
Description and composition of e-learning
services

Oussama Kassem Zein and Yvon Kermarrec
ENST Bretagne, Dept. LUSSI

Technopôle Brest Iroise, BP 832, 29285 Brest Cedex, France
Email : {Oussama.Zein,Yvon.Kermarrec}@enst-bretagne.fr

Tel : + 33 2 29 00 12 85 Fax : + 33 2 29 00 10 30

Abstract— In this paper, we present our approach to describe
and compose services for distant learning and research
activities. For this purpose, we propose a metadata model
for indexing services with three dimensions: a service can be
viewed as a learning resource, as a resource that contribute
and help researchers to perform their tasks in a community
and as a service with a large scope. This model can be
used by clients (learners/teachers or researchers) to query
and discover services via for example a facilitator we
have developed. We propose an approach for automatic
composition of services which is based on facilitator. It relies
on the semantic description of service behavior. We describe
the latter with an automaton. This includes the description
of the interface through the inputs/outputs and conditions
(post and pre-conditions) that control the operations. We
extend the functionalities of the facilitator to become a
composition engine that enables services or resources to be
composed automatically by comparing their inputs/outputs
flows to help learners/researchers in their distant learning
and research activities.

Index terms: service description, service discovery, service
composition, facilitator.

I. INTRODUCTION AND CONTEXT

Many different approaches for describing, managing
and providing learning resources have been developed
over the years to accommodate the massive flow of
information and learning materials of the internet like
Dublin Core [1] and LOM (Learning Object Metadata)
[2]. Nevertheless, a clear understanding and consensus
about what constitutes a learning resource has not yet
been reached. Even though, we can find analogies with
software engineering and components.

These approaches provide a set of properties that
characterize a learning resource. These properties can be
used by clients (learners/teachers) to discover e-learning
services via UDDI [3] or a trader we have developed [4].

In this paper, we propose to extend the nature of
a learning resource to be a service and to make it
accessible via through an interface, as it is the case for
a learning service. In this context, our proposal is to
make a learning resource not only as a downloadable
thing- that is only executed on the client machine with
no interaction with servers during execution time- but
also as a service accessible by an interface. We define a
metadata model for learning services description which
can be stored in UDDI or in our trader [4]. We have
used ontologies [5] to index and store this model as for

our previous R&D activities. An ontology is a consensus
between clients and service providers and it enables
cooperation and sharing a common vocabulary. Clients
and providers that can be teachers or students can use
this model to query and publish learning services through
ontologies.

We extend the metadata model to make a client not only
a learner or a teacher but also a researcher (a PhD student,
a professor, etc.) to make distant research activities. In this
context, a researcher can publish his services (software,
tools, simulation results, etc.) that can contribute and help
other researchers in their research activities. So, how can
we describe these services to enable the distant research
activities between researchers?

We have implemented this work in a network of
excellence named Kaleidoscope [6] which is composed
of a community of researchers/educators. A goal of
Kaleidoscope is to provide a shared virtual laboratory
aimed a community of researchers and educators to
interact and to share information.

Based on SDL [7] and Interface Automaton [8], we
have described the service behavior with an automaton
and its inputs/outputs [9]. In our previous work, we
describe the inputs/outputs by their names which are
sequences of characters or strings without any semantic
information (about their types and their compatibilities
in particular). In this paper, we extend this description
to address semantic aspects. It includes the description
of post and pre-conditions and extends the description
of the inputs/outputs by concepts in the ontology. We
present the advantages of our approach compared to
existing approaches like WSMO [10].

To invoke the service operations, a client needs
information about the service interface. In this context,
we have described the service interface (service
operations, their parameters and so on). This information
is necessary for client that discovers services at run-time
to understand how he/she can formulate his/her request
to invoke services dynamically by using for example the
DII (Dynamic Interface Invocation) [11] of CORBA.

Based on our trader [9] and the service behavior
description, we have developed an approach for service

74 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

composition [12]. It allows us to combine services
by connecting their inputs/outputs which are strings.
This approach is simple and powerful because the
services can be easily queried. In this paper, we
extend the composition mechanisms by connecting the
inputs/outputs which are described by concepts in the
ontology. We have chosen to use and develop facilitators
based on ontologies that allow the indirect interactions
between clients and service providers. So, the client
(learner/teacher or researcher) looks for a service and the
facilitator searches and invokes it and returns the result
to the client directly. We extend the functionality of the
facilitator to be a composition engine. In this context, the
facilitator has the same functions of the trader an it can
also execute a composed service, without intervention
of the client, and returns the final result to the client.
With the facilitator, the composition becomes automatic.
Therefore, clients can benefit from the functionalities
of many services to get the appropriate results in
their distant learning and research activities and access
resources made available by them in the community.

This paper is organized as follows. Section 2 presents
our proposal for a metadata model that describes and
characterizes learning and research services. Section 3
illustrates our approach of facilitator based on ontologies
that allows the service discovery and composition. It
provides interfaces that allow clients and servers to query
and advertise learning services based on the underlying
use of ontologies. Section 4 presents our approach for
semantic description of the service behavior. It takes into
account the description of post and pre-conditions and the
inputs/outputs flows. Section 5 illustrates our approach
for service interface description. Section 6 presents our
approach of service composition based on facilitator when
a service search is unsuccessful. It allows services to be
composed automatically. Section 7 illustrates an applica-
tion using our approach to describe documents. Section 8
presents related work and on-going trends and directions.
Finally, the conclusion raises issues and presents our
future work in section 9.

II. OUR PROPOSED METADATA MODEL

In this section, we present our metadata model for
learning services. We propose to describe a learning
service with three dimensions: as a learning resource,
as a service that contributes and helps researchers to
perform their tasks in a community and as a general
purpose service. This model provides a set of properties
that characterizes learning services. We describe the
various dimensions :

1) Dimension 1: learning resource

We have based our model on Dublin Core [1]
and IEEE LOM [2] to ensure compatibility with
existing platforms and to allow the description of
a learning resource in general. They define a set of

elements like:

• Title: the name given to the resource by its
creator.

• Creator: The person(s) or organization(s) pri-
marily responsible for the intellectual content
of the resource.

• Subject: the topic of the resource, or keywords
or phrases that describe the subject or content
of the resource.

• Description: a textual description of the con-
tent of the resource, including abstracts in the
case of document and objects and content de-
scriptions in the case of visual resources.

• Publisher: the person(s) or organization(s) in
addition to those specified in the Creator el-
ement who have made significant intellectual
contributions to the resource but whose is sec-
ondary to the individuals or entities specified
in the Creator element (for example, editors).

• Date: the date the resource was made available
in its present form.

• Language: language(s) of the intellectual con-
tent of the resource.

• Format: the data representation of the resource,
such as text/html, Postscript file, JPEG image
and so on.

• Rights: the content of this element is intended
to be a link (a URL for example) to a copyright
notice, a rights-management statement and so
on.

2) Dimension 2: research resource

Our investigation is to describe services that
contribute and help researchers to collaborate, to
work together and to exchange the information
in their research activities. A service can be a
software (a program/application or a component),
a document and so on that is provided by a
researcher (the author) and can be used by
other researchers to help them in their research
activities. For this purpose, we must describe the
context of the component precisely and we have
identified three major fields: the research areas
covered by the service, the researchers and the type
of service (software, document) provided and so on.

A research area can be described by:

• Indexes: key words that describe the research
area.

• References: a set of papers, documents and
URLs that are useful in the research area.

• Links: which are towards other areas and topics
which are linked to the research area.

• Description: a short textual description of the
research area.

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 75

© 2007 ACADEMY PUBLISHER

A researcher (the author of the service) can be
described by:

• Personal information: name, email, phone
number(s), web site, CV, etc.

• Quality and title: PhD thesis, professor or
engineer for example.

• Research areas: the list of the research areas.
• Teaching areas: the list of the teaching areas.
• Publications: references to the published pa-

pers.
• Department: to which the researcher is

attached.

These indexes can have default values according
to provider profile.

A research department can be described by the
following information :

• Name: of the department and the university
or organization to which the department is
attached.

• Address: the location of the department.
• Description: a short description of the depart-

ment.
• Research areas: the list of the research orien-

tations of the department.
• List of researchers attached to the department.
• Research groups constituted in the

department.

3) Dimension 3: service with a large scope

We have based our proposal on [13], [14], [15],
[16] to describe a service with a large scope. We
can identify a service by a set of characteristics
like: delivery systems (in the case of learning
services), payment and pricing, location, quality of
service, requesting and delivery channels (PDA,
mobile phone, etc.), helping tools (chatting room,
mailing list, etc.) and so on.

We present a few of these properties:

• Provider and Location: the Provider defines
the characteristics of the service provider in-
cluding his name and his address (e.g. the name
of his city, street names, postal codes, and
country codes, etc.). The service location can
be a company address or an URL address, and
so on.

• Request and delivery channels: with the intro-
duction of the internet and new communication
devices (mobile phones, pagers, etc.), there has
been an increase in the number of request and
delivery channels available to consumers. A
channel is the means by which a user requests

a service or receives the resulting output from
a service.

• Payment and pricing: payment is the business
process defined by the service provider for
collecting the price of the service from the
consumer. It can be conducted in single or
multiple stages (i.e, installments), using various
mediums (e.g, direct cash exchange, credit or
debit card, cheque, direct debit, account, etc.).
Payment can be made before delivery, at deliv-
ery, after delivery, or any combination of the
above.
Pricing is the charge for the service being
provided. It is largely at the discretion of the
service provider and as such, we consider a
service to have a nominal price.
Pricing and payment can include the identifier
of the entity to which the payment is addressed,
which can be different from the identifier of
the service provider. They include the payment
channel. This is the method used for conducting
the payment (e.g, internet, email, post and
phone, etc.).

• Environment : it determines the characteristics
of the environment used to exploit the service
like the bandwidth and which may appear as
requirements.

• Delivery system: like visio-conference in the
case of learning resources.

• Helping tools: the tools (like chatting room,
mailing list and so on) that help clients to use
the service.

• Service type : can be a learning resource, a
software, a program, a document and so on.

The end users of our metadata model can be students
(“dimensions 1 and 3”, for example to get a document or
a course), teachers (“dimensions 1, 2 and 3”, for example
to get course materials) and researchers (“dimensions 2
and 3”, for example to get simultation results).

The metadata model provides a complete vision about
learning service description since it allows clients and
servers to query and advertise services using in 3 different
points of views. It is flexible because it is compatible with
existing approaches like IEEE LOM, Dublin Core and
DAML-S. These latters are complex and the indexation
stages require an enormous burden. For this purpose, we
have developed a tool allowing the automatic but partial
indexation. It takes as input a service interface, like an
IDL interface, and provides as output the index and the
properties that describes the interface. This alleviates the
manual indexation which is a complex task.

III. OUR APPROACH OF FACILITATOR BASED ON

ONTOLOGIES

Our approach for implementing the facilitator relies
on ontologies. We have selected ontologies because they

76 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

24 5

Ontobroker

 Ontology

Facilitator

37 1 6

Client Service provider

Figure 1. Interactions between the facilitator, Ontobroker, a client and
a service provider

make it possible to provide a shared consensus that can
help share/reuse [5] resources and this is highly valuable
in the internet. We have selected Ontobroker [17] as our
support engine for ontologies (see figure 1). It provides
a complete management system to query, store, delete
and modify information in the ontology and an inference
engine to trigger various processing and events. We
create an ontology describing the service properties
defined in the metadata model that we have proposed.

We present the facilitator interfaces that we have
developed to manage service ontologies. They allow
clients/servers to query/add services through the ontoloy.

- Importing function : It is used by clients. It takes a
query written in a logic language (e.g, F-Logic) [18]
as the input, makes a request to Ontobroker for the
service required, invokes the service and returns the
result to the client. It allows client to get the result
in an implicit way without direct interaction with the
server.

- Exporting function : It is used by service providers.
It allows a fact to be added to the ontology. A service
offer is an instance of a service type. It is described
by a fact. The fact includes the service properties
and the service address (like WSDL file address
with web services, IOR address with CORBA) which
is necessary to access and communicate with the
service.

- A function is provided to remove a fact from an
ontology.

Finally, we declare an object which implements all
these functions and we start it on a server. This object
represents the facilitator. The clients and the servers use
this object to contact Ontobroker and to add/retrieve
services through the ontology.

The sequence of interactions between a client, a
service provider and the facilitator to locate a service is
illustrated in Figure 1:

1) The facilitator receives a service offer from a ser-
vice provider. A service offer includes the service
type, a network address (an address to be used
when accessing the service) and a set of qualifying
properties.

2) The facilitator sends the service offer to Ontobroker
to store it in the ontologies.

3) The facilitator receives a service import request
from the client. This request includes the type of
service desired and a list of desired attributes. A
service request is an expression of required service
characteristics made by a client when a service is
needed.

4) The facilitator sends the request to Ontobroker to
search the required service offer.

5) Ontobroker returns to the facilitator the required
service offers (if they exist) with their references
after applying selection criteria.

6) The facilitator invokes a service selected by inter-
acting with its provider.

7) The facilitator sends the result to the client.

IV. SEMANTIC DESCRIPTION OF SERVICE BEHAVIOR

In this section, we present our approach for semantic
description of service behavior. We build an ontology
[9] that is constituted of concepts to index and store the
properties of the services that we need to be accessed and
shared. Service description (and indexing) is central and
the underlying metadata model should be designed with
care with the help of end users. So that services can be
retrieved with adequate properties.

A. Behavior description

The behavioral description of a service is critical since
it provides the information enabling a client to use the
service and to understand how its invocation needs to
be performed. This includes, for example, the correct
sequences in which the operations of the service need to
be invoked. Once a client discovers a service by querying
its static properties like its location, it can query its
behavior as a function or a relation between inputs and
outputs and which sequence of operations to be invoked
to get an output from a given input.

SDL [7] and Interface Automata [8] have been
designed to specify and to describe the functional
behavior of telecommunication systems. They describe
a process behavior by an automaton which can then be
used to validate the specification. Therefore, based on
SDL and Interface Automata, we describe the service
behavior via a finite state machine (“an automaton”) that
models the allowed operation sequences. Invocation of
the service must satisfy these sequences. For example,

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 77

© 2007 ACADEMY PUBLISHER

a seller may require a buyer to log in before ordering
something. Thus, we can describe valid sequences of
operation invocations which constitute a path to obtain
a result. The interactions between the service operations
occur through message exchanges. These messages are
the inputs and the outputs of the operations. We can
describe the automaton representing the service behavior
as: a black box which carries a relation between its
inputs and its outputs (external behavior) and as a white
box which indicates the allowed interactions between the
service operations to provide outputs from given inputs
(internal behavior).

The automaton describing the service behavior is com-
posed of a set of states and transitions between the states.
Each service operation is represented by a state. For a
current state, the successor state belongs to the set of its
matching states: i.e., the output of the current state can be
connected to the input of its next. Therefore, a transition
connects a state to one of its next valid state.

B. inputs/outputs and post/pre-conditions description

In a previous work [9], we have described the
inputs/outputs of a service as strings (i.e., sequences
of characters). Based on the experiences we made, this
presented limitations to describe complex services which
take for example, several inputs (having different types)
in the same time to provide an output. In this work,
we propose to extend this approach and to describe
inputs/outputs by concepts in the ontology. So, we
describe each input and output by a concept which is
composed of a set of attributes. An output (described
by a concept “O”) of an operation can be connected
to an input (described by a concept “I”) of other one
if the attributes of “O” are included and compatible
with the attributes of “I”. Figure 2 shows an example
of an automaton that describes a service behavior: It
verifies if a client (learner/teacher or researcher) has
sufficient credit to buy a book or an article which he/she
needs in his/her studying or research activities. This
service provides two operations “BarnesGetPrice” and
“CheckCredit”. “BarnesGetPrice” takes as input the
“ISBN” of the book and provides “price” as output to
indicate the price of the book. “CheckCredit” takes as
input a 2-uple (“price” and “Cust Id”) the price and the
identifier of the customer to check if the customer has
sufficient credit to buy the book. So, we can describe
the output of “BarnesGetPrice” by the following concept
written in F-Logic [18] :

PRICE [price =>> Integer].

and the input of “CheckCredit” by the following
concept :

PRICE CUSTOMERID [price =>> Integer;
Customer id =>> Integer].

Barnes
GetPrice

Check
Credit

Price

Cust Id Credit Available

Credit Not Available

Isbn

Figure 2. An example of service behavior

PRICE_CUSTOMERID

Isbn CreditAvailable

CreditNotAvailable

Figure 3. The service description as a black box

“PRICE” can be connected to
“PRICE CUSTOMERID” because its attribute(s)
(“price”) is included and compatible with
attribute(s) (“price”) of “PRICE CUSTOMERID”.
So, “BarnesGetPrice” has “CheckCredit” as a next
valid state because they can be connected by the
output/input : “PRICE”/“PRICE CUSTOMERID”.
Therefore, a user can invoke “BarnesGetPrice” has
the price as result. It takes this as input and it can
invoke “CheckCredit” by indicating its identifier. We
can define two concepts “CREDITAVAILABLE” and
“CREDITNOTAVAILABLE” to describe the outputs of
“CheckCredit”.

Thus, we can describe this service as a black box
(Figure 3) which carries a relation between its inputs and
its outputs by the following concept :

Black box1 [
Input =>> ISBN;
Output1=>>PRICE CUSTOMER; (or PRICE)
Output2 =>> CREDITAVAILABLE;
Output3 =>> CREDITNOTAVAILABLE;

].

Our principal investigation in this area compared for
example to WSMO [10] is to describe a service as a
white box. It allows client to discover all the sequences
of operations enabling to obtain an output from a given
input and he/she can select the appropriate sequence
(maybe the shortest sequence, the sequence having the
cheaper cost and so on.). For this, we can describe
each operation by a concept that includes the name
of the operation and its inputs/outputs. So, the client
can construct the sequences of operations allowing to
get an output from a given input by comparing their
inputs/outputs and by verifying their compatibility. We
describe the service as a white box by the following
concepts:

White box1 [
Operation1 =>> BARNESGETPRICE;
Operation2 =>> CHECKCREDIT

78 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

].

BARNESGETPRICE[
Name =>> STRING “BarnesGetPrice”;
Input =>> ISBN;
Output=>> PRICE].

CHECKCREDIT[
Name =>> STRING “CheckCredit”;
Input=>> PRICE CUSTOMER;
Output1=>>CREDITAVAILABLE;
Output2=>>CREDITNOTAVAILABLE

].

Moreover, we can define post and pre-conditions to
add a semantic level when using the service [10]. They
are conditions on inputs/outputs and service parameters.
This takes a closer look at what the service offers to a
client (post-condition), when some conditions are valid
(pre-conditions). A pre-condition holds the pre-requisite
so that the service call can be made whereas the post-
condition describes its effect. By comparing the pre and
post conditions, the user can obtain valuable information
on the effects of a service and thus on its behavior.

The post/pre-conditions can be expressed by axioms in
the ontology. For example, when the service execution is
successful, the credit card intended to be used for paying
is a valid one (post-condition) if the Isbn of the requested
book is positive (an example). The post and pre-conditions
can be expressed by axioms which are logical expressions
in the ontology, for example (by using F-Logic) :

• pre-condition : x[hasIsbn>0] for each instance x of
the service, which guarantees a form of coherence.
“hasIsbn” is a parameter of the service.

• post-condition : x[hascreditcard->>TRUE] for each
instance x of the service, which “hascreditcard” is a
parameter of the service.

V. DESCRIPTION OF A SERVICE INTERFACE

As each service has an interface, we define a concept
that describes the service interface. This concept is
considered as an attribute of a service. It contains the
descriptions of all the operations, the exceptions, the
attributes, the type definitions and the constant definitions
of the service. As the number of these latter attributes
varies, we define each of them with a list. For example,
each element of the operations list contains a list of
parameters, specific attributes (type of return, number
of parameters, and so on) and a reference to the next
element of the list (recursive). Thus, the Operation
concept is composed of the following attributes:

Operation[name =>> STRING;
nbr parameters =>> INTEGER;
parameter =>> Parameter;
return type =>> STRING;
operation =>> Operation].

For example, we can describe the operation
“BarnesGetPrice” as an instance of the above concept
(in F-Logic) :

BarnesGetPrice:Operation[
name ->> “BarnesGetPrice”,
nbr parameters ->> 1,
parameter ->> Param,
return type ->> “Integer”,
operation ->> CheckCredit].

“Param” is an instance of the below concept
“Parameter” which describes the list of “BarnesGetPrice”
parameters and “CheckCredit” is the next operation of
“BarnesGetPrice”.

Each element of the parameters list includes a name,
a type (integer, string, etc), a position and a mode that
indicates the direction in which the parameter is being
passed during a dynamic invocation (input ’in’, output
’out’, input/output ’inout’) and a reference to the next
element of the list.

Parameter[name =>> STRING;
type =>> STRING;
position =>> INTEGER;
mode =>> STRING;
parameter =>> Parameter].

For example, we can describe the parameters
“BarnesGetPrice” as an instance (“Param”) of the
concept “Parameter”:

Param:Parameter [name ->> “Isbn”,
type->> “String”,
position ->> “First parameter”,
mode ->> “in”,
parameter ->> Null].

As the operation takes only one parameter, we have
indicated “Null” as next parameter.

This interface description is very similar to the interface
repository of CORBA [11] and WSDL [19] of web
services. It is used to invoke dynamically a service, for
example by using the DII (Dynamic Invocation Interface)
of CORBA or of web services. This interface allows
clients to build dynamically operation requests for any
interface that has been stored in the interface repository
and invoke any operation of this interface at run-time.
By using this interface, clients are not restricted to use
the services that were defined at the time the client was
compiled. The interface description that we have defined
allows clients to get the necessary information to invoke
dynamically a service.

VI. AUTOMATIC COMPOSITION OF SERVICES

The composition of services is critical since it pro-
vides novel services and functionalities to the client. By

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 79

© 2007 ACADEMY PUBLISHER

Stock Available
Check

Back Order

Order failure

release Order

Credit Available, Isbn

Stock Not Available

Order Success

Inventory

Figure 4. Other example of service behavior

combining services, the client can obtain a desired output
from a given input not provided yet by any service but by
several combined services. In our approach, we consider
that two services can be composed if an output of one
is equal to an input of the other one. Since we have
described the inputs/outputs by concepts in the ontologies,
we have to compare the attributes of these concepts and
check their compatibilities. In this case, two services can
be connected if the attributes of a concept output of
one include and compatible (by their names and types)
with the attributes of the concept input of the other one.
For this, we extend the functionalities of the facilitator
to be a composition engine. When a client queries a
service from the facilitator and if the service doesn’t
exist, the facilitator tries to combine and connect two or
more existing services (based on their inputs/outputs) to
compose a new service that fulfills user’s expectations.

To illustrate our approach, we provide an example.
Figure 4 describes the behavior of a service that takes as
input the “Credit Available” of a client and the “Isbn”
of the book to do a buying order. This service contains
3 operations : “CheckInventory”, “BackOrder” and
“releaseOrder”. For example, “CheckInventory” takes as
input “CreditAvailable” of the user and the “Isbn” of
the book and provides as output “StockNotAvailable” or
“StockAvailable”. So, we can describe the input of this
operation by the following concept in the ontology:

Credit Isbn[
CreditAvailable =>> CREDITAVAILABLE;
Isbn =>> ISBN
].

We can describe the inputs/outputs of the other 2
operations by other concepts in the ontology.

As a white box, we describe the service by the
following concept :

white box2[
Operation1 =>>CHECKINVENTORY;
Operation2 =>> BACKORDER;
Opertion3 =>> RELEASEORDER
].

For example, the concept “CHECKINVENTORY” can
be composed of the following attributes :

CHECKINVENTORY[

Name =>> STRING “CheckInventory”;
Input =>> Credit Isbn;
Output1 =>> STOCKNOTAVAILBLE;
Output2 =>>STOCKAVAILABLE
].

As a black box, the service can be described by the
following concepts:

Black box2 [
Input =>> Credit Isbn;
Output1=>>STOCKNOTAVAILABLE;
Output2 =>> STOCKAVAILABLE;
Output3 =>> Order failure;
Output4 =>> Order success

].

“STOCKNOTAVAILABLE”, “STOCKAVAILABLE’,
“Order failure” and “Order success” are the concepts that
describe the inputs/outputs of the operations “BackOrder”
and “releaseOrder”.

If a client queries a service type (as a black box) from
the facilitator that takes as input an “Isbn” of a book and
as output “OrderSuccess” by the following query written
in F-Logic and this service type doesn’t exist :

Forall x <- x[input=>>ISBN] and
x[output=>>OrderSuccess].

This query allows to find all the black boxes
(“values of x”) that takes as input “ISBN” and output
“OrderSuccess”. If no offers exists, the facilitator tries to
combine and compose existing service types to satisfy
the client’s request. It can query all the service type
having “ISBN’ as input by the following query :

Forall x <- x[input =>> ISBN].

It takes the outputs of the returned services and tries
to compare them with the output of other services. It can
obtain the service represented by Figure 2 with “CRED-
ITAVAILABLE” as output. It takes this output and tries
to compare it with the concepts inputs of other services,
it means to compare their attributes and their compati-
bility. It takes the attribute (Credit Available “Figure 2”)
of the concept “CREDITAVAILABLE” and compare it
with the attributes (“CreditAvailable” and “Isbn”) of the
concept “Credit Isbn” of the service described by Figure
4. Therefore, the output “Credit Available” of the first
service is compatible and is included in the output of the
other service. Thus, the facilitator can compose them. The
second service provides “OrderSuccess” as output. When
the facilitator compose the two services, it can satisfy
the client’s request. It invokes the first service by getting
“ISBN” as input. It takes the output “Credit Available” as
input and invokes the second service. Finally, it returns
the output “OrderSuccess” to the client. Therefore, the

80 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

modify

write

read

* content

Figure 5. An automaton describing the document behavior

composition becomes automatic and implicit to the client
which is one of our initial aims.

VII. APPLICATION

We present an application we have developed using
our approach to discover and describe documents. It
allows documents to be reused and shared by using the
approaches defined for web services. A client can discover
a document which is downloadable on the client machine
with no interaction with its provider. A document doesn’t
have an interface. This approach is used in the semantic
web domain. Our idea is to direct and view a document
as a service, i.e., a document accessible via an interface.
This allows clients to use the same type of interface
to interact with different documents (web documents,
databases, etc.). In this context, we can add an interface to
the document that allows clients to read, write and modify
a document.

We describe a document with our proposed metadata
(Section 2) as :

• A learning resource: title, version, etc. We can use
the metadata proposed by Dublin Core [1] to de-
scribe documents.

• A service helping researchers : it includes the de-
scription of the research area of the document, the
description of its author, and so on.

• A service in general: it includes delivery and request
channels, payment and pricing and so on.

• By behavior: we describe the inputs/outputs of a
document. We consider that a document doesn’t have
an input. A client doesn’t need inputs to interact with
a document. The output of a document can be its
content. Figure 5 describes the document behavior
with an automaton. The three operations (read, write,
modify) don’t have inputs (“*”) and can provide as
outputs the content of the document after reading,
writing or modifying.

VIII. RELATED WORK

Several different approaches for describing and discov-
ering services have been developed. For example, DAML-
S [20] provides a set of characteristics that can be used as
index or properties of a service. This description addresses
only the static properties of a service. It does not describe

the behavior of a service and its interface. WSMO [10]
describes the service behavior by inputs/outputs, post
and pre-conditions. It uses ontologies to describe the
service behavior. It doesn’t indicate how clients can query
services based on their inputs/outputs and how she/he can
select the appropriate sequence of operations allowing
to get an output from a given input (white box). Our
approach is innovative since it is the first one to describe
the service as a white box and to enable clients to select
the appropriate sequence of operations (the sequence
having the cheaper cost, the shortest one, or any other
comparison criterion).

To discover a service, we can select for example
UDDI [3] which, is a registry that allows a Web service
to be discovered via a yellow page style of search.
It allows a service to be discovered by querying only
its static properties. It provides a static schema for
service description and the service provider cannot
modify this schema or create databases to advertise
its services offers. Then, in our approach of facilitator,
each service provider can define its databases and can
advertise its service offers by using their static properties,
their behaviors and their interfaces. The clients use the
same interface to query these three levels of service
description. The service indexing and discovery become
more sophisticated. Our facilitator allows clients to get
the result of the service in an implicit way and to not
interact with the service provider. It is compatible with
UDDI and CORBA as we have demonstrated in [9] and
[12].

Many different approaches for service composition
have been developed like [21], [22], [23] but the client
must invoke all the service components of the composed
service. In this context, the client must be familiar with the
service composition. Our approach for service composi-
tion using facilitator is innovative since it allows services
to be composed automatically in an implicit way to the
clients. It can be used by clients that are not familiar
with the service composition and aren’t interested by the
intermediate steps of the service composition process.
The description of the inputs/outputs of a service by
concepts in our approach made the composition more
powerful and flexible by comparing the attributes of
the inputs/outputs, evaluating their compatibility and the
possibility to compose and connect them. Our approach
of semi-dynamic composition model is the first one that
exceeds the performance and complexity problem of the
dynamic composition model [12].

IX. PERSPECTIVES AND CONCLUSIONS

In this paper, we have presented our current related
work in the indexing and searching of learning and
research services. For this latter operation, we have
proposed a metadata model for describing learning
services. The current model that we have proposed,
describes a learning service with three dimensions: as a
learning resource, as a service that contribute and help

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 81

© 2007 ACADEMY PUBLISHER

researchers and as a general service. This model is a
powerful one since it provides a complete description
of learning services and extends services to be used
by researchers/teachers and not only by teachers. It is
flexible because it ensures compatibility with existing
approaches like IEEE LOM, Dublin Core and DAML-S.
The clients and the servers of this metadata model can be
teachers, researchers and students. We have implemented
this model with ontologies, consisting of concepts
representing the characteristics of a service. Flexibility
is introduced since the ontology and its content can be
changed and adapted to usage.

In this paper, we have presented a facilitator we
designed and developed : it is based on ontologies and
knowledge representation. It allows a service provider
to advertise a service offer and a client to discover a
service by querying its static and dynamic (behavior)
properties in distributed systems. Flexibility is introduced
since the ontology and its content can be changed and
adapted to usage. When a client discovers a service offer
by querying its static properties, it can obtain useful
information about the service behavior enabling it to
use the service discovered and to understand how the
invocation of the service operations needs to be processed.

Based on SDL, Interface Automata and WSMO, we
can describe the service behavior which enables the
client to use the service discovered and to understand
how the invocation of the service operations needs to
be performed. We have described the inputs/outputs by
concepts in the ontologies and we have proposed to
describe a service : as a black box which carries a relation
between its inputs and its outputs (external behavior) and
as a white box which indicates the allowed interactions
between the service operations to provide outputs from
given inputs (internal behavior). Our proposal is the
first one as far as we know that allows describing a
service as a white box. We have described the service
interface (operations, parameters, exceptions and so on)
that provides necessary information allowing clients
to invoke dynamically the service operations by using
for example the DII (Dynamic Invocation Interface) of
CORBA or of web services.

Based on the service behavior description and
facilitators, we have presented in this paper an approach
that allows the composition of services in distributed
systems. This approach is a powerful one since it allows
the client to benefit from the functionalities of more
than one service to get novel functionalities and novel
services. It is an innovative one since it allows facilitator
to compose services in an implicit way to the clients. It
is interesting because the client may not be familiar with
the service composition (like elderly people, disabled
people, novice, etc.) or if services are becoming more
complex even an experienced client will have problems
in composing services.

As perspectives, we will propose an approach of facili-
tator federation to compose services. In this context, when
a client queries a service from a facilitator and this service
doesn’t exist, the trader can interact with other traders to
search and compose services to satisfy the client’s request.
So, this approach will allow the composition of services
located on different facilitators.

REFERENCES

[1] A. Powell. Dublin Core in RDF. Technical Report, 1998.
[2] IEEE. Draft standard for learning object metadata. In

http://Itsc.ieee.org/wg12/. Technical Report, 2002.
[3] www.uddi.org.
[4] O. K. Zein and Y. Kermarrec. An Elaborate and Flexible

Trader Based on Ontologies. In IFIP WG6.7 Woskshop and
EUNICE Summer School on Adaptable Networks and Tele-
services, pages 103–108, Trondheim, Norway, September
2002.

[5] T. R. Gruber. A Translation Approach to Portable Ontology
Specifications. Knowledege Acquisition, 5 : 199-220, 1993.

[6] Kaleidoscope: a European network of excellence.
http://www.noe-kaleidoscope.org.

[7] ITU-T. ITU-T Recommendation Z.100. Specification and
Description Language (SDL). 2002.

[8] L. De Alfaro and T. A. Henzinger. Interface Automata. In
Proceedings of the Ninth Annual Symposium on Founda-
tions of Software Engineering. ACM Press, 2001.

[9] O. Kassem Zein and Y. Kermarrec. An approach for
describing, discovering services and for adapting them to
the needs of users in distributed systems. In K Sycarra
and T Payne, editors, In the proceedings of AAAI Spring
Symposium on Semantic Web Services, Stanford, Califor-
nia, March 2004.

[10] http://www.wsmo.org/.
[11] Object Management Group. The Common Object Request

Broker : Architecture and Specification, 2.0 edition, July
1995.

[12] O. K. Zein and Yvon Kermarrec. Static, semi-dynamic and
dynamic composition of services in distributed systems.
In IEEE International Conference on Internet and Web
Applications and Services (ICIW’06), Guadeloupe (French
Caribbean), 17-25 February 2006.

[13] M. Dumas, J. O’Sullivan, M. Heravizadeh, D. Edmond,
and A. Hofstede. Towards a semantic framework for
service description. In Proceedings of the 9th International
Conference on Database Semantics, Hong-Kong, April
2001.

[14] M. Merz, M. Witthaut, and S. McConnel. Catalogue
and Service Architecture. http://osm-www.informatik.uni-
hamburg.de/osm-www/public/docs. OSM D8, 1997.

[15] W. Ng, G. Yan, and E. Lim. Heterogeneous product
description in electronic commerce. ACM SIGeCom Ex-
changes, 1(1):7-13, 2000.

[16] http://www.daml.org/services/.
[17] D. Fensel, S. Decker, M. Erdmann, and R. Stude. Onto-

broker : The very high idea. In Proceedings of the 11th
International Flairs Conference (FLAIRS-98), Sanibal Is-
land, Florida, USA, May 1998.

[18] M. Kifer, G. Lausan, and J. Wu. Logical foundations of
object-oriented and frame-based language. Journal of the
ACM, 42(4) : 741 - 843, 1995.

[19] web service definition language.
http://www.w3.org/tr/wsdl.

[20] http://www.daml.org/services/.

82 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

© 2007 ACADEMY PUBLISHER

[21] J. Yang, M. P. Papazoglou, and W. den Heuvel. Tackling
the Challenges of Service Composition in E-Marketplaces.
In The 12th International Workshop on Research Issues in
Data Engineering : Engineering e-Commerce/e-Business
Systems. RIDE 2002.

[22] M. Pistore et al. Planning and monitoring web service
composition. In AIMS, 2004.

[23] D. Berardi et al. Automatic service composition based on
behavioral description. In IJCIS, 2005.

BIOGRAPHY

Oussama Kassem Zein received the PhD degree
in computer science form ENST Bretagne, France,
in 2005. He is in a postdoctoral position at ENST
Bretagne. his research interests include web services,
distributed systems, knowledge representation, e-learning.

Yvon Kermarrec received the PhD degree in computer
science form Rennes 1 University, France, in 1988. He
is a professor at ENST Bretagne. His research interests
include distributed systems, software engineering, web
services, parallel architectures, e-learning.

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 83

© 2007 ACADEMY PUBLISHER

