

Learning Problem and BCJR Decoding

Algorithm in Anomaly-based Intrusion Detection

Systems

Veselina G. Jecheva
Burgas Free University, Burgas, Bulgaria

Email: vessi@bfu.bg

Evgeniya P. Nikolova
Burgas Free University, Burgas, Bulgaria

Email: enikolova@bfu.bg

Abstract— The anomaly-based intrusion detection systems

examine current system activity do find deviations from

normal system activity. The present paper proposes a

method for normal activity description using the Hidden

Markov Models (HMM), which is tuned up using the

gradient based method. The obtained model is utilized as a

baseline, depicting the normal system activity. The main

purpose is to distinguish the normal traces of user activity

from abnormal ones using the BCJR decoding algorithm.

Some results from the conducted simulation experiments

are introduced as well.

Index Terms— intrusion detection, anomaly-based intrusion

detection, learning problem, Hidden Markov Model, BCJR

decoding algorithm.

I. INTRODUCTION

Network computer systems vulnerabilities such as

software bugs or incorrect system administration are

often exploited by malicious users to intrude into target

systems. An intrusion detection system (IDS) is a defense

system, which detects hostile activities in the protected

network. The key is then to detect and possibly prevent

activities that may compromise system security, or a

hacking attempt in progress including reconnaissance

and/or data collection phases that involve subsequent

attacks. Intrusion is a series of concatenated activities that

pose threat to the safety of IT resources from

unauthorized access to a specific computer or address

domain on the part of authorized users or outsiders.

The primary assumptions the intrusion detection is

based on are the system activities are observable and

normal and intrusive activities have distinct evidence [4].

Based on the intrusion detection method IDS can be

categorized into two main categories: misuse based and

anomaly based [13]. Misuse based IDS, also referred to

as signature based IDS, act similar to virus scanners and

look for attack signatures or selected text strings [26, 35].

Since any action that is not clearly considered prohibited

is allowed, their accuracy is very high, but they do not

achieve completeness to disclose novel attacks or

variations of familiar attacks.

Anomaly-based IDS detect the computer intrusions by

monitoring system activity and classifying it as either

normal or anomalous. They rely on the assumption that

each intrusion will reflect some deviations from normal

system activity [1]. These systems construct profiles that

represent normal usage and then use current behavior

data to detect a possible mismatch between profiles and

recognize possible attack attempts.

In order to match event profiles, the IDS is required to

produce initial user profiles to train the system with

regard to legitimate user behaviors. Then the system uses

these profiles as a baseline describing normal or expected

user activity. It detects intrusion by observing a deviation

from the normal behavior of the system or the users [33].

The main advantage of anomaly based IDS is the

potential to detect novel attacks or unknown attacks, as

well as attempts to exploit new and unforeseen

vulnerabilities regardless of whether the source is a

privileged internal user or an unauthorized external user.

Anomaly detection approaches have the additional

advantage that learning to describe normal activity can be

automated. Another benefit of this approach is the less

dependence of the IDS on operating environment and the

ability to detect abuse of user privileges.

In order to determine what is attack traffic, the system

must be taught to recognise normal system activity [32].

This task can be accomplished in several ways. Denning

[8] describes an approach that builds profiles based on

login times and resources (e.g. files, programs) that users

access. Simple statistical methods are used to determine

whether observed user behavior conforms to the stored

model. Unfortunately, this behavior can suddenly change

and is usually not well predictable. As a consequence the

focus was shifted from user to program behavior. The

execution of a program is modeled as a set of system call

42 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

sequences [11], which occur during 'normal' program

execution. When the observed sequences deviate from the

expected behavior the program is assumed to perform

something unintended, possibly because of a successful

attack.

There are different approaches to describe normal user

activity and the deviations from this baseline – finite

automata [15, 23], machine learning [24, 34], neural

networks [7, 36], Hidden Markov Model [21, 25, 27],

genetic algorithms [9, 14], wavelet analysis [10, 30],

statistics [18, 19], etc. The present paper focuses its

considerations on the anomaly detection at application

level, introduced by [12]. They examined the short

sequences of system call traces produced by the

execution of the privileged programs at Sun OS system.

These processes are of special interest of the attacker, as

they run with administrative rights and have access to

system resources that are inaccessible for ordinary users.

This paper proposes a method of intrusion detection

identification, which is based on a preliminarily

composed database of normal user activity patterns. The

main purpose is to examine the current user activity and

to calculate the probability the current activity to be

normal user activity, using the Hidden Markov Model

(HMM) [28, 29] – a powerful finite state machine,

expedient for various types of pattern recognition

problems. The proposed methodology is applied for the

attacks detection during the normal activities in the

system. As our goal is to distinguish the normal activity

patterns from abnormal ones, we consider this detection

as decoding problem.

The present method consists of two stages – the first

contains the HMM initial creation and its adjustment

using the gradient method, and the second one includes

the intrusion recognition using the BCJR decoding

algorithm [2]. In Section 2 we review some of the

standard facts on these techniques. Some of our

experimental results are provided in Section 3, including

the experimental data, the results of the intrusion

detection itself, as well as some results analysis and

errors evaluation.

II. OUTLINE OF THE METHODOLOGY

A. The system model

Let’s consider a HMM with N states: S1, S2, …, SN

which the system passes through its work in discrete

moments of time t=1, 2, .. ,T,…, and that the probability

of occupying a state is determined solely by the preceding

state. Let О=(O1, O2, … OT) is the observation sequence

at the moments t=1, 2, …, T, where each Ot is a certain

element vkV, where the set V is the observations set with

M elements in number. We denote the state sequence of

HMM at the moments t=1, 2, …, T with Q=(q1, q2, …,

qT). HMM is completely specified by the ordered triple

(, ,)A B :

 The vector π is the initial probability distribution

1 2(, ,...,)N for the HMM states.

 The state transition probability matrix A={aij,

1≤i≤N, 1≤j≤N}, 0 1ija and
1

1
N

ij

j

a

 is a square

matrix with the elements which represent the

probability of transitioning from given state to another

possible state.

 The observation probability distribution is a non-

square matrix B={bj(Ok), 1≤j≤N, 1≤k≤M}, with

dimensions number of states by number of

observations. It represents the probability that a given

observable symbol will be emitted by a given state.

We consider those processes only in which the state

transition probabilities do not change with time, i.e. P(qt

= Sj | qt-1 = Si) = aij the probability of transiting from

state Si to state Sj does not depend on the moment of time

t (stationarity assumption).

The main goal for the HMM is to describe the system

behavior during specific period of time. We create an

initial HMM, which is tuned up using the learning

problem in order to achieve this goal.

This adjustment is performed by determination of the

model parameters A, B and π for given HMM λ in order

to maximize ()L P O for the observation sequence O.

This problem is known as learning problem. There are

several optimization criteria for learning, out of which a

suitable one is selected depending on the application. We

apply the Maximum Likelihood (ML) as optimization

criteria in the present paper.

B. ML criterion

In ML we try to maximize the probability of a given

sequence of observations O, belonging to a given class w,

given the HMM (, ,)A B of the class w, with respect

to the parameters of the model (, ,)A B . There is no

known way to analytically determine the model

(, ,)A B , which maximize the quantity ()L P O .

But we can choose model parameters such that it is

locally maximized, using an iterative procedure, like a

gradient based method. In this method any parameter

of the HMM is updated according to the standard

formula

,

old

new old

J

 (1)

where J is a quantity to be minimized. In our case we set

 log logJ p O L . The minimization of J is

equivalent to the maximization of L. We have

1 1

, ,
N N

t t t

i i

L p O q i i i

 (2)

where:

 the forward variable

1 2() (, ,..., , |)t t t ii p O O O q S

is defined as the probability of the partial observation

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 43

© 2007 ACADEMY PUBLISHER

sequence 1 2, ,..., tO O O , when it terminates at the state

si and can be calculated using the following recursive

steps:

1 1() (), 1j jj b O j N

1 1

1

() () () , 1 , 1 1
N

t j t t ij

i

j b O i a j N t T

 (3)

 the backward variable

1 2() (, ,..., , |)t t t T t ii p O O O q S

can be defined as the probability of the partial

observation sequence 21
, ,...,t t TO O O , given that the

current state is Si and as in the case of ()t i there is a

recursive relationship which can be used to

calculate ()t i efficiently:

() 1, 1T i i N

1 1

1

() () (), 1 , 1 1
N

t t ij j t

j

i j a b O i N t T

 (4)

Differentiating J with respect to an arbitrary parameter

1
.

J L

L

Since there are two main parameter sets in the HMM,

transition probabilities aij and observation probabilities

bj(Ok), we can find the derivative
L

 for each of the

parameter sets and hence the gradient
J

.

1. Gradient with respect to transition probabilities.

Using the chain rule

1

T
t

tij t ij

jL L

a j a

 .

By differentiating (2) with respect to t j we get

 t

t

L
j

j

 and differentiating (3) with respect to

ija we obtain

 1 .
t

j t t

ij

j
b O i

a

 Then

 1

1

1
.

T

t j t t

tij

J
j b O i

a L

2. Gradient with respect to observation probabilities.

Using the chain rule

t

j t t j t

jL L

b O j b O

.

By differentiating (3) with respect to j tb O we get

t t

j t j t

j j

b O b O

. Then

1 t t

ij j t

j jJ

a L b O

.

The attacks recognition can be considered as a

decoding problem. One fundamental decoding principle

is symbolwise maximum a posteriori decoding – the

concept of optimally decoding each symbol. As an

example of this decoding we applied BCJR decoding

algorithm. Our second step is to use this algorithm to

estimate random parameters with prior distributions. The

algorithm scans the traces of the system activity and

compares with the patterns of normal user activity.

C. The BCJR algorithm

The description of the BCJR algorithm can be done

based on log-likelihood ratios (LLR). The LLR are

represented as follows

1
ln

0

i i

i

i i

P m O

P m O

.

where mi is the message bit associated with the state

transition qi to qi+1 and 1i iP m O is the a posteriory

probability (APP) in which the bit, determining the

presence of attack, is equal to 1. If the LLR of an

observation is positive, it implies that im is most likely to

be a 1 and if it is negative, im is most likely to be a zero.

We can express 1i iP m O as follows:

1 1

1

1

,
1

i i i

i i i i i

S S i

P s s O
P m O P s s O

P O

,

where 1S represents the set of all state transitions for

which the input symbol is iO . Similarly,

0 0

1

1

,
0

i i i

i i i i i

S S i

P s s O
P m O P s s O

P O

,

where 0S is the set of all pairs of states which transient

from a state is at time i to a state 1is at time 1i under

the input symbol not iO . Hence, the LLR of the i
th

observation is obtained as:

1

0

1

1

,

ln
,

i i i

S

i

i i i

S

P s s O

P s s O

.

We partition the joint probability

of 1,i i iP s s O into three parts using Bayes’ rule:

 1 1 1,i i i i i i iP s s O s s s s ,

where 1,i i is P s O is the forward variable,

 1 1 1i i is P O s is the backward variable and

 1 1,i i i i is s P s O s

represents the probability of the state transition from is

to 1is , given the current state is is which is called the

Branch metric associated with the state transition

1i is s . The Branch metric can be expressed as:

44 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

 1 1 1i i i i i i i i i is s P s s P O s s P m P O x

The first term iP m represents the a priori information.

The second term i iP O x is straight-forward.

2

22

1
exp

22

i i

i i

O ax
P O x

,

where xi is the result of the transition from the state si

to state si+1 during the normal system activity.

III. SIMULATION EXPERIMENTS

A. The Experiment Data

Following the scheme of intrusion detection described

in section II, we have conducted several experiments. The

experimental data were obtained from a project

performed by the researches in the Computer Science

Department, University of New Mexico [37].

The data are obtained from Unix and Sun

SPARCstations system examination during some period

of time and consist of normal user activity patterns of

some privileged processes executed with administrative

rights as well some anomalous data. The privileged

processes are of special interest of the attacker as they

perform some services which require access to system

resources that are inaccessible to ordinary users. The

methods for pattern generation are described in [11] and

[12]. They substantiate the short sequences of system

calls are reliable discriminator between normal and

anomalous activities in the system. Each pattern is a

sequence of system calls, which are the results of the

examined process. The input data files are sequences of

ordered pairs of numbers, where each line consists of one

pair. The first number in each pair is the process ID (PID)

of the process executed, and the second one is the system

call number. Forks are taken into account as separate

processes and their execution results are considered as

normal user activity. Table I contains some examples of

input data.

The experimental data include normal user activity

traces as well as intrusion data. The normal activity

patterns compose the set of the states S and the intrusion

activity patterns compose the set V. The initial system

model was created according to these data. Then the

model is tuned using the gradient method, described in

section II.B. The obtained model is used as a database

describing normal system activity. Then the BCJR

algorithm was applied in order to distinguish normal

traces from abnormal ones. As a result of BCJR

algorithm we obtain the LLRs which represent the

probability of intrusion occurrence at the given moment

of time.

TABLE I.
SYSTEM CALL DATA, CONTAINING PID AND SYSTEM CALL NUMBER

PID 1393 1393 ... 1423

System calls 112 19 ... 105

TABLE II.
NUMBERS OF ITERATIONS AND THE VALUES OF L DEPENDING ON THE

VALUES OF η WHEN T=10

T=10 Number of iterations L

η=0,0001 322 4.20353e-13

η=0,0002 161 3.41980e-13

η=0,0003 107 3.21028e-13

η=0,0004 80 7.60207e-14

η=0,0005 64 1.15635e-13

η=0,00001 3224 3.94035e-13

η=0,00002 1611 3.78713e-13

η=0,00003 1074 3.87351e-13

η=0,00004 805 3.58734e-13

η=0,00005 644 3.58219e-13

TABLE III.
NUMBERS OF ITERATIONS AND THE VALUES OF L DEPENDING ON THE

VALUES OF η WHEN T=15

T=15
Number of
iterations

L

η=0,0001 322 2.88298e-17

η=0,0002 162 1.88268e-17

η=0,0003 108 4.77443e-18

η=0,0004 82 8.53916e-18

η=0,0005 65 5.47520e-19

η=0,00001 3207 2.54814e-17

η=0,00002 1604 2.47694e-17

η=0,00003 1070 2.46345e-17

η=0,00004 802 2.22364e-17

η=0,00005 642 2.21205e-17

We used a slide window with length T to cross the

traces of current user activity, i.e. the system

observations, which compose the set O. We accomplished

experiments with the following values of T: 10, 15 and

20. Given an unknown observation sequence, the ML-

criterion finds the model which maximizes the value

of ()L P O . For standard gradient descent we use

learning rate η from 0,000001 to 0,000009 with step

0,000001, from 0,00001 to 0,00009 with step 0,00001

and from 0,0001 to 0,0009 with step 0,0001 for both

observation and transition probabilities. Initially we

examined the data about the process synthetic sendmail.

Some of the obtained results are summarized in Tables II

and III which represent the number of iterations and the

value of L for η=0,0001-0,0005 and η=0,00001-0,00005

when we examine 10 or 15 unknown observations.

The algorithm exhibits a tendency of growth of the

number of iterations when we increase the number of

observations and decrease the learning rate η. The

number of iterations necessary for the model training is

similar when T=10 and 15. One of the greatest problems

in training large models with gradient descent is to find

an optimal learning rate. A small one will slow down the

speed and significantly increase the number of iterations.

On the other hand, a large one will probably cause

oscillations during training and finally leading to no

useful model would be trained.

B. The Detection Results

Anomalous data was examined using the BCJR

decoding algorithm which compares the traces of the

system activity for T=10, 15 and 20 with the patterns of

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 45

© 2007 ACADEMY PUBLISHER

normal user activity. The intrusion detection problem is

considered as a decoding problem. The results of the

algorithm are the values of LLR, where each LLR is the

logarithmic ratio of the probability of attack presence and

the probability of normal activity at specific moment t.

We assume that the values of LLR greater than 0 denote

an attack presence.

Figure 1 contains the values of LLRs when T=10 for

values of η=0,00006-0,00009. As we can see the

algorithm recognizes the observation O6 as anomalous

regardless of the value of η. So the chosen values of η do

not have significant influence on the method ability for

attacks detection.

Some of the results for T=15 and 20 and η=0,00006-

0,00009 are represented at Figure 2 and 3. The positive

values of LLR stand for observations considered as

attacks. For instance, from Figure 3 IDS for T=20 the

method most likely checks O6, O8 , O14,, O19, O20 as

attacks.

Figures 4 and 5 contain the comparison between the

values of LLR’s corresponding to the same observations

with different values of T. For instance, from Figure 4 we

see that the IDS for T=15 most likely checks O12 as an

attack while the IDS for T=20 checks it as normal system

activities and IDS for T=20 most likely checks O8 and O14

as attacks while IDS for T=15 checks these observations

as normal system activities. We assume the results for the

greater value of T are more reliable due to the larger

number of observations considered in LLR’s calculation.

Some of the results for T=10, η=0,00004-0,00006 and

the processes: synthetic ftp, named and xlock are

summarized at Figures 6, 7 and 8.

T=10

-200

-150

-100

-50

0

50

100

150

1 2 3 4 5 6 7 8 9 10

η=0,00006 η=0,00007 η=0,00008 η=0,00009

Figure 1. Values of LLR depending on the value of η when T=10.

T=15

-200

-150

-100

-50

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

η=0,00006 η=0,00007 η=0,00008 η=0,00009

Figure 2. Values of LLR’s depending on the values of η when T=15

46 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

T=20

-200

-150

-100

-50

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

η=0,00006 η=0,00007 η=0,00008 η=0,00009

Figure 3. Values of LLR’s depending on the values of η when T=20

-200,0000

-150,0000

-100,0000

-50,0000

0,0000

50,0000

100,0000

150,0000

T=10 0,00009 -180,2 -75,60 -21,16 -21,16 0,0000 125,72 -21,16 -97,13 -151,7 -143,7

T=15 0,00009 -179,7 -75,63 -21,11 -21,11 0,0000 124,99 -21,11 -96,63 -150,7 -143,3 -179,7 22,400 -21,11 -96,63 -179,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4. Values of LLR for T=10 and T=15 and η=0.00009

-200,0000

-150,0000

-100,0000

-50,0000

0,0000

50,0000

100,0000

150,0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T=15 0,00004 T=15 0,00005 T=20 0,00004 T=20 0,00005

Figure 5. Values of LLR for T=15 and T=20 and η=0.00004 and η=0.00005.

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 47

© 2007 ACADEMY PUBLISHER

synthetic ftp T=10

-100

-80

-60

-40

-20

0

20

1 2 3 4 5 6 7 8 9 10

η=0,0004 η=0,0005 η=0,0006

Figure 6. Values of LLR depending on the value of η when T=10 for

synthetic ftp.

named T=10

-600

-500

-400

-300

-200

-100

0

100

1 2 3 4 5 6 7 8 9 10

η=0,00004 η=0,00005 η=0,00006

Figure 7. Values of LLR depending on the value of η when T=10 for

named.

xlock T=10

-140

-120

-100

-80

-60

-40

-20

0

1 2 3 4 5 6 7 8 9 10

η=0,00004 η=0,00005 η=0,00006

Figure 8. Values of LLR depending on the value of η when T=10 for

xlock.

C. The Results Analysis

The false positive rate (FPR) is the frequency with

which the IDS reports malicious activity in error. The

true danger of a high false positive rate lies in fact that it

may cause to ignore the system’s output when legitimate

alerts are raised. The false negative rate (FNR) is the

frequency with which the IDS fails to raise an alert when

malicious activity actually occurs, i.e. it represents the

undetected attacks on a system. False negative rate

changes in an inverse proportion to false positive rate.

In order to evaluate the false positives rate we applied

a method used by Hoang et.al. [16]. This approach is

based on the assumption that as a normal trace sequence

does not contain any intrusions, any reported alarms

could be considered as false alarms. From the normal

trace we generated a list of n consecutive short sequences

of system calls, using a sliding window of length T. Then,

each short sequence of the list is evaluated by the

detection method to determine if it is normal or abnormal.

We counted all abnormal sequences for the whole list as

m. The false positive rate is calculated as m/n. Figures 9,

10 and 11 represent some values of LLR for the

processes: synthetic ftp, named and xlock, which are used

to determine what short sequence of the list is normal or

abnormal.

named false positive, T=10

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

1 2 3 4 5 6 7 8 9 10

η=0,0004 η=0,0005 η=0,0006

Figure 9. Values of LLR representing false positives for named.

xlock false positive T=10

-140

-120

-100

-80

-60

-40

-20

0

1 2 3 4 5 6 7 8 9 10

η=0,00004 η=0,00005 η=0,00006

Figure 10. Values of LLR representing false positives for xlock.

48 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

synthetic ftp false positive T=10

-100

-80

-60

-40

-20

0

20

40

1 2 3 4 5 6 7 8 9 10

η=0,00004 η=0,00005 η=0,00006

Figure 11. Values of LLR representing false positives for synthetic

ftp.

Table IV contains the values of the false positive rate,

the false negative rate and the accuracy for processes

synthetic ftp, named and xlock.

Figures 12, 13 and 14 contain graphs of the false

negative rate, fraction of intrusions incorrectly not

detected, and the false positive rate, fraction of non-

intrusions incorrectly detected, for the same input.

Another statistical method for evaluation the IDS

effectiveness is calculation of sensitivity and specificity.

Sensitivity is defined as the true positive rate (TPR), i.e.

intrusion correctly detected. Mathematically, sensitivity is

expressed as follows:

True Positive Rate

True Positive Rate + False Negative Rate

TABLE IV.
THE FALSE ALARMS RATE AND THE ALGORITHM ACCURACY

Process

False

positive
rate

False

negative
rate

Accuracy

synthetic ftp 17% 39% 72%

synthetic sendmail 11% 33% 83%

named 5% 23% 86%

xlock 3% 15% 91%

named

0,000

0,050

0,100

0,150

0,200

0,250

1
0

3
0

1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

Number of observations

E
rr

o
r

ra
te

False positive

rate

False negative

rate

Figure 12. Error rate for named.

xlock

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

10 30 10
0

30
0

50
0

70
0

90
0

Number of observations

E
rr

o
r

ra
te

False positive rate

False negative

rate

Figure 13. Error rate for xlock.

synthetic ftp

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

1
0

3
0

1
0
0

3
0
0

5
0
0

7
0
0

9
0
0

Number of observations

E
rr

o
r

ra
te False positive

rate

False negative

rate

Figure 14. Error rate for synthetic ftp.

The false negative rate is equal to one minus the

sensitivity. True negative rate (TNR) represents an IDS

that is correctly reporting that there are no intrusions.

TABLE V.
THE CROSSOVER ERROR RATE

Process CER

synthetic ftp 0,07

inetd 0,06

named 0,05

xlock 0,03

stide 0,05

Specificity is expressed as

True Negative Rate

True Negative Rate + False Positive Rate

The false positive rate is equal to one minus the

specificity. Sensitivity and specificity for the processes

inetd and stide are respectively 0,87; 0,93 and 0,92; 0,89.

The crossover error rate (CER) is defined as adjusting

the system’s sensitivity until the false positive rate and

the false negative rate are equal. The crossover error rate

for considered processes is represented in Table V. In

order to achieve a balance between false positive rate and

false negative rate, we may select the IDS with the lowest

crossover error rate.

The receiver operating characteristic (ROC) curve is a

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 49

© 2007 ACADEMY PUBLISHER

method of graphically demonstrating the relationship

between sensitivity and specificity. An ROC space is

defined by FPR and TPR as x and y respectively, which

depicts relative trade-offs between true positive and false

positive. The decision threshold divides the normal

activities into a true negative and a false positive group,

and the attack sequences into a true positive and a false

negative group. As the decision threshold moves to the

right along the x-axis, sensitivity ranges from one, when

all tests are read as abnormal (no false negatives), to 0,

when all are normal (no true positives). Maximal

sensitivity is realized when all tests are reported as

abnormal. Specificity moves in concert from 0 (no true

negatives) to 1 (no false positives). Maximal specificity is

achieved by reporting all tests as normal. The best

possible prediction method would yield a point in upper

left corner (0,1) of the ROC space, representing 100%

sensitivity (all true positives are found) and 100%

specificity (no false positives are found). This point is

called a perfect classification. The diagonal line (from the

left bottom to the right corner) divides the ROC space in

areas of good and bad classification. Points above this

line indicate good classification results; while points

below the line indicate wrong results (see Figures 15 and

16). Each sensitive value can be plotted against its

corresponding specificity value to create the diagram for

the processes inetd and stide in Figures 17 and 18

respectively.

ROC curve inetd and diagonal line

0

0,2

0,4

0,6

0,8

1

1,2

-0,5 0 0,5 1 1,5

Figure 15. The ROC curve and the diagonal line for inetd

ROC curve stide and diagonal line

0

0,2

0,4

0,6

0,8

1

1,2

-0,5 0 0,5 1 1,5

Figure 16. The ROC curve and the diagonal line for stide

ROC curve inetd

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

1,02

0,000 0,020 0,040 0,060 0,080

Figure 17. The ROC curve for inetd

ROC curve stide

0,91

0,92

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

1,01

-0,050 0,000 0,050 0,100 0,150

Figure 18. The ROC curve for stide

IV. DISCUSSIONS

Based on simulation results (low crossover error rate

and false alarm rate, and satisfactory level of accuracy),

the application of the proposed method for anomaly-

based intrusion detection is technically feasible.

An advantage of the described probabilistic method is

its potential to detect an unknown attack the first time it

appears, as it is based on the BCJR decoding algorithm.

As a result of the algorithm we obtain the probability of

attack presence, divided by the probability of attack

absence instead of one-to-one mapping between the

current patterns and those in the database. We applied a

model training using the learning problem based on

HMMs in order to learn normal and abnormal patterns of

program behavior from its execution trace to generalize

upon the method introduced in [11]. The proposed

method is shown to be able to accurately detect

anomalous intrusions. It not only increases the level of

confidence but improves the false alarm and detection

rates also. Our experiments demonstrate that learning

problem combined with the BCJR decoding algorithm

can indeed play an important role in intrusion detection of

computer systems.

50 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

Nevertheless, there are some open issues, which

warrant further attention. A disadvantage of the described

method is its considerable price, as the BCJR algorithm

has О(ТN
2
) complexity. As N is the number of the states,

i.e. the number of normal user activity patterns in the

database, its value could be significant in the case of a

large system. Another disadvantage of the anomaly based

IDS in general is the creation of the database containing

the user profiles, which could be a task of considerable

difficulty, especially during the ML training. The gradient

method has О(ТN
2
) complexity at each training step. We

should mention this training is accomplished once before

the observation decoding which is a continuous process

during the system work.

Our method is based on the definition of normal

behavior in terms of short sequences of system calls,

described by Forrest et. al. ([11] and [12]). With the

purpose of simplicity, this method ignores the parameters

passed to the system calls, and look only at their temporal

orderings. We should mention this definition of normal

behavior ignores many other important aspects of process

behavior, such as timing information instruction

sequences between system calls, and interactions with

other processes.

V. CONCLUSION

The intrusion detection is beginning to assume

enormous importance in today's highly connected

network environment. The combination of facts such as

the unbridled growth of the Internet and the vast financial

possibilities opening up in electronic trade makes it an

important field of research.

Hidden Markov Methodology, with particular care to

the parameter estimation and the training phase,

represents a powerful approach for creating anomaly

detection method which can find whether the traffic is

normal or containing some sort of anomaly. This paper

investigated the capabilities of this methodology in

anomaly detection method. The model training is

performed using ML criterion, based on the gradient

method. Since we considered the attacks recognition as a

decoding problem, we applied the BCJR algorithm

combined with gradient based method. The training of

HMM model is expensive but the detection of the attacks

is more efficient. This results in a system that would be

able to accurately detect the intrusions. Although the

proposed model is a host-based intrusion detection

scheme, it has the potential for use in networked

environments.

REFERENCES

[1] Abraham, A., Thomas, J., Distributed Intrusion Detection

Systems: A Computational Intelligence Approach,

Applications of Information Systems to Homeland Security

and Defense, Idea Group Inc. Publishers, USA, Chapter 5,

pp. 105-135, 2005.

[2] Bahl L., Jelinek J., Raviv J., Raviv F., Optimal Decoding

of Linear Codes for minimizing symbol error rate, IEEE

Transactions on Information Theory, vol. IT-20, March

1974, pp.284-287.

[3] Chan P., M. Mahoney, M. Arshad, Learning Rules and

Clusters for Network Anomaly Detection, Workshop on

Statistical and Machine Learning Techniques in Computer

Intrusion Detection, George Mason University, Technical

Report CS-2003-06, 2003.

[4] Chebrolu, S.; Abraham A.; Thomas, J. P., Feature

deduction and ensemble design of intrusion detection

systems, Computers & Security, Volume 24, Issue 4, 1

June 2005, pp. 295-307.

[5] Christodoresku M., S. Jha, Static Analysis of Executables

to Detect Malicious Patterns, In Proceedings of the 12th

USENIX Security Symposium, August 2003, pp.169—186.

[6] Crosbie M., G. Spafford, Applying Genetic Programming

to Intrusion Detection, Working Notes for the {AAAI}

Symposium on Genetic Programming, 1995, pp.1-8.

[7] Degang Y., C. Guo, W. Hui, L. Xiaofeng, Learning vector

quantization neural network method for network intrusion

detection, Wuhan University Journal of Natural Sciences,

Volume 12, Number 1, 2007, ISSN 1007-1202, pp. 147-

150.

[8] Denning D., An intrusion-detection model, In Proceedings

of IEEE Symposium on Security and Privacy, Oakland,

USA, 1986, pp. 118-131.

[9] Diaz-Gomez P. A., D. F. Hougen, MISUSE DETECTION:

A Neural Network vs. a Genetic Algorithm Approach, In

Proceedings of the Nineth International Conference on

Enterprise Information Systems, 2007, pp. 459-462.

[10] Ezekiel S., W. Oblitey, R. Trimble, Network Signal

Analysis: A Wavelet Approach, Parallel and Distributed

Computing and Networks, Innsbruck, Austria, 2005, 456-

228, ISBN: 0-88986-468-3.

[11] Forrest S., S.A. Hofmeyr, A. Somayaji, T.A. Longtaff, A

Sense of Self for Unix Processes. In Proceedings of the

1996 IEEE Symposium on Security and Privacy, IEEE

Computer Society Press, Los Alamitors, CA, pp.120-128.

[12] Forrest S., S.A. Hofmeyr, A. Somayaji, Intrusion detection

using sequences of system calls, Journal of Computer

Security, Vol. 6, 1998, pp. 151-180.

[13] Fuchsberger A., Intrusion Detection Systems and Intrusion

Prevention Systems, Information Security Technical

Report, Volume 10, Issue 3, 2005, pp. 134-139.

[14] Haghighat A. T., M. Esmaeili, A. Saremi, V. R. Mousavi,

"Intrusion Detection via Fuzzy-Genetic Algorithm

Combination with Evolutionary Algorithms," ICIS, pp.

587-591, 6th IEEE/ACIS International Conference on

Computer and Information Science (ICIS 2007), 2007.

[15] Han Z.F.; J.P. Zou; H. Jin; Y.P. Yang; J. H Sun, Intrusion

detection using adaptive time-dependent finite automata,

Proceedings of 2004 International Conference on Machine

Learning and Cybernetics, 2004, Vol. 5, pp. 3040 – 3045.

[16] Hoang X.D., J. Hu, P. Bertok, A Multi-layer Model for

Anomaly Intrusion Detection Using Program Sequences of

System Calls, 11th IEEE International Conference on

Networks (ICON 2003), Sydney, Australia, 2003.

[17] Hou H., G. Dozier, Immunity-based intrusion detection

system design, vulnerability analysis, and GENERTIA's

genetic arms, Symposium on Applied Computing

Proceedings of the 2005 ACM symposium on Applied

computing, ISBN:1-58113-964-0, 2005, pp. 952 – 956.

[18] Jin S., D. S. Yeung, X. Wang, Network intrusion detection

in covariance feature space, Pattern Recognition, Volume

40, Issue 8, 2007, pp. 2185-2197.

[19] Katos V., Network intrusion detection: Evaluating cluster,

discriminant, and logit analysis, Information Sciences,

Volume 177, Issue 15, 2007, ISSN: 0020-0255, pp. 3060-

3073.

JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007 51

© 2007 ACADEMY PUBLISHER

[20] Kemp M., For whom the bells toll: effective IDS

deployment strategies, Network Security, Volume 2005,

Issue 5, May 2005, pp. 16-18.

[21] Khanna R., H. Liu, Distributed and control theoretic

approach to intrusion detection, Proceedings of the 2007

international conference on Wireless communications and

mobile computing, Honolulu, Hawaii, USA, ISBN: 978-1-

59593-695-0, pp. 115 - 120.

[22] Ko C, G. Fink, K Levitt. Automated Detection of

Vulnerabilities in Privileged Programs by Execution

Monitoring, Proceedings of the 10th Annual computer

Security Applications Conference, pp.134-144, 1994.

[23] Michael C. C., A. Ghosh, ―Simple, state-based approaches

to program-based anomaly detection‖, ACM Transactions

on Information and System Security, Vol. 5, No. 3, August

2002, pp. 203-237.

[24] Moskovitch, R. P., S. Gus, I. Stopel, D. Feher, C. Parmet,

Y. Shahar, Y. Elovici, Host Based Intrusion Detection

using Machine Learning, Intelligence and Security

Informatics, 2007 IEEE, USA, E-ISBN: 1-4244-1329-X,

pp. 107-114.

[25] Ourston, D.; Matzner, S.; Stump, W.; Hopkins, B.

Applications of hidden Markov models to detecting multi-

stage network attacks, Proceedings of the 36th Annual

Hawaii International Conference on System Sciences,

2003. Issue 6-9, pp.10-15.

[26] Platt A., N. Goharian: Short Query Sequences in Misuse

Detection, Proceedings of IEEE International Conference

on Intelligence and Security Informatics, ISI 2007, New

Brunswick, New Jersey, USA,. IEEE 2007, pp.379-382.

[27] Qian Q., M. Xin, Research on Hidden Markov Model for

System Call Anomaly Detection, Intelligence and Security

Informatics, PAISI 2007, Chengdu, China, Volume

4430/2007, pp.152-159

[28] Rabiner L.R., A tutorial on Hidden Markov Models and

selected applications in speech recognition, Proc. IEEE,

257-286, 77, 2, Feb 1989.

[29] Rabiner L. R., B. H. Juang. An introduction to Hidden

Markov Models, IEEE ASSP Magazine, pp.4-16, January

1986.

[30] Rawat S., C. S. Sastry, Network Intrusion Detection Using

Wavelet Analysis, Intelligent Information Technology,

Proceedings of 7th International Conference on

Information Technology, CIT 2004, Hyderabad, India,

ISBN 978-3-540-24126-3, 2004, pp. 224-232.

[31] Reddy Y.B., Genetic Algorithm Approach for Intrusion

Detection, Proceedings of Modeling, Simulation, and

Optimization MSO 2004, Hawaii, ISBN: 0-88986-424-1,

2004.

[32] Sekar R., M. Bendre, Dhurjati, P. Bullineni, ―A fast

automaton-based method for detecting anomalous program

behaviors,‖ IEEE Symposium on Security and Privacy,

2001. S&P 2001, pp. 144 – 155.

[33] Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A.,

Yang, H., Zhou S., Specification-based anomaly detection:

a new approach for detecting network intrusions,

Proceedings of the 9th ACM conference on Computer and

communications security, 2002, pp. 265–274.

[34] Tandon G., P. Chan, On the Learning of System Call

Attributes for Host-based Anomaly Detection,

International Journal on Artificial Intelligence Tools,

15(6), pp. 875-892, 2006.

[35] Tran T.P., T. Jan, A.J. Simmonds, A Multi-Expert

Classification Framework for Network Misuse Detection,

From Proceeding (544) Artificial Intelligence and Soft

Computing, ISBN 0-88986-610-4, 2006.

[36] Venkatachalam V., S. Selvan, Intrusion Detection using an

Improved Competitive Learning Lamstar Neural Network,

IJCSNS International Journal of Computer Science and

Network Security, VOL.7 No.2, February 2007, pp. 255-

263.

[37] University of New Mexico’s Computer Immune Systems

Project, http://www.cs.unm.edu/~immsec/systemcalls.htm.

Veselina G.Jecheva was in Burgas, Bulgaria in 1971. She

received her master degree in Computer Science and Economics

from Sofia University ―St. Kliment Ohridski‖ in 1995. She

received her PhD degree in Computer Science, especially

Information Security from Institute of Mathematics and

Informatics, Bulgarian Academy of Sciences, in 2005. She is a

lecturer at Burgas Free University, Bulgaria. Her research

interests include information security, e-commerce,

programming, Web systems.

Evgeniya P. Nikolova was born in Pomorie, Bulgaria, in 1968.

Between 1986 and 1991 she studied at Sofia University ―St.

Kliment Ohridski‖ and was awarded her master degree in

Probability theory and Statistics in 1991. She received her PhD

in Informatics (Proper codes) from Institute of Mathematics and

Informatics, Bulgarian Academy of Sciences, in 2005. Evgeniya

is a lecturer at Burgas Free University, Bulgaria. Her research

interests include probability theory and coding theory.

52 JOURNAL OF SOFTWARE, VOL. 2, NO. 6, DECEMBER 2007

© 2007 ACADEMY PUBLISHER

http://www.cs.unm.edu/~immsec/systemcalls.htm

