such as
from in-house base code, external vendor code, reusable software components or services in the form of APIs
(application program interfaces), or other code sources. This attribute can be mapped to the Branches in
aODC for OED/agile, to indicate specific defect origins identified with specific product branches of OED and

the corresponding code base. We use Branch attribute values 4.X branch, 5.X branch, and 6.X branch, to
indicate the defects originated from the 4.X, 5.X, and 6.X released branches respectively. The discontinued
branches 1.X, 2.X, and 3.X are tracked using Other Branches attribute value.

The original ODC Target attribute indicates the subpart of a product, such as a specific unit, module,

component, or even a sub-system, where the specific defect (or product-internal fault) is fixed. For OED/agile,
this product sub-part is identified by its Component attribute in aODC, with its attribute values Processor,
Computational Component, Sensor Communicator, Tool Communicator, and RF Communicator to track defects
associated with different sets of modules grouped together to form several executable or dynamic linked
libraries for Processor, Computational Component, Sensor Communicator, Tool Communicator, and RF

Communicator respectively.

5. Baseline Defect Analysis

We began with retroactive defect distribution analysis of the baseline for all the aODC attributes identified
in Table 1. The analysis results for the Defect Type and Discovered-by attributes showed the most interesting
patterns among all the attributes we examined.

The objective of using the Defect Type attribute is to examine defect distribution across the major functions,
including Algorithm, Communication, and Processing from Table 1 and described in the previous section. The
key questions for this analysis are: 1) which function is more defect prone, or which Defect Type is dominant,
and 2) whether this result conforms to our expectations.

Fig. 2 highlights defects for the three major functions of the OED/agile system prior to aODC deployment.

The processing related defects were the most reported. This was not surprising, as the amount of data
processed was high, leading to a higher share of defects. The next most reported category was communication
related defects. Initially, this was a surprise as more algorithm defects were expected than communication
defects. On further analysis, we realized that the algorithms were initially developed on a separate platform,

Volume 20, Number 1, 202530

Journal of Software

and they had already gone through extensive validation activities. Thus, the fundamental principles of the
algorithms were solid. This led us to conclude that the defects reported in this category were more likely
related to the migration and integration process of the algorithms from their original platform to the new

environment.

Fig. 2. Baseline defect type attribute.

Next, we examine Discovered-by attribute for the defect distribution between in-house and in-field defects.
This analysis addresses one of the major concerns for management of limiting the number of defects
remaining in OED which are later discovered by end-users. For in-house defects, Discovered-by attribute
further groups the defects by the testers or developers who discovered them. The results are summarized in
Table 2, excluding the partial years of 2001 and 2014 to keep the yearly data comparable.

Table 2. Number of Defects and Percentage Share

Year
 In-House

In-Field

Total
Developer Tester Customer

Baseline
(2002–
2005)

2002 9 17% 32 62% 11 21% 52
2003 46 22% 157 75% 7 3% 210
2004 19 16% 86 73% 13 11% 118
2005 51 40% 61 48% 15 12% 127
Avg. 31.3 24.7% 84 66.3% 11.5 9.1% 126.8

Post-
aODC

(2006–
2013)

2006 36 31% 68 58% 14 12% 118
2007 27 25% 78 72% 3 3% 108
2008 31 49% 18 29% 14 22% 63
2009 13 35% 9 24% 15 41% 37
2010 25 47% 17 32% 11 21% 53
2011 15 39% 18 47% 5 13% 38
2012 24 50% 12 25% 12 25% 48
2013 17 57% 10 33% 3 10% 30
Avg. 23.5 38.0% 28.8 46.5% 9.6 15.6% 61.9

The top portion of Table 2 shows the pre-aODC baseline total defect count and the number and percentage

share of the defects discovered by developers, testers, and customers during the normal unit test, system test,

and in-field use respectively. The tester’s share of total defect discoveries was significantly higher than other

Volume 20, Number 1, 202531

Journal of Software

categories between 2002 and 2004, ranging from 62% to 75% of the total number of defects. The gap closed
considerably in 2005, although the tester’s percentage share still remained fairly high, at 48%. These results
agree with a known fact that prior to the deployment of aODC, developers were not performing extensive unit

tests before passing the product to the testers. This observation contributed to the policy change in OED to
require developers to carry out significantly more unit tests before transitioning to system testing performed
by professional testers.

The percentage share of defects reported by the customers was relatively low, ranging from 3% to 21%,
and stayed relatively consistent over the years. These results alleviated management’s concern of having

small percentage share of defects discovered in-field by the customers.

6. Reducing Defects and Improving Early Discovery of Defects

Next, we examine the effect of aODC deployment by comparing the defect metrics results for post-aODC
against the pre-aODC results.

The bottom portion of Table 2 highlights the post-aODC total defect count and the number and percentage

share of the defects discovered by each personnel group. Comparing the total number of defects, we can see
a general trend of decreasing defect count post-aODC and over time. The average total defect count per year
is reduced from the original 126.8 pre-aODC to 61.9 post-aODC, a reduction of more than 50%, thus validating
our hypothesis Hd1. In addition, the average number of in-field defects reported by customers is reduced from
11.5 to 9.6 after deployment of aODC, a 16% reduction, thus validating our hypothesis Hd2.

On the other hand, the customer’s percentage share of the defects increased from an average of 9.1% pre-
aODC to 15.6% post-aODC. However, it remained relatively low and steady over time, ranging from 3% to 25%
in the post-aODC time period, with an outlier occurring in 2009 at 41%. The outlier was aligned with the last
major recession when customers were heavily involved with research and development of new processes

that led to more newly discovered defects. If that outlier is excluded, the customer percentage share of defects
would be reduced to an average of 13.5%, a moderate increase over 9.1% pre-aODC. Overall, the total number
of defects discovered by the customers were still much fewer compared to those discovered in-house, and
followed a downward trend from pre-aODC to post-aODC (see Hd2 discussion above).

Table 2 also shows the trend of the percentage share of the defects discovered by each personnel group.
Generally speaking, the percentage share of the defects reported by the developers increased post-aODC, with
the average percentage share increasing from 24.7% pre-aODC to 38% post-aODC. On the other hand, the
tester’s average percentage share of total defects decreased from 66.3% pre-aODC to 46.5% post-aODC. This
supports the hypothesis He: Deployment of aODC, accompanied by the shift to more unit tests in OED/agile,

the share percentage of early defects discovered by developers would increase.

7. Improvement in Reliability and Reliability Growth

For reliability comparison of pre-aODC baseline and post-aODC branches, we took the 4.X and 5.X data and
applied the Nelson model to the last branch release data. The modeling results give us Nelson reliability
values of 0.884 and 0.914 for 4.X and 5.X respectively. These results validate our reliability impact hypothesis

Hr1, i.e., deployment of aODC would lead to increased reliability.
For reliability growth comparison between pre-aODC and post-aODC branches, we used the defect trend

data within the 24 months for 4.X and 5.X branches respectively. Fig. 3 shows the cumulative reported defects
over the 2230 and 2198 test runs over the respective 24 month periods for the 4.X and 5.X branches. Visually
examining the defect trend, we can see more reliability growth in 5.X than in 4.X, as visualized through a more

pronounced bending towards the upper-left corner and a significantly flattened defect arrival curve for 5X at
the tail-end in comparison with the curve for 4.X.

Volume 20, Number 1, 202532

Journal of Software

Fig. 3. Reliability growth comparison: BASELINE 4.X vs Post-aODC 5.X

Figs. 4 and 5 show the 4.X and 5.X branches defect data fitted with the GO and MO models respectively.

Purification level 𝜌 calculated from each fitted model can then be compared across the branches to
quantitatively compare the reliability growth. We calculated the purification level 𝜌 as 0.916 and 0.902 for

4.X by the fitted GO and MO models respectively. Similarly, 𝜌 is 0.991 and 0.994 for 5.X, calculated by the
fitted GO and MO models respectively. The overall purification level 𝜌 is significantly higher in the 5.X branch
(> 0.99) than in the 4.X branch (around 0.91). These results validate our reliability growth impact hypothesis
Hr2: If in-process feedback is provided earlier in the life cycle of a system, then the purification level 𝜌 would
increase, indicating significantly more reliability growth.

Fig. 4. Fitted GO and MO SRGMs to baseline 4.X data.

Fig. 5. Fitted GO and MO SRGMs to post-aODC 5.X data.

Volume 20, Number 1, 202533

Journal of Software

8. Conclusions and Perspectives

This study was instrumental in providing valuable early feedback about software quality and drive
quantifiable quality improvement for a semiconductor software developed in a small company under the
agile development process. Similar to other studies on adapting ODC to specific application environments [2,

3], we adapted the original ODC attributes and attribute values [1] to meet this study’s need under agile
development and its specific environment constraints, such as limited data availability, reduced staffing level
and process scope, and compressed schedule for the dynamic market [4, 5].

To assess the impact of this in-process feedback based on aODC, our adapted ODC for agile development,
we defined several defect and quality metrics, including total defect count, in-field defects discovered by

customers, share of early defects discovered by developers vs late defects discovered by testers, reliability
assessed at various points in time, and overall reliability growth. We first quantified the baseline defect and
quality metrics before the deployment of our aODC. After deployment and active usage of aODC in the OED
product development process for the later product branches, we assessed the results using the same defect

and quality metrics. We compared these pre-aODC and post-aODC results and demonstrated that aODC
offered valuable early in-process feedback that led to quantifiable quality improvement. In particular, all our
hypotheses regarding the impact of aODC have been validated, namely,

1. a more than 50% reduction in total defects (Hypothesis Hd1) from an average of 126.8 per year
down to 61.9, and a 16% reduction of defects found by customers (Hypothesis Hd2) from an average

of 11.5 per year down to 9.6;
2. a significantly higher percentage share of defects discovered in the early part of the process by the

developers, at 38%, up from 24.7% in the baseline, and a significantly lower percentage share of
defects discovered later by the testers, at 46.5%, down from 66.3% in the baseline (Hypothesis He);

3. a higher reliability (Hypothesis Hr1), with a success rate of 0.914 post-aODC compared to 0.884 in
the baseline, and a more significant reliability growth (Hypothesis Hr2), quantified by the
purification level of 0.99 post-aODC as compared to 0.91 in the baseline.

This study has shown practical ability of adapting the original ODC and using it to provide valuable in-

process feedback, to reduce defects, and to improve quality and reliability for a semiconductor software
under the agile development environment. In general, adapting existing models and techniques to work
effectively in specific application environments and generalizing them to work for heterogeneous systems
will help improve quality, productivity, and customer satisfaction for a wider variety of systems, such as
command-control-communication systems, embedded systems, smart devices, communication networks,

critical infrastructures, clouds and service computing systems, etc. Most of these systems are developed using
the latest development technologies and are more likely to adopt the agile development process instead of
the traditional waterfall process [4, 5], making our aODC for the agile development environment more
suitable and more easily adaptable than the original ODC to these systems for quantifiable quality

improvement.
As a follow-up to this study, we would like to explore the possibility of a tighter and smoother integration

of our aODC into the agile development process to provide timely feedback and suggestions, as an integral
part of the process instead of as an add-on to the process. Instead of relying on a dedicated analyst to classify
defect data according to aODC, software developers, testers, and inspectors can be pre-trained to classify

defects on the spot so that aODC data would become immediately available. Previous work on automatically
classifying defect based on defect descriptions in natural language [16] can potentially be adapted and
integrated into the agile development process to reduce the training and operational cost of aODC
deployment. In addition, automated ODC data analysis along the line of [17] has the potential to reduce the

time delay in providing timely feedback and to reduce the analysis cost performed by a dedicated analyst.

Volume 20, Number 1, 202534

Journal of Software

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

Both authors conducted the research and wrote the paper. Eric Abuta implemented aODC in OED and
collected detailed data. All authors had approved the final version.

Funding

This research was supported in part by the NSF Grant #1126747, Raytheon and NSF Net-Centric I/UCRC.

Acknowledgment

This paper contains material expanded from unpublished portions of the doctoral thesis by the first
author [8]. We thank the anonymous reviewer for his/her insightful and constructive comments.

References

[1] Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., & Wong, M. -Y. (1992). Orthogonal
defect classification—A concept for in-process measurements. IEEE Transactions on Software
Engineering, 18(11), 943–956.

[2] Lutz, T. R., & Mikulski, C. (2003) Better analysis of defect data at NASA, Proceedings of the 15th
International Conference on Software Engineering and Knowledge (SEKE ’03) (pp. 607–611).

[3] Ma, L., & Tian, J. (2007). Web error classification and analysis for reliability improvement. Journal of
Systems and Software, 80(6), 795–804.

[4] Alahyari, H., Svensson, R. B., & Gorschek, T. (2017). A study of value in agile software development
organizations. Journal of Systems and Software, 125, 271–288.

[5] Gren, L., Torkar, R., & Feldt, R. (2017). Group development and group maturity when building agile teams:
A qualitative and quantitative investigation at eight large companies. Journal of Systems and Software,
124, 104–119.

[6] Abuta, E., & Tian, J. (2018). Reliability over consecutive releases of a semiconductor optical endpoint
detection software system developed in a small company. Journal of Systems and Software, 137, 355–365.

[7] Abuta, E., & Tian, J. (2018). Defect classification and analysis in a small company, Proceedings of the 31st
International Conference on Computer Applications in Industry and Engineering (CAINE 2018) (pp. 175–

182).
[8] Abuta, E. (2019). Long Term Software Quality and Reliability Assurance in a Small Company. DE Praxis,

Southern Methodist University, Dallas, Texas, USA.
[9] Basili, V. R., & Rombach, H. D. (1988). The TAME project: Towards improvement-oriented software

environments. IEEE Transactions on Software Engineering, 14(6), pp. 758–773.
[10] Lyu, M. R. (1995). Handbook of Software Reliability Engineering. McGraw-Hill.
[11] Tian, J. (1998). Reliability measurement, analysis, and improvement for large software systems. Advances

in Computers, 46, 159–235.
[12] Goel, A., & Okumoto, K. (1979). Time-dependent error-detection rate model for software reliability and

other performance measures. IEEE Transactions on Reliability, 28(3), 206–211.
[13] Musa, J. D., & Okumoto, K. (1984). A logarithmic Poisson execution time model for software reliability

measurement, Proceedings of the 7th Int. Conf. on Software Engineering (pp. 230–238).
[14] Nelson, E. (1978). Estimating software reliability from test data. Microeletronics and Reliability, 17(1),

67–73.

Volume 20, Number 1, 202535

Journal of Software

[15] Tian, J. (2023). Accelerated defect discovery and reliability improvement through risk-prioritized testing
for Web applications. Journal of Software, 18(3), 159–171.

[16] Huang, L., Ng, V., Persing, I., Chen, M., Li, Z., Geng, R., & Tian, J. (2015). Automated generation of orthogonal

defect classifications. Automated Software Engineering, 12(1), 3–46.
[17] Menzies, T., Lutz, R., & Mikulski, C. (2003). Better analysis of defect data at NASA, Proceedings of the 15th

Int. Conf. on Software Engineering and Knowledge Engineering (SEKE’03) (pp. 607–611).

Copyright © 2025 by the authors. This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited (CC BY 4.0)

Volume 20, Number 1, 202536

Journal of Software

