JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

53

Using Aspect Programming to Secure Web

Applications

Gabriel Hermosillo - Roberto Gomez
ITESM-CEM/Dpto. Ciencias Computacionales, Edo. de Mexico, Mexico
Email: {ghermosillo, rogomez} @itesm.mx

Lionel Seinturier - Laurence Duchien
University of Lille- LIFL- INRIA Project ADAM, Villeneuve d’Ascq, France
{lionel.seinturier, laurence.duchien } @1ifl.fr

Abstract—As the Internet users increase, the need to protect
web servers from malicious users has become a priority in
many organizations and companies. Writing crosscutting
functions in complex software should take advantage of the
modularity offered by new software development
approaches. With Aspect-Oriented Programming (AOP),
separating concerns when designing an application fosters
reuse, parameterization and maintenance. In this paper, we
design a security aspect called AProSec for detecting SQL
injection and Cross Scripting Site (XSS), that are common
attacks in web servers. We experimented this aspect with
Aspect] language and JBoss AOP. By this experimentation,
we show the advantage of runtime platforms such as JBoss
AOP for changing security policies at runtime. Finally, we

describe related work on security and AOP.

Index Terms—Aspect-oriented programming, security, SQL
injection, cross site scripting, design of web applications,

reuse of aspect, dynamic weaving.

I. INTRODUCTION

In the last years, the Internet web servers activity has
increased. Companies and organizations use web servers
to publish information that concerns directly their users.
However, other institutions consult their operations
through these same servers. The ignorance of the
developers concerning the vulnerabilities on web
applications, highlights the weakness of these software
systems. OWASP's Top Ten listing references two
common attacks on web applications: Cross Site
Scripting (XSS) and SQL injection [1].

SQL injection is a technique where a would-be

© 2007 ACADEMY PUBLISHER

intruder modifies an existing SQL request to post hidden
data, to crush important values, or to process dangerous
orders for the database. This is made when the
application retrieves data sent by the Internet users, and
uses it directly to build a SQL request.

Cross Site Scripting (XSS) is an attack exploiting a
weakness of a web site that fails to validate the
parameters entered by the users. XSS uses various
techniques for injecting (and executing), scripts written in
languages such as JavaScript or VBScript. The goal of
these attacks is to keep cookies containing information
identifying users, or to mislead them later so that they
provide personal or secret data to the attacker.

Security techniques used by most web developers do
not perform very well. The approach Design for security
defends the idea that security should be taken into
consideration during all the phases of the development
cycle and must influence deeply the design of the
application.

Aspect-Oriented Programming (AOP) is a good
candidate for this feature [2]. AOP has been proposed as a
technique for improving concerns separation in software
systems and for adding -crosscutting functionalities
without changing the business logic of the software. AOP
provides specific language mechanisms that make it
possible to address concerns, such as security, in a
modular way. AOP languages and tools can be applied at
compile-time or at run-time. This way, the security issue
in a software system can be addressed.

Our main objective is to design and implement a
security aspect called AProSec to deal with SQL
Injection and XSS Cross Site Scripting web attacks. Our

54

proposal is based on the aspect programming models
offered by Aspect] and JBoss AOP and defines the
elements necessary for the defense of a web site against
these attacks. These elements will appear as Aspect]
aspects woven at compile-time and, in a second version,
at run-time with the JBoss AOP framework [3] [4].

Our work is motivated by the need to fill the gap
between an integrated version of a web server with
security functions and a modular version with AOP
techniques. This paper leads to the definition of a model
for addressing security issues in software applications
that could be re-used on several software systems with
few changes and be dynamically added at runtime.

The rest of this paper is organized as follows. Section 2
presents the motivation and principles of SQL Injection,
XSS Cross Site Scripting and AOP. Section 3 provides
the web application architecture. Section 4 defines our
AProsec Aspect and its integration with the web server
architecture. Section 5 details the difference between two
weaving approaches with Aspect] and JBoss AOP.
Section 6 shows the experimentation results. Section 7
describes some related work. Finally, section 8 concludes
and discusses some future work.

II. MoOTIVATION AND PRINCIPLES

There are a lot of devises to implement perimetral
security, firewalls, IDS, IPS, etc. Nevertheless a great
number of organizations offer a web page to the public,
leaving the port 80 open to any person who wants to
access. The web service offers different kinds of services
as information about the company, but it is also a way to
send data to the organization. In most of the cases the
system is developed "in house" with no security concerns
at all.

In order to prevent insecurity in the design and the
implementation of web applications, the OWASP (Open
Web Application Security Project) created a list of the top
10 vulnerabilities, which represents the most critical web
application security flaws. The primary aim of the
OWASP Top 10 is to educate developers, designers,
architects and organizations about the consequences of
the most common web application security
vulnerabilities.

The list includes cross site scripting, injection flaws,
malicious file execution, cross site request forgery
(CSRF), insecure direct object reference, information
leakage and improper broken

error handling,

authentication and session management, insecure
cryptographic storage, insecure communications, failure

to restrict URL access.

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

This paper presents a scheme to prevent the two first
vulnerabilities of the list, based on Aspect Oriented
Programming. The main feature of our scheme is the fact
that the initial code of the application does not need to be
modified.

A. SQL Injection and XSS

SQOL injection: The OWASP project explains that a SQL
injection attack consists in finding a parameter that a web
application sends to a database [1]. The attacker embeds
malicious SQL commands into parameters in order to
trick the web application for forwarding a malicious
query to the database. As a result of this kind of attack,
the database contents can be corrupted, destroyed or
disclosed.

Many techniques are used in SQL injection. The most
popular are tautology, union, additional declaration and
comments. In order to explain each technique, we will
consider the in which a web

case application

authenticates a user by executing the following query:

SELECT * FROM users WHERE nane='al ice' and
password = 'toto'

Tautology looks for a disjunction in the WHERE
clause of a select or update statement. In the previous
example it can be made by adding the statement
'a'="a", resulting in the following query:

SELECT * FROM users WHERE user='alice' and
password = 'toto’ or 'a' ="'a'

The precedence operator causes the WHERE clause to
be true for every row, and all table rows will be returned.
The union clause allows grouping the result of two SQL
queries. The goal is to manipulate a SQL statement into
returning rows from another table. As an example we will
assume that a database containing the reports is available:

SELECT body, results FROM reports

When using this statement with our example, we will
obtain the following query:

SELECT body, results FROM reports
UNI ON
SELECT | ogi n, password FROM users

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

As result the query will display the reports list, but
also the database users in the application.

The additional statements technique attempts to add
SQL statements or commands to a SQL query. For

example:

SELECT * FROM users WHERE nane='alice' and
password = ‘'toto'; DELETE FROM users WHERE
usernane = 'admn’

When executing the previous query, the admin record
would be erased from the database.

We can also use comments. Most of the databases use
the “--%, “//” or “#” characters for a comment indication.
An attack can use the comments to cut a SQL query and
change the meaning of it. For example, when using the
following SQL statement:

SELECT * FORM users WHERE nanme = 'alice' and
password = 'toto’

An attacker could transform by this way:

SELECT * FORM users WHERE nane = 'admin' -- and
password = "'

The result will show all the information about the
admin user in the user’s database. All these attacks can be
combined to form more complex SQL queries.

Cross Site Scripting: The cross site scripting (XSS) is an
attack oriented to the user’s browser, in order to disclose
the end user’s token, to attack the local machine, or to
spoof content to fool the user [1]. The attacker uses a web
application to send malicious code generally in the form
of a script to a particular user. The attack takes advantage
of web applications that do not validate the output
generated by a user’s input. The attack is known as XSS
attack, and not CSS attack, to avoid confusion with
Cascading Style Sheets.

As an example, consider a web application that gives
the visiting user the opportunity to send a comment
through a guest book. A malicious user can introduce the

3

following characters “<!--“. After some time, these
characters are mixed with other users' input, resulting in

the following content in the guess book:

Very good web page, dude!
<l--

You re da man, boss

© 2007 ACADEMY PUBLISHER

55

When a user reads the guest book with a browser, it
will read all the contents and will interpret the character
“<I--“not as a user’s opinion, but as a HMTL tag. As a
result, the rest of the content in the guest book is ignored
by the users' browsers. We can imagine the effects of the
following statements in the guest book.

<script>
for (g=0; q < 1000; g++)
wi ndow. open(http://ww:. hot. exanpl e);
</script>

This is an example of a very simple XSS attack. An
attacker can introduce scripts that can take session
cookies of a user and send them to the attacker. With this
information the attacker can use the system as the original
user. An attacker can also mislead the user to another
website and try to extract personal or confidential
information.

B. Aspect Oriented Programming

The domain of aspect-oriented programming (AOP)
appeared in 1996 [1] [2]. It was pioneered by Gregor
Kiczales and his team, then at the Xerox Palo Alto
Research Center. While original and innovative, the
domain of AOP inherits results from other programming
approaches such as reflection, open implementations,
meta-object protocols or generative programming.

One of the experiences that motivated the definition of
AOP was the study of the Tomcat servlet engine. When
studying the code of Tomcat, Gregor Kiczales and his
team discovered that, while some functionality was
cleanly modularized in classes, other, such as user session
management or logging, appeared in several classes. This
phenomenon is known as code scattering. When
developers want to fix a bug or to upgrade such
functionalities, they have to scan and modify several
source files. While feasible, this hinders productivity and
is error-prone. In other cases, the code scattered around
several classes, was also redundant. The consequence of
this scattering is that a given method mixes concerns
different This
phenomenon is known as code tangling. Once again this

related to functionalities. second
hinders the maintainability and understandability of
applications.

When faced with these two phenomena, the question is
whether scattering and tangling are irreducible or is the
result of a poor design. In other words, could Tomcat be
re-designed to prevent scattering and tangling? While
open, the answer to this question is usually no. The idea

56

is that a complex piece of software such as Tomcat may
be decomposed according to many criteria: the
decomposition may be data-driven, process-driven,

driven by various requirements such as security,

integration with existing information systems, or
performance. It happens that one is chosen by designers
and that the other decompositions may not fit in the
scheme introduced by the first one, leading to
functionalities being scattered and tangled. The purpose
of AOP is then to provide a solution to solve these issues.

An analogy of how the different concerns can be
separated from the requirements using AOP, is how a

prism separates a light beam into a spectrum of colors

[5].

Concern
Prism

Figure 1: Prism analogy for concern separation

Fig. 1 shows the requirements as a light beam. When
the beam enters the prism, all the concerns are separated
so they can be developed and included independently.
Authentication, performance, security and logging are
commonly used concerns and are always spread through
the application's code.

AOP, as a new programming paradigm, introduces
notions such as an aspect, a join point, a pointcut and an
advice code. However, these notions do not replace
existing ones such as a class, an object, a procedure or a
method. Rather, AOP must be seen as a complement to
these existing techniques. Furthermore, these notions are
not specific to a programming style (e.g. object-oriented
or procedural) or a given syntax (Java, C#, Ada, COBOL,
exist for

etc.). extensions

languages, object-oriented or procedural.

Aspect-oriented many

Aspects can be applied (the term used by the AOP
community is woven) at compile-time or at run-time.
shown the

Experience has difficulty of writing

crosscutting functions such as security [6].

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

III. WEB APPLICATION ARCHITECTURE

A web application architecture usually consists in three
parts: a server where the web application is running, a
database server where the application's information is
stored and a bunch of clients willing to use the web
application.

Web Application
Server

Database
Server

Clients

HTTP
Request

0
=

Figure 2: The architecture of an unprotected web application server

Fig. 2 shows how a web application server (WAS)
interacts with clients and database servers. When the
client sends a request, it goes directly to the WAS and if it
isn't validated, it can cause some unexpected behavior.
When needed, the WAS forms a new request using the
unvalidated parameters from the client, forwarding the
attack to the database server. This is how most of the
attacks are done, using unvalidated entries.

Web Application

Server
RUBAIES Database
E Server
—
4 -~
HTTP » -
Request
|DBC -
B e Request
Y
AProSec Intercept:
Aspect java.sql. Statem ent.addBatch(String)

) U java.sgl. Statement.execute(String)
java.sgl. Statem ent.execute Query (String)
java.sql. Statement.executeUpdat e(String)

Intercept:

¥
javar, servlet, http. HttpServletRequest. get Parameter{ String)

Figure 3: The architecture of a web application server protected by
AProSec

Fig. 3 shows how AProSec protects the application by
intercepting and validating all the requests from the client
to the WAS and from the WAS to the database server.
This prevents that any request goes unvalidated and that
the attacks can get through. As shown in Fig. 3, AProSec
surrounds the application, without having to change the
application's source code.

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

IV. Tue AProSEc AspEcT

The AProSec aspect can be used by any AOP
framework and is composed of three parts. First, an
advice (the added code) defines the validation process.
Second, the way AProSec validates the requests depends
on the options that the administrator selects on the
configuration file, as shown in Section IV-B. Finally, the
pointcut part (where the code is added) allows the
weaving with the web application. How this weaving is
made will be described in Section V-A and V-B for each
implementation.

A. Advice

The advice part consists in two main validations:
1.LHTTP requests parameters (intercepting
javax.servlet.http.
HttpServletRequest.getParameter(String) call),
2.DB queries (intercepting
java.sql.Statement.addBatch(String), execute(String),
executeQuery(String) and executeUpdate (String) calls).

When implementing these validations, we considered
several syntaxes that should be validated: double and
single quotes, SQL Injection, and XSS. In the HTTP
requests, we validate the parameter value to avoid code
injection and invalid HTML tags. For DB queries, the
validation is made by analyzing the query string to
prevent ‘“‘always true” comparisons, semicolons and
comments.

When validating the HTTP requests, we prevent SQL
Injection by removing any single or double quotes sent by
the user. As a result, using the same example as before,
for the user validation:

SELECT * FROM users
password = 'toto' or 'a'

VWHERE
=g

user="alice' and

The attacker should have input al i ce as the user and
toto' or 'a' = 'a as the password. AProSec would
validate this and change the password to toto\'
or \'a\' = \'a taking the whole string as the password

and not as two operations.

SELECT * FROM users WHERE user='alice' and
password = "toto\' or \'a\' =\'a

As for the XSS, all the tags the user may input are
transformed to HTML code preventing the attacker from
introducing any tags. Using the XSS example, in the
input:

© 2007 ACADEMY PUBLISHER

57

<script>
for (g=0; q < 1000; q++)
wi ndow. open(htt p://ww. hot. exanpl e) ;
</script>

The <script> tag would be transformed into
& t; scripté> allowing the browser to print it as text an
not interpret it as a script. By default, all the HTML tags
are transformed into safe tags, but the administrator can
configure the aspect to accept certain tags using the XML
configuration file. In this case, the selected tag will
remain unchanged, but still certain validations are done.
For example, all the Javascript parameters that a tag may
contain (like onCl i ck, onMouseOver, etc.), would be
removed.

When validating the JDBC requests, AProSec checks
the queries so they do not contain any comments and
prevents ‘“‘always true” comparisons by not allowing

queries like:

‘val ue' = 'val ue'
"value' != 'val ue2'
tablel.fieldl = tablel.fieldl

This helps to prevent any SQL Injection that bypasses
the single and double quotes filter. In order to do this,
AProSec intercepts the request sent to the database and
analyzes all the conditions in the query, changing the
“always true” conditions for “always false” ones. It also
removes any semicolons (;) found in the query, to prevent
the insertion of additional queries. Finally, AProSec
detects comments in the query, preventing an attacker to
comment any validations made.

B. Configuration of the AProSec aspect

This section describes the configuration file. Even
though single and double quotes are part of the SQL
injection, the AProSec aspect manages them separately.
We define all the validations that can be done, but the
administrators can decide which ones to use by using the
configuration file.

It must be noticed that the whole JDBC validation is
controlled by the validateSQLInj tag, so if it is enabled,
the comments, semicolons and “always true” conditions
are always checked.

58

<?xm version="1.0"?>

<! DOCTYPE val i dator [

<! ELEMENT validator (vali dateQuotes,

val i dat eApost, validateSQLInj,

val i dat eXSS, val i dTag*) >
<! ELEMENT val i dat eQuot es (#PCDATA) >
<! ELEMENT val i dat eApost (#PCDATA) >
<! ELEMENT val i dat eSQLI nj (#PCDATA) >
<! ELEMENT val i dat eXSS (#PCDATA) >
<! ELEMENT val i dTag (#PCDATA) >

1>

Figure 4: The configuration file

Fig. 4 shows the XML configuration file in which we
define a set of ELEMENT with the following meaning:
validator: This is the root element.
validateQuotes: To validate double quotes () from a
parameter. If this option is enabled, every time the
applications receives a form or URL parameter, it will
convert the double quote () to “backslash double
quote” (\).
validateApost: To validate single quotes (') from a
parameter. If this option is enabled, every time the
application receives a form or URL parameter, it will
convert the single quote (') to “backslash single
quote” (\').
validateSQLInj: To validate the query for possible SQL
Injection. If this option is enabled, every time the
application issues a database call, the query is validated
to prevent unexpected queries to execute, avoiding
“always true” conditions and the use of semicolons and
comments in the query.
validateXSS: To validate user input for XSS attacks. If
this option is enabled, every time the application receives
a form or URL parameter, this parameter is validated and
all the HTML tags are transformed into safe tags,
preventing the user input to be displayed in a dangerous
war.
validTag: To accept certain HTML tags. If this option is
enabled and the validateXSS option is enabled too, then
for every tag found in the parameter, this validation
checks if it should accept the tag and transform it to a
safe tag. This tag must be used for every HTML tag the
administrator wants to accept. Even when this option is
enabled, the parameters in the tag cannot contain any
Javascript calls, as explained later.

A safe tag is the one that will not be printed as an
HTML tag. For example, if a parameter contains the tag
“ LINK ", the filter will transform it
into “&t;a href="# &t; LINK&t;/a>”, allowing
the tag to be safely displayed. To enable an option, the
value “TRUE” (case insensitive) should be used as the

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

tag value. Any other value will disable the option. If an
element is not present, then the default values are taken.
The default values are all TRUE, without accepting any
HTML tags.

Valid tags cannot contain an on* family element (like
ond i ck, onChange, etc.); if it does, it will be
removed. For example, if we are accepting the <a> tag,
the input:

This is <a href="#"
you!");">a |ink.

onClick="al ert (' Thank

Will be transformed as:

This is a |ink.

Also, no parameter value can contain the words

LEINT3

“javascript”, “vbscript” nor “tcl”, to prevent attacks like:

<ing src="javascript:alert(' Qops!');">

If these scripts are found, they will also be removed,
and the example would be transformed to:

<ing src="">

V. WEAVING THE ASPECT

A. Weaving with Aspect]

Aspect] is the most widely used language for aspect-
oriented programming [3]. It defines an extension of the
Java programming language for dealing with aspects. The
Aspect] compiler handles Java source code or byte code,
weaves them with aspects, and generates some byte code
that can then be executed with a standard Java virtual
machine.

Our first approach is made using precisely Aspect] as
the AOP framework, Tomcat as the application server and
MySQL as the database manager.

Fig. 5 describes the calls in Aspect]. Here the aspect is
defined using the extended Java language in a .gj file. By
using the new expressions of the language we declare our
pointcuts specifying the calls to be intercepted. With our
pointcuts defined, we then call the validator to verify that
the parameter or query is not dangerous.

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

poi ntcut dbWite(String query): (call(*

java. sql . Stat ement . addBat ch(String))
|| call(* java.sql.Statenment. execute(String))
|| call(* java.sql.Statenment.executeQuery

(String))
|| call(* java.sql.Statenent.executeUpdate

(String)))
&& args(query);

poi ntcut getParaneter(): call(String

javax. servlet. http. Ht pServl et Request . get Par anet

er(String));

bj ect around(String query): dbWite(query){
hject ret =

val idator.Validator().validateQuery (proceed());
return ret;

}
String around(): getParaneter(){

return new validator.Validator().validate
(proceed());

}

Figure 5: The intercepting code with AspectJ

B. Weaving with JBoss AOP

JBoss AOP is a framework for programming aspect-
oriented applications in Java. It can be used as a
standalone framework or embedded in the JBoss J2EE
server. Web applications running on this server can then
take advantage of the aspect-oriented features of the
framework [4]. JBoss AOP is an open-source project that
can be downloaded from
http://www.jboss.org/products/aop

By using JBoss AOP, a vulnerable application can now
be protected at compile time or at runtime by applying
the security aspects.

Both modes were tested. The main advantage of the
load time (or runtime) mode is that the application does
not need any manipulation before getting it in the
application server. Using the compile time mode, we need
to recompile the source files and then package them
before getting them to run in the application server.

Fig. 6 describes the JBoss code for intercepting the
calls. When using JBoss AOP we define our aspect using
a XML file. Here we specify the call we want to intercept
and the class we want to call when intercepted. This class
will then call the validator to verify the parameters and
queries.

© 2007 ACADEMY PUBLISHER

59

<aop>
<bi nd poi ntcut="call (java.lang. String
$i nst anceof {j avax. servlet. http. H t pServl et Reques
t}->getParaneter*(java.lang. String))">
<i nt er ceptor
class="interceptors. HTTPI nterceptor"/ >
</ bi nd>
<bi nd pointcut="call (*
$i nst anceof {j ava. sql . Stat enent } - > addBat ch*
(java.lang. String))">
<i nterceptor class=
"interceptors. Queryl nterceptorQery"/>
</ bi nd>
<bi nd pointcut="call (* $i nstanceof
{java.sqgl . Statenent}-> execute*
(java.lang. String))">
<i nt er cept or
class="interceptors. Querylnterceptor"/>
</ bi nd>
<bi nd pointcut="call (* $i nstanceof
{java.sql . Statenent}-> executeQuery*
(java.lang. String))">
<i nterceptor class=
nt erceptors. Querylnterceptor"/>
</ bi nd>
<bi nd pointcut="call (* $instanceof
{java.sql . Statenent }-> execut eUpdat e*
(java.lang. String))">
<interceptor class=
"interceptors. Querylnterceptor” />
</ bi nd>
</ aop>

Figure 6: The intercepting code with JBoss AOP

VI. EXPERIMENTATION RESULTS

We developed a vulnerable online bookstore, to test the
AProSec aspect. It is a simple application with a poor
login, a catalog with a search engine and a message
board. The login and the catalog are ideal to exploit the
SQL Injection vulnerabilities. Using the login we could
attack the restrictions of having a valid account, while the
search engine, combined with the catalog can be
exploited with “Union” attacks to display restricted info
to the attacker. The message board is easy to attack with
XSS, by inserting HTML tags in the comments that cause
unexpected behavior in the user's browser.

First we tried all sorts of SQL Injection and XSS
attacks we had information about to see how the
application behaved. Then we protected it with AProSec
using two approaches: Aspect] and JBoss AOP. After
using AProSec we tried the same attacks and even some
more, and were unable to bypass the application's
security.

Our test database consists in two tables: users (login,
password, admin_flag) and products (name, description,
price). When using the product search in the application,
the search would create the following query:

60

sel ect * from wher e like

' Ypar anmet er % ;

products name

When the application runs without the aspect, an
attacker could use the catalog search engine to display the
users and passwords of the application.

Product search

Name contains: | union select *from users#

Search I

Figure 7: SQL Injection using the search field

Fig. 7 shows the union attack that will return all the
products and the users from the application. This input
would create this query:

select * from products where nane like '% union
sel ect * from users#,

This query would make the application show the users
login and password.

Name | Description Price
a book from
one book $40.00
product
. just another
a magazine $10.00
product
videogame | for the fun of it! $50.00
userl pwdl $0.00
user2 pwd2 $0.00
admin superpwd $1.00

Figure 8: Display of products and users

If the application is running with AProSec, it will not
show any informations from the users table and the
query would be transformed to:

select * from products where nane like ' %A’
uni on select * from users#;

Both frameworks (Aspect] and JBoss) will help to
reach our goal, but since we prefer to keep the aspect
working without the need of the source code, the runtime
weaving sounds as a better option, compared to the
compile time approach. This way, even if we do not have
access to the source code we can still improve our
applications' security.
the downside of

Typically, inserting additional

validations to an existing application is that the

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

performance can be badly damaged, but by using good
design patterns during the development of AProSec, this
was not an issue.

We recorded the time that database transactions took to
respond with and without AProSec, and the average
difference between both was of about 0.0035 seconds,
using all the possible validations in the aspect. These tests
were done on a database (MySQL) with over 100,000
records and using a simple workstation for both, Database
and Web Application Server. We expect that performance
will be even less diminished when using a dedicated
Server.

VII. ReLaTED WORK

A. Security approaches for SQL injection and XSS

The best way to be protected against SQL attacks is to
inspect all the data the user introduces to the application.
Most of the work in this area attempts to limit the way in
which a pre-programmed query will be used, allowing
only the sentence that the programmer wants to define.

In other project, the authors propose to use a parse tree
that represents the parsed SQL query [7]. In order to
achieve this, the SQL grammar has to be known. This
technique produces one parse tree with the original query,
including the expected user input. Once the user
introduces the required data, a new parse tree is generated
and compared with the first one. Since an SQL injection
attack will produce a different tree, the comparison will
show the differences and detect the attack.

AMNESIA project is a tool that detects and prevents
SQL injection attacks by combining static analysis and
runtime monitoring [8]. It defines a model for detection
of illegal SQL queries, before they are executed by the
DBMS. In the first phase, the source code is analyzed in
order to generate the model that contains the valid SQL
queries. In a second phase, a real time monitor compares
the SQL generated by the program with those stored in
the model, if they do not match the model, the queries are
prevented from executing on the database. It's success
depends on the accuracy of the model generated during
the first phase, and can be degraded when using certain
types
techniques [9].

SQL DOM technique is a set of classes that are
strongly-typed to a database schema [10]. Instead of
SQL
statements. The solution is based on an executable called

of code obfuscation or query development

string manipulation, these classes generate

sqldomgen, which generates a dynamic link library
(DLL) based on the structure of the database. The DDL

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

contains classes that will be used to construct dynamic
SQL statements without manipulating any strings. This
technique requires the learning and use of a new
programming paradigms or query-development process
and do not provide any protection for legacy systems [9].

A randomization of the instruction set is proposed by
another team [11]. They create an execution environment
that is unique to the running process. In order to achieve
this, the original opcodes of the computer server are
transformed by a random key. If an attacker tries to inject
code and it does not know the key, the machine will not
execute this code, causing a runtime exception. The
security of this technique is dependent on the attacker not
being able to discover the key. It requires the developers
to modify the application to use the randomized
instructions.

Another solution is the use of application IDS
(Instruction Detection System) [12]. This kind of IDS is
oriented to supervise specific applications, including
SQL applications. The authors propose to use a Network
IDS in order to look for invalid SQL statements in the
network traffic. With these type of systems the SQL
commands that will be executed can be deciphered, and
depending on which columns and tables are been
accessed, the IDS can conclude if it is an attack or not
[13]. This techniques can provide no guarantees about
their detection abilities because their success is dependent
on the quality of the training set used [9].

A Context-Sensitive String Evaluation (CSSE) project
presents a detection tool that does not require the
application source code to be modified [14]. It modifies
the PHP runtime environment to detect injection attacks
on all the applications running on the server. By
modifying the runtime environment, the portability gets
affected [9]. The authors
implementation is needed for every platform.

accept that a separate

The advantage of AProSec, in comparison with the
other projects, is that it is based on AOP and it considers
both, SQL Injection and XSS in the same aspect. Also,
when using JBoss AOP it provides runtime weaving,
allowing the administrator to incorporate AProSec
without recompiling the application. Once the application
is running with AProSec, any change in the configuration
file will be taken during runtime, without stopping the
application at any moment.

B. AOP and Security

The domains of aspects and security have already been
the subject of several works. Among the security related
functionalities that have been the topic of an aspect-
oriented development, one can find: access control,

© 2007 ACADEMY PUBLISHER

61

encryption, the adding of digital signatures, authorization
and authentication [15] [16] [17] [18] [19] [20]. Most of
the implementations described in these studies rely on
Aspect] [16] [17] [19].

A UML aspect-oriented profile is proposed by Jian
Zhu and Zulkernine to model attack scenarios [21]. The
model uses class diagrams and state machine diagrams to
represent the static attributes and the dynamic behavior of
the intrusions and the process of detecting these
intrusions. Their framework consists of five stages:
attack

scenarios using UML; generate the intrusion detection

identify vulnerabilities and attacks; model
aspect (IDA) code using an aspect code generator; weave
aspects into the target system; test and deploy the
integrated system. The aspect-oriented attack scenario
model is exported to a XML Metadata Interchange (XMI)
file, which is used as input by the code generator to create
partial code for the IDA.

The work of Kawachi and Masuhara is the most related
to our objectives [22]. The authors propose an aspect to
detect cross-site scripting. Their approach relies on
sanitizing, i.e. replacing special characters by quoted
ones, the input data submitted by users to web
applications. The authors take the case of servlet-based
web applications. When data is submitted to a servlet, one
of the issues which are raised consists in determining
whether it comes from an end-user or whether it comes
from another servlet which delegates the request by mean
of the transfer mechanism provided by the servlet
container. In the latter case, data is supposed to be
trustworthy as it simply originates from another part of
the application. In this case, the sanitizing can be skipped
in order to save computation time. To achieve this, the
authors propose to extend the syntax of the Aspect]
pointcut language with a new construct to detect data
flows: the servlet input is sanitized if and only if it is
written back on the servlet output stream. As far as we
know, this data flow operator remains at the level of a
proposal and has not been implemented. Furthermore, it
remains to be seen in what circumstances this solution is
more efficient than a solution that would sanitize all input
streams regardless of their origin.

VIII. CoNcLusioN

We have presented our approach for writing a security
aspect in a web application server. This aspect detects
SQL injection and XSS attacks in requests to a web
application and from this to a database. It allows the
interception of all database accesses and the validation of
them before dangerous information is stored. Moreover,

62

the AProSec
administrator does not need to recompile the code and

aspect can be parameterized. The
can freely decide which validations to apply to each web
application. We have described our two experimentations,
one with Aspect] Language and another with JBoss AOP.

With our approach, an aspect allows a clear separation
of the security code and the web application code. The
initial code of the web application was not modified. By
doing this, the
independently. We only have to program it once for all

aspect will be able to evolve
web applications.

For further study, a first approach would be to add path
traversal attack detection. The path traversal of a file is
an attack in which, through request, the user provides
information concerning the access path of a file (e.g.,
"..J../target_dir/target_file"). This kind of attack tries to
access files that shouldn’t be accessible. These attacks
can be sent in the form of a URL or of an entry such that
it can have access to a given file. Second, cryptography
issues can be added to applications in order to protect the
disclosure of data for unauthorized parts. AOP will also
take care of the key encryption management, and the
encryption/decryption processes. This will be transparent
for the users and their e-mails will be safe. Authentication
can be added to, in order to accept any kind of known
applications, token, or biometric. Finally, we plan to
design and develop a more expressive pointcut language
for security by the definition of an Aspect Specific
Language (ASL).

ACKNOWLEDGMENTS

This work is partially funded by the Franco-Mexican

Laboratory on Informatics (LaFMI)

(http://1afmi.imag.fr/).

REFERENCES

[1] OWASP Top Ten Most Critical Web Application Security

Vulnerabilities, http://www.owasp.org. Accessed in
November 2007.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, J. Irwin. Aspect-Oriented
Programming. Proceedings of the 11th European
Conference on Object-Oriented Programming
(ECOOP'97). LNCS 1241. pp 220-242. June 1997.
Springer-Verlag.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
W. Griswold. Overview of AspectJ. Proceedings of the 15th
European Conference on Object-Oriented Programming
(ECOOP'01). LNCS 2072. pp 327-353. June 200l.
Springer-Verlag.

[4] M. Fleury, F. Reverbel. The JBoss Extensible Server.

© 2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

Proceedings of the 4th ACM/IFIP/USENIX International
Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware'03). LNCS 2672. pp
344-373. June 2003. Springer-Verlag.

[5] R.Laddad. I want my AOP. Separate software concerns with
aspect-oriented programming. JavaWorld. January 2002.
http://www.javaworld.com/javaworld/jw-01-2002/jw-0118-
aspect.html. Accessed in November 2007.

[6] J. Viega, J.T. Bloch and P. Chandri. Applying Aspect-
Oriented Programming to Security. Cutter IT Journal.
Volume 14, No. 2, pp. 31-39, October 2001.

[71 G. Buehrer, B. Weide, P. Sivilotti, Paolo. Using Parse Tree
Validation to Prevent SQL Injection Attacks. Proceedings
of the 5th international workshop on Software engineering
and middleware SEM '05, p. 106 — 113, September 2005.

[8] W. Halfond, A. Orso, AMNESIA: Analysis and Monitoring
for Neutralizing SQL — Injection Attacks. In Proceedings of
20th ACM International Conference on Automated
Software Engineering (ASE), Nov. 2005. 7, 2005, p. 174 —
183.

[91 W. G. Halfond, J. Viegas, and A. Orso. A Classification of
SQL-Injection Attacks and Countermeasures. Proceedings of
the International Symposium on Secure Software
Engineering (ISSSE 2006), March 2006.

[10] R. McClure, 1. Kriiger, Sq/ Dom: Compile Time Checking
of Dynamic SQL Statements. Proceedings of the 27th
international conference on Software engineering. p. 88 —
96, May 2005.

[11] Kc, Gaurav, A. Keromytis, V. Prevelakis.
Code-Injection Attacks With Instruction-Set
Randomization. CCS’03, Proceedings of the 10th ACM
conference on Computer and communications security, p.
272 — 280, October 2003.

[12] K. Mookhey, N. Burghate. Detection of SQL Injection and
Cross-site Scripting Attacks. SecurityFocus. March 17,
2004.

[13] A. Newman. App IDS guards databases. Network World.
October 2005.
http://www.networkworld.com/news/tech/2005/102405techu
pdate.html. Accessed in November 2007.

[14] T. Pietraszek and C. V. Berghe. Defending Against Injection
Attacks through Context-Sensitive String Evaluation. In

Countering

Proceedings of Recent Advances in Intrusion Detection
(RAID2005), September 2005.

[15] G. Bostrom. Database Encryption as an Aspect.
Proceedings of AOSD 2004 Workshop on AOSD
Technology for Application-level Security (AOSDSEC),
March 2004.

[16] R. Laney, J. van der Linden, P. Thomas. Evolution of
Aspects for Legacy System Security Concerns. Proceedings
of AOSD 2004 Workshop on AOSD Technology for
Application-level Security (AOSDSEC), March 2004.

[17] M. Huang, C. Wang, L. Zhang. Toward a Reusable and
Generic Security Aspect Library. Proceedings of AOSD
2004 Workshop on AOSD Technology for Application-

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

level Security (AOSDSEC), March 2004.

[18] T. Verhanneman, F. Piessens, B. De Win, W. Joosen. View
Connectors for the Integration of Domain Specific Access
Control. Proceedings of AOSD 2004 Workshop on AOSD
Technology for Application-level Security (AOSDSEC),
March 2004.

[19] B. De Win, F. Sanen, E. Truyen, W. Joosen, M. Siidholt.
Study of the Security Concern. Network of Excellence on
Aspect-Oriented Software Development. Milestone 9.1.
July 2005.

[20] B. De Win, W. Joosen, F. Piessens. AOSD & Security: A
Practical Assessment. Workshop on Software Engineering
Properties of Languages for Aspect Technologies (SPLAT)
@ AOSD’03. pp 1-6. Boston, USA. March 2003.

[21] Z. Zhi Jian, M. Zulkernine. Towards an Aspect-Oriented
Intrusion Detection Framework. Computer Software and
Applications Conference (COMPSAC 2007), July 2007.

[22] K. Kawauchi, H. Masuhara. Dataflow Pointcut for
Integrity Concerns. Proceedings of AOSD 2004 Workshop
on AOSD Technology for Application-level Security
(AOSDSEC), March 2004.

Lionel Seinturier is professor of computer science at the
University of Lille since September 2006. Before that, he was
associate professor of computer science at the Univesity of Paris
6. He got his PhD at CNAM, Paris in 1997 and his engineer
diploma, both in computer science, at IIE, Evry, France in 1993.
His research activities deal with middleware design and
implementation. He is one of the three co-authors of the book
Foundations on AOP for J2EE Development (APress, 2005) and
of more than 30 publications in international conferences and
journals.

© 2007 ACADEMY PUBLISHER

63

Laurence Duchien is currently full professor at the
department of computer science at University of Lille, France
since 2001 and she is the head of the INRIA team-project ADAM
(Adaptive Distributed Middleware)
http://adam.lifl.fr. Before, she was associate professor of
computer science at CNAM, Paris. She got her PhD at University
of Paris 6 in 1988. Her research interests are centered on the area

Applications and

of component-based architecture design, software evolution and
model driven engineering. Her research interests include formal
description and development techniques for component-based and
service-oriented architecture modeling, analysis, transformation,
and evolution for distributed applications. She currently involves
in ERCIM Group Software Evolution and in AOSD-Europe NoE.

Roberto Gomez is proffesor of computer science at the
ITESM-CEM in Mexico City. His research interests include
cryptography, applications security. He received a PhD in
computer science from the Univeristy of Paris 8 in 1995. During
his PhD studies all his research work took place at INRIA
Rocquencourt laboratories. Roberto is a member of the ACM,
IEEE and IARC (International Association for Cryptologic
Research).

Gabriel Hermosillo is a Master candidate at the ITESM-CEM
in Mexico City. He is a certified Java programmer and works as a
full-time system developer and analyst at the Campus. His
research interests include security applied on web applications
and software development.

