
Building Self-Configuring Data Centers with  
Cross Layer Coevolution 

 
 

Paskorn Champrasert and Junichi Suzuki 
Department of Computer Science, University of Massachusetts, Boston 

Email: {paskorn, jxs}@cs.umb.edu 
 
 
 

Abstract—This paper describes a biologically-inspired archi-
tecture, called SymbioticSphere, which allows data centers 
to autonomously adapt to dynamic environmental changes. 
SymbioticSphere follows biological principles such as decen-
tralization, evolution and symbiosis to design application 
services and middleware platforms in a data center. Each 
service and platform is designed as a biological entity, and 
implements biological behaviors such as energy exchange, 
migration, reproduction and death. Each service/platform 
also possesses behavior policies, as genes, each of which de-
fines when to and how to invoke a particular behavior. This 
paper presents a set of behaviors for services and platforms, 
and describes how services and platforms act and interact 
with each other. Simulation results show that services and 
platforms autonomously adapt to dynamic network condi-
tions (e.g., user location, network traffic and resource avail-
ability) by evolving their behavior policies across genera-
tions. Simulation results also show that services and plat-
forms coevolve to improve their adaptability by adjusting 
their behavior policies cooperatively.  
 
Index Terms—Autonomic self-configuring network systems, 
Biologically-inspired networking, evolvable network systems  
 

I.  INTRODUCTION 

Data centers are integral components to operate large-
scale network applications. As they are rapidly increasing 
in complexity and scale, they face several challenges, 
particularly autonomy and adaptability. Data centers are 
expected to autonomously adapt to dynamic conditions in 
the network (e.g., network traffic and resource availabil-
ity) in order to improve user experience, expand opera-
tional longevity and reduce maintenance cost [1, 2].  

In order to meet these challenges (i.e., autonomy and 
adaptability), the authors of the paper propose to apply 
key biological principles and mechanisms to design data 
centers. This is motivated by an observation that various 
biological systems have already developed the mecha-
nisms necessary to achieve autonomy and adaptability. 
For example, bees act autonomously, influenced by local 
environmental conditions and local interactions with 
other bees. A bee colony adapts to dynamic environ-

mental conditions. When the amount of honey in a hive is 
low, many bees leave the hive to gather nectar from 
nearby flowers. When the hive is nearly full of honey, 
most bees remain in the hive and rest. 

SymbioticSphere is an architecture that applies bio-
logical principles and mechanisms to design data centers. 
It consists of two kinds of components: application ser-
vices and middleware platforms. Each of them is modeled 
as a biological entity, analogous to an individual bee in a 
bee colony. They are designed to follow several biologi-
cal principles such as decentralization, emergence, evolu-
tion and symbiosis. An application service is designed as 
a software agent. Each agent implements a functional 
service (e.g., web service) and biological behaviors such 
as energy exchange, reproduction, migration and death. A 
middleware platform runs on a network host and operates 
agents. Each platform provides runtime services that 
agents use to perform their services and behaviors, and 
implements biological behaviors such as energy ex-
change, reproduction and death. SymbioticSphere models 
agents and platforms as different biological species. 

In SymbioticSphere, each agent and platform autono-
mously senses its surrounding environment conditions 
and adaptively invokes a behavior suitable for the condi-
tions. For example, an agent may invoke the migration 
behavior to move toward a network host that receives a 
large number of user requests for its services. This results 
in the adaptation of agent location; the agent can improve 
its response time to user requests. Also, a platform may 
invoke the reproduction behavior to make its offspring on 
a neighboring network host where resource availability is 
high. This results in the adaptation of resource availabil-
ity; the platforms provide more resources to agents. 

In addition to these (regular) behaviors, agents and 
platforms implement a special type of behaviors: symbi-
otic behaviors. A symbiotic behavior is a sequence of 
regular behaviors that an agent and its underlying plat-
form invoke in order. As described above, agents and 
platforms can adapt to dynamic network environments by 
performing regular behaviors; however, regular behaviors 
of one species (e.g., agents) can degrade the adaptation of 
the other species (e.g., platforms) in some circumstances. 
For example, if too many agents migrate toward a user, 
the platforms near from the user have a risk to crash due 
to overloading or resource extinction. Symbiotic behav-
iors are intended for agents and platforms to balance and 
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augment their adaptability by allowing the two species to 
cooperate for pursuing their mutual benefits. 

Each agent/platform possesses behavior policies, each 
of which defines when to and how to invoke a particular 
(regular or symbiotic) behavior. A behavior policy is en-
coded as a gene. In SymbioticSphere, evolution occurs on 
behavior policies (i.e., genes) via genetic operations such 
as mutation and crossover, which alter behavior policies 
when agents/platforms replicate themselves or reproduce 
their offspring. This evolution process is intended to in-
crease the adaptability of agents/platforms by allowing 
them to adjust their behavior policies to dynamic network 
conditions across generations. Evolution also frees data 
center designers from anticipating all possible network 
conditions and tuning their agents and platforms to the 
conditions at design time. Instead, agents and platforms 
can evolve and autonomously adapt themselves to net-
work conditions. This can significantly simplify the im-
plementation and maintenance of agents/platforms.  

This paper describes the biologically-inspired mecha-
nisms in SymbioticSphere and evaluates their impacts on 
the adaptability of data centers. Simulation results show 
that agents and platforms autonomously adapt to dynamic 
network conditions (e.g., user location, network traffic 
and resource availability) by evolving their regular be-
havior policies. Simulation results also show that agents 
and platforms coevolve to improve their adaptability by 
cooperatively adjusting their symbiotic behavior policies. 

II.  DESIGN PRINCIPLES IN SYMBIOTICSPHERE 

SymbioticSphere applies the following biological prin-
ciples to design agents and platforms. 

(1) Decentralization: In various biological systems 
(e.g., bee colony), there are no central leader entities to 
control or coordinate individual entities in order to in-
crease scalability and survivability. Similarly, in Symbi-
oticSphere, there are no central entities to control and 
coordinate agents/platforms so that they can be scalable 
and survivable by avoiding a single point of performance 
bottlenecks [3] and failures [4]. 

(2) Autonomy: Inspired by biological entities (e.g., 
bees), agents/platforms sense their local network condi-
tions, and based on the conditions, they autonomously 
behave and interact with each other without any interven-
tion from/to other agents, platforms and human users. 

(3) Emergence: In biological systems, collective 
(group) behaviors emerge from interactions of individual 
entities. In SymbioticSphere, agents/platforms interact 
only with nearby peers. Desirable system characteristics 
(e.g., adaptability) emerge through collective behaviors 
and interactions of individual agents/platforms. Note that 
they are not present in any single agent/platform. 

(4) Lifecycle and Food Chain: Biological entities 
strive to seek and consume food for living. In Symbiotic-
Sphere, agents/platforms store and expend energy for 
living. Each agent gains energy in exchange for perform-
ing its service to other agents or human users, and ex-
pends energy to use network and computing resources. 
Each platform gains energy in exchange for providing 
resources to agents, and periodically evaporates energy. 

The abundance or scarcity of stored energy in 
agents/platforms affects their lifecycle. For example, an 
abundance of stored energy indicates high demand to an 
agent/platform; thus, the agent/platform may be designed 
to favor reproduction or replication to increase its avail-
ability. A scarcity of stored energy indicates lack of de-
mand; it causes death of the agent/platform. 

Also, in the ecosystem, the energy accumulated from 
food is transferred between different species to balance 
their populations. For example, producers (e.g., shrubs) 
convert the Sun light energy to chemical energy. The 
chemical energy is transferred to consumers (e.g., hares) 
as consumers consume producers [5] (Fig. 1). In Symbi-
oticSphere, the energy exchange among users, agents and 
platforms is designed after ecological food chain (Fig. 1). 
SymbioticSphere models a user as the Sun, agents as pro-
ducers, and platforms as consumers. Similar to the Sun, 
users have an unlimited amount of energy. The users pro-
vide energy to agents in proportion of the services that 
the users require. When a user requests a service imple-
mented by an agent, the user transfers a certain amount of 
energy to the agent. (Each agent specifies the price in 
energy units of its service.). Each agent gains energy 
from users and transfers 10% of its energy level to the 
underlying platform for consuming resources provided by 
the platform. Each platform gains energy from agents and 
periodically evaporates 10 % of its energy level to the 
environment. This energy exchange rule follows an eco-
logical fact that a consumer species acquires about 10% 
of the energy maintained by a producer species [5]. 
   

 
Figure 1. Energy Exchange in SymbioticSphere and Ecosystem 

 
(5) Evolution: Biological entities evolve as a species 

so that the entities that fit better to the environment be-
come more abundant [6]. In SymbioticSphere, agents and 
platforms evolve their genes (i.e., behavior policies) by 
generating behavioral diversity and executing natural 
selection. Behavioral diversity means that different 
agents/platforms possess different behavior policies. This 
is generated via mutation and crossover during replication 
and reproduction. Natural selection is triggered with 
agents’ and platforms’ energy levels. It retains the agents 
whose energy levels are high (i.e., the agents that have 
effective behavior policies, such as moving toward a user 
to gain more energy) and eliminates the agents whose 
energy levels are low (i.e., the agents that have ineffec-
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tive behavior policies, such as moving too often). 
Through successive generations, effective behavior poli-
cies become abundant in an agent/platform species while 
ineffective ones become dormant or extinct. This allows 
agents/platforms to adapt to dynamic network conditions. 

(6) Symbiosis through Coevolution: Competition for 
food and terrain always occurs in the biological world; 
however, several species coevolve and establish mutual 
relationships to avoid excessive competition and support 
with each other to survive [7]. In SymbioticSphere, 
agents and platforms cooperate as different species work-
ing at different network layers (i.e., application layer and 
middleware layer) in order to pursue their mutual benefits 
(e.g., gaining more energy to survive) and improve their 
adaptability. This is driven by coevolution between 
agents and platforms, which cooperatively evolves behav-
ior policies for symbiotic behaviors.  

III.  SYMBIOTICSPHERE 

A.  Agents 
Each agent consists of three parts: attributes, body and 

behaviors. Attributes carry descriptive information on an 
agent, such as its ID, energy level, description of a ser-
vice it provides, and price (in energy units) of the service 
it provides. Body implements a service that an agent pro-
vides. For example, an agent may implement a web ser-
vice, while another may implement a physical model for 
scientific simulations. Behaviors (regular behaviors) im-
plement actions that are inherent to all agents:  

• Replication: Agents may make a copy of themselves. A 
replicated (child) agent is placed on the platform that 
its parent agent resides on, and it inherits the half 
amount of the parent’s energy level. 

• Reproduction: Agents may produce their offspring with 
their mating partners. A child agent is placed on the 
platform that its parent1 agent resides on, and it re-
ceives the half amount of the parent’s energy level. 

• Death: Agents die due to energy starvation. When an 
agent dies, its underlying platform removes the agent 
and releases all resources allocated to the agent. 

• Migration: Agents may move from one platform to 
another.  

B.  Platforms 
Each platform runs on a host and operates agents (Fig. 

1). It consists of attributes, behaviors and runtime ser-
vices. Attributes carry descriptive information on the plat-
form, such as platform ID, energy level and health level.  

Health level is defined as a function of three proper-
ties: the resource availability on, the age of and the fresh-
ness of an underlying host. Resource availability indi-
cates how much resources are available for agents and 
platforms on a host. Age indicates how long a host has 
been alive (i.e., how much stable the host is). Freshness 
indicates how recently a host joined the network. Once a 
host joins the network, its freshness gradually decreases 
from the maximum. When an unstable host resumes from 

                                                           
1 The parent is an agent/platform that invokes the reproduction behavior.  

a failure, its freshness starts with the value that the host 
had when it went down. Using age and freshness, unsta-
ble hosts and new hosts can be distinguished (Table I).  

 

TABLE I. 
FRESHNESS AND AGE IN DIFFERENT TYPES OF HOSTS 

Host Type Freshness 

Behaviors (regular behaviors) are the actions inherent 
to all platforms:  

• Replication: Platforms may make a copy of themselves. 
A replicated (child) platform is placed on a neighboring 
host that does not run a platform. (Since there is only 
one type of platform, two or more platforms are not al-
lowed to run on each host.) It inherits the half of the 
parent’s energy level. 

• Reproduction: Platforms may produce their offspring 
with their mating partners. A child platform is placed 
on a neighboring host that does not run a platform. It 
inherits the half of the parent’s1 energy level. 

• Death: Platforms die due to lack of energy. A dying 
platform kills agents running on it, uninstalls itself and 
releases all resources the platform uses. Despite the 
death of a platform, its underlying host remains active 
so that another platform can run on it in the future.  

Runtime services are the middleware services that 
agents and platforms use to perform their behaviors. 

C.  Regular Behavior Policies 
Regular behavior policies are the behavior policies that 

each agent/platform has for its regular behaviors. Each 
policy consists of factors (Fi), which evaluate network 
conditions (e.g., network traffic) or agent/platform status 
(e.g., energy/health level). Each factor is given a weight 
(Wi). A behavior is invoked if the weighted sum of corre-
sponding factor values (Σ Fi*Wi) exceeds a threshold.  

The factors for the agent migration behavior are: 

• Energy Level: Agent energy level, which encourages 
agents to move in response to their high energy level. 

• Health Level Ratio: The ratio of health level on a 
neighboring platform to the local platform, which en-
courages agents to move to healthier platforms. This 
ratio is calculated with three health level properties 
(HLPs; resource availability, freshness and age): 

 
Health Level Ratio =

HLPi on a neighboring platform /host − HLPion the local platform /host
HLPi on the local platform /host

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

3

∑ (1)

 

 
• Service Request Ratio: The ratio of the number of in-

coming service requests on a neighboring platform to 
the local platform. This factor encourages agents to 
move toward users. 

Age 

Unstable Host Lower Lower 

New Host Higher Lower 

Stable Host Lower Higher 
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• Migration Interval: Time interval to perform migra-
tion, which discourages agents to migrate too often. 

If there are multiple neighboring platforms that an 
agent can migrate to, the agent calculates the weighted 
sum of the above factors for each neighboring platform, 
and moves to a platform that generates the highest sum. 

The factors for the agent reproduction behavior are: 

• Energy Level: Agent energy level, which encourages 
agents to reproduce their offspring in response to their 
high energy levels.  

• Request Queue Length: The length of a queue, which 
the local platform stores incoming service requests. 
This factor encourages agents to reproduce their off-
spring in response to high demands for their services.  

When the weighted sum of the above factor values ex-
ceeds a threshold, an agent seeks a mating partner from 
the local and neighboring platforms. If a mating partner is 
found, the agent invokes the reproduction behavior. Oth-
erwise, the agent invokes the replication behavior. Sec-
tion III.F describes how an agent seeks its mating partner.  

The factors for the agent death behavior are: 

• Energy Level: Agent energy level. Agents die when 
they run out of their energy. 

• Energy Loss Rate: The rate of energy loss, calculated 
with Eq. (2). Et and Et-1 denote the energy levels in the 
current and previous time instants. Agents die in re-
sponse to sharp drops in demands for their services. 

 

)2(
1

1

−

− −
=

t

tt

E
EE

RateLossEnergy  

 
The factors for the platform reproduction behavior are: 

• Energy Level: Platform energy level, which encour-
ages platforms to reproduce their offspring in response 
to their high energy levels.  

• Health Level Ratio: The ratio of health level on a 
neighboring host to the local host. This factor encour-
ages platforms to reproduce their offspring on the 
hosts that generate higher values with Eq. (1).  

• The Number of Agents: The number of agents working 
on each platform. This factor encourages platforms to 
reproduce their offspring in response to high agent 
population on them. 

When the weighted sum of the above factor values ex-
ceeds a threshold, a platform seeks a mating partner from 
its neighboring hosts. If a mating partner is found, the 
platform invokes the reproduction behavior. Otherwise, it 
invokes the replication behavior. Section III.F describes 
how a platform finds its mating partner. If there are mul-
tiple neighboring hosts that a platform can place its child 
platform on, it places the child on a host whose health 
ratio is highest among others. 

The factors for the platform death behavior are: 

• The Number of Agents: The number of agents run-
ning on each platform. This factor discourages plat-
forms to die when agents run on them. 

• Energy Loss Rate: The rate of energy loss, calculated 
with Eq. (2). Platforms die in response to sharp drops 
in demands for their resources.  

Each agent/platform expends energy to invoke behav-
iors (i.e., behavior cost) except the death behavior. When 
the energy level of an agent/platform exceeds the cost of 
a behavior, it decides whether it performs the behavior by 
calculating a weighted sum described above.  

D.  Symbiotic Behaviors 
Each symbiotic behavior is defined as a sequence of 

regular behaviors that an agent and its underlying plat-
form perform in order. There are two types of symbiotic 
behaviors: agent-initiated symbiotic behaviors (A1, A2 
and A3 behaviors) and platform-initiated symbiotic be-
haviors (P1, P2 and P3 behaviors) as described below. 

A1: When an agent wants to move toward a user but 
there is no platform running on a neighboring host closer 
to the user, the agent may propose the local platform to 
replicate itself on the neighboring host (Fig. 2). If the 
local platform’s health level is low, the platform accepts 
the agent’s proposal. The agent gives the platform the 
energy units of platform replication cost, and the platform 
replicates itself on a host that the agent wants to migrate 
to. As a result, the agent can migrate to the child platform 
and improve response time. The platform can improve its 
health level because resource availability becomes higher. 

A2: When an agent is dying due to energy starvation, 
the agent may ask the local platform to shoulder agent 
migration cost so that it can migrate to a platform on a 
healthier platform (i.e., a platform less crowded with 
agents) (Fig. 3). If the local platform’s health level is low, 
it agrees with the agent. As a result, the agent can have a 
chance to receive more service requests (i.e., energy) and 
survive longer. The platform can improve its health level 
because resource availability becomes higher. 

A3: When an agent is dying due to energy starvation, 
the agent may ask the local platform to shoulder agent 
migration cost so that the agent can migrate to a 
neighboring platform closer to a user (Fig. 4). If the local 
platform’s health level is low, the platform agrees with 
the agent. As a result, the agent can improve response 
time. The platform can improve its health level because 
resource availability becomes higher. 

P1: When a platform replicates itself on a neighboring 
host, the platform may propose an agent working on it to 
migrate to a replicated (child) platform (Fig. 5). If the 
agent’s energy level is low, it accepts the platform’s pro-
posal. The platform provides the agent with the energy 
units of agent migration cost. As a result, the platform 
can increase its health level because resource availability 
becomes higher. A child platform can survive longer be-
cause it gains energy from the migrating agent. On its 
destination platform (i.e., a platform less crowded with 
agents), the agent can have a chance to receive more ser-
vice requests (i.e., energy) from users and survive longer. 

P2: When a platform’s health level is low, the platform 
may propose an agent working on it to migrate to a 
healthier neighboring platform (Fig. 6). If the agent’s 
energy level is low, it accepts the platform’s proposal. 
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The platform provides the agent with the energy units of 
agent migration cost. As a result, the platform can in-
crease its health level because resource availability be-
comes higher. The migrating agent can avoid working on 
an unhealthy platform that may crash, and have a chance 
to receive more service requests (i.e., energy) from users 
and survive longer on a healthier platform (i.e., a plat-
form less crowded with agents).  

P3: When a platform is dying due to energy starvation, 
the platform may ask the local agents to shoulder plat-
form replication cost so that it can replicate itself on a 
host closer to a user (Fig. 7). If the platform dies, the 
agents die off on the platform. Thus, some of them accept 
the platform’s proposal if their energy level is high. As a 
result, the migrating agents can avoid death and gain 
more energy from a user and survive longer on their des-
tination platform. A child platform can secure energy 
intake from the migrating agents and survive longer. 

E. Symbiotic Behavior Policies 
A symbiotic behavior policy is a behavior policy that 

each agent/platform possesses to determine whether it 
invokes a particular symbiotic behavior. Each symbiotic 
behavior policy consists of a proposer policy and an ac-
ceptor policy. A proposer policy determines when one 
species (e.g., an agent) proposes a symbiotic behavior to 
the other species (e.g., a platform). An acceptor policy 
determines when one species (e.g., a platform) accepts a 
proposal that the other species (e.g., an agent) makes to 
invoke a symbiotic behavior.  

Each proposer policy consists of a proposer’s precon-
dition and a factor (FP) (Table II.). A proposer prepares to 
propose a symbiotic behavior when its precondition is 
satisfied. For example, an agent prepares to propose the 
A1 behavior when it wants to move toward a user but 
there is no platform running on a neighboring host closer 
to the user. A platform prepares to propose the P3 behav-
ior when it is dying (i.e., when its weighted sum of the 
death behavior factors exceeds a threshold). Each FP 

(proposer policy factor) represents a proposer’s status 
such as energy/health level. Each factor is given a weight 
(WP). As far as a proposer’s precondition is satisfied, the 
proposer proposes a symbiotic behavior if a correspond-
ing weighted factor value (FP*WP) is below a threshold.  

Each acceptor policy contains a factor (FA), which 
evaluates the acceptor’s status such as energy level and 
health level (Table III). Each factor is given a weight 
(WA). When an acceptor receives a proposal that a pro-
poser makes to invoke a symbiotic behavior, the acceptor 
calculates the weighted factor value (FA*WA) for the 
symbiotic behavior. If it is below a threshold, the accep-
tor accepts the proposal. Once a proposal is accepted, a 
proposer initiates a symbiotic behavior. 

F. Evolutionary Process 
The weight and threshold values in behavior policies 

have significant impacts on the adaptability of agents and 
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TABLE II. 
PROPOSER POLICIES 

Proposer Symbiotic 
Behavior Factor (FP) Proposer’s 

Precondition 
 A1 1/Energy Level Wants to migrate? 

Agent A2 Energy Level Is dying? 
 A3 Energy Level Is dying? 
 P1 1/Energy Level Replicating? 

Platform P2 Health Level N/A 
 P3 Energy Level Is dying? 

TABLE III. 
ACCEPTOR POLICIES 

Acceptor Symbiotic  
Behaviors Factor (FA) 

 A1 Health Level 
Platform A2 Health Level 

 A3 Health Level 
 P1 Energy Level 

Agent P2 Energy Level 
 P3 1/Energy Level 
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platforms. However, it is hard to anticipate all possible 
network conditions and find an appropriate set of weight 
and threshold values for the conditions. As shown in Sec-
tions III.C and III.E, there are 42 weight and threshold 
values in total (18 for regular behaviors and 24 for sym-
biotic behaviors). Assuming that 10 different values can 
be assigned to each weight and threshold, there are 1042 
possible combinations of weight and threshold values.  

Instead that data center designers manually assign 
weight and threshold values, SymbioticSphere allows 
agents and platforms to autonomously find appropriate 
values in an evolutionary manner, thereby adapting them-
selves to network conditions. Both regular and symbiotic 
behavior policies are encoded as genes of agents and plat-
forms. Each gene contains one or more weight values and 
a threshold value for a particular behavior.  

For regular behaviors, each agent/platform has a gene 
(i.e., a set of weight and threshold values) for each behav-
ior. Figs. 8 and 9 show the gene structure for 
agent/platform behaviors. For example, for the agent re-
production behavior, a gene is structured to have three 
elements: (1) Wr1, a weight value for the energy level 
factor; (2) Wr2, a weight value for the factor of request 
queue length; and (3) Tr, a threshold value (Fig. 8).  

Each weight value is a decimal number in the range of 
[0…1], and it is initialized randomly. Each threshold 
value is a decimal number in the range of [0…M], where 
M denotes the number of considered factors. Each 
threshold value is also initialized randomly. For example, 
the agent reproduction behavior has a threshold value in 
the range of [0...2] because the behavior considers two 
factors: Wr1 and Wr2 (see Section 3.C and Fig. 8).  

 

 
 

 
 

For symbiotic behaviors, each agent/platform has a 
gene (i.e., a set of weight and threshold values) for each 
symbiotic behavior. Fig. 10 shows the gene structure of 
agents for symbiotic behaviors. The structure consists of 
the genes for agent-initiated symbiotic behaviors (i.e., 
proposer policy) and the genes for platform-initiated 
symbiotic behaviors (i.e., acceptor policy). For example, 
for the A1 symbiotic behavior, each agent has a gene 
consisting of two elements: (1) WP

A1, a weight value used 
to examine whether or not to propose the A1 behavior; 
and (2) TP

A1, a threshold value. Fig. 11 shows the gene 
structure of platforms for symbiotic behaviors. The struc-
ture consists of the genes for platform-initiated symbiotic 
behaviors (i.e., proposer policy) and the genes for agent-
initiated symbiotic behaviors (i.e., acceptor policy). For 

example, for the A1 symbiotic behavior, each platform 
has a gene consisting of two elements: (1) WA

A1, a weight 
value used to examine whether or not to accept a proposal 
on the A1 behavior; and (2) TA

A1, a threshold value. Each 
weight and threshold value is a decimal number in the 
range of [0…1], and it is initialized randomly.  

 

 
 

 
 

The genes of agents and platforms are altered via ge-
netic operations (genetic crossover and mutation) when 
they perform the reproduction and replication behaviors. 
As described in Sections III.A and III.B, each 
agent/platform selects a mating partner when it performs 
the reproduction behavior. A mating partner is selected 
by ranking agents/platforms running on the local and 
neighboring hosts. For this ranking process, Symbiotic-
Sphere uses a domination ranking mechanism [8].  

Agents and platforms are ranked with two objectives: 
(1) energy utility (Eq. (3)) and (2) behavior invocation 
efficiency (Eq. (4)). Behavior invocation efficiency indi-
cates how an agent/platform behaves in an energy effi-
cient manner. In both objectives, the higher, the better. 
 

Energy Utility = 1−
Total Energy Expenditure

Total Energy Gain
(3)

 

 

Behavior Invocation Efficiency =
Total Energy Gain

Total # of Behavior Invocations
(4)

 
Agents/platforms are plotted on a two dimensional 

space whose axes are the objectives described above. Fig. 
12 shows an example to rank four different agents (Agent 
A to D). In this example, Agent A dominates the other 
three agents in both of two objectives. (In other words, 
Agent A is non-dominated.) Therefore, the agent is given 
Rank 1. Agent B is dominated by Agent A; however, it 
dominates the other two agents (Agent C and D). Thus, 
Agent B is given Rank 2. Agent C and D are dominated 
by Agent B, and they cannot dominate with each other. 
Thus, they are given Rank 3. 

During reproduction, an agent/platform ranks other 
agents/platforms running on the local and neighboring 
hosts, as described above, and selects the one in the high-
est rank as a mating partner. If the parent agent/platform, 
which invokes the reproduction behavior1, is in the high-
est rank, it fails to find its mating partner and performs 
the replication behavior.  

 
Figure 9. Gene Structure for Platform Regular Behaviors 

 
Figure 8. Gene Structure for Agent Regular Behaviors 

 

Figure 11. Gene Structure of Platforms for Symbiotic Behaviors 

 

Figure 10. Gene Structure of Agents for Symbiotic Behaviors 
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In reproduction, a genetic crossover occurs. A parent 
and its mating partner contribute their genes and ran-
domly combine them for a child’s gene (Fig. 13). Then, a 
genetic mutation occurs on the child’s gene. Each gene 
element (i.e., weight or threshold value) is randomly al-
tered with a mutation probability (Fig. 13). 

 

 
 

In replication, a parent copies its gene to its child. 
Then, a mutation occurs on the child’s gene in the same 
way as the mutation in reproduction.  

IV.  SIMULATION RESULTS 

This section shows a set of simulation results to 
evaluate how agents and platforms adapt to dynamics of 
the network by using their regular and symbiotic behav-
iors through evolution. Section IV.A evaluates how regu-
lar behaviors impact the adaptability of agents and plat-
forms. Section IV.B evaluates how symbiotic behaviors 
improve the adaptability of agents and platforms. Section 
IV.C demonstrates how agents and platforms evolve their 
behavior policies (genes). The same set of simulation 
configurations is used for all of the three experiments. 
Simulations were carried out with the SymbioticSphere 
simulator2, which implements the biologically-inspired 
mechanisms described in Section III.  

Figure 14 shows a simulated network. A data center 
operates on the network, and consists of hosts connected 
in a 7x7 grid topology. Users send service requests to 
agents via user access point. This paper assumes that a 
single (virtual) user runs on the access point, and it emu-
lates multiple users to send service requests. At the be-

                                                           

                                                          
2 The current code base of the SymbioticSphere simulator contains 
15,100 lines of Java code. This simulator is freely available at 
http://dssg.cs.umb.edu/projects/SymbioticSphere/. 

ginning of each simulation, one agent and one platform 
are deployed on a host that is farthest from the user. 

Each host has 256 MB memory space3. Of the space, 
an operating system and a Java VM consume 128 and 64 
MB, respectively. The remaining space is available for a 
platform and agents on each host. Each agent and plat-
form consumes 5 and 20 MB, respectively. This assump-
tion is obtained from a prior empirical experiment [9].  

A host operates in the active or inactive state. When a 
platform works on a host, the host is active and consumes 
60W power. The host becomes inactive when a platform 
dies on it. An inactive host consumes 5W power. This 
assumption on power consumption is obtained from [10]. 
A host is assumed to become active from the inactive 
state using the Wake On LAN (WOL) technology [11]. 
When a platform replicates itself on an inactive host, the 
platform sends a WOL packet to the host to wake it up.  

Figure 15 shows how the user changes service request 
rate over time. This service request rate is taken from a 
workload trace of the 1998 Olympic official website [12]. 
The peak workload is 9,600 requests/min. 
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Figure 12. An Example Domination Ranking 

Figure 16 shows a pseudo code to run the user, agents 
and platforms in each simulation cycle. 

In this paper, adaptability is defined as service adapta-
tion and resource adaptation. Service adaptation repre-
sents the quality and availability of services provided by 
agents. The quality of services is measured as response 
time for the user. Service availability is measured as the 
number of agents. Resource adaptation represents re-
source availability and resource efficiency. Resource 
availability is measured as the number of platforms that 
makes resources available for agents. Resource efficiency 
indicates how many service requests are processed per 
resource utilization of agents and platforms. It is meas-
ured as (the total number of service requests processed by 

 
3 In this paper, memory availability represents resource availability. 
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Figure 13. Example Genetic Operations 
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agents) / (the total amount resources consumed by agents 
and platforms).  

A.  Evaluation of Regular Behaviors 
This section evaluates how agents and platforms 

autonomously adapt to dynamic network conditions by 
using regular behaviors except the reproduction behavior. 
For the experiments in this section, no agents and plat-
forms invoke symbiotic behaviors and perform evolu-
tionary process. Rather, agents and platforms use the 
regular behavior policies that the authors manually con-
figured through trial and errors. (The authors spent ap-
proximately 170 hours for the trial and errors.) 

The simulation results in this section are compared 
with the analytically optimal results. Fig. 17 shows an 
analytical model used in this paper. The analytical model 
is written in AMPL [14], and designed to generate the 
number of agents (a), the number of platforms (p), re-
sponse time (responseTime) and resource efficiency (re-
soureEff), while minimizing response time and maximiz-
ing resource efficiency. Since this analytical model is not 
linear, it is solved with MINOS (Modular In-core Nonlin-
ear Optimization System) solver [15]. 

 

 
 
In this analytical model, response time includes the 

processing overhead for an agent to process a service 
request and the transmission latency of the request be-
tween the agent and user. The processing overhead is 

calculated with the number of service requests, the num-
ber of available agents, and the number of service re-
quests that an agent can process in one second. (Each 
agent processes a service request in 0.1 second; therefore, 
it can process 10 requests in one second). The transmis-
sion latency is calculated with the average hop count be-
tween an agent and the user4 and the time required for a 
service request to travel between two nodes (0.01 sec.). 
The (optimal) number of platforms is calculated with the 
number of available agents and the maximum number of 
agents that can work on each platform. (This maximum 
number is eight.) Throughput is calculated as the ratio of 
the number of service requests processed by agents to the 
number of given service requests. It is assumed to be 
100% when response time is less than three seconds. 

While( not simulation last cycle ) 

Fig. 18 shows how service availability (i.e., the num-
ber of agents) and resource availability (i.e., the number 
of platforms) change dynamically. Starting with one 
agent and one platform deployed at 0:00, they change 
their populations through replication in order to process 
the demand placed on them (6,000 requests/min; See Fig. 
15.). When service request rate increases from 12:00 to 
14:00, agents gain more energy from the user and repli-
cate themselves more often. In response to higher energy 
intake, they also transfer more energy to platforms. As a 
result, platforms also increase their population through 
replication. When service request rate decreases at 15:00, 
some agents and platforms die because they cannot bal-
ance their energy gain and expenditure due to less energy 
transfer from the user. Fig. 18 shows that agents and plat-
forms autonomously adapt their availability to dynamic 
demand changes with their regular behaviors.  

Fig. 18 also shows the analytical results on the number 
of agents/platform. Between analytical and simulation 
results, differences are 15% and 21% on average for the 
number of agents platforms, respectively.  

 

 
 

Fig. 19 shows the average response time (i.e., the qual-
ity of services) and throughput of agents. At the begin-
ning of a simulation, response time is high (over 20 sec-
onds) because there exists only one agent and one plat-
form to process 6,000 requests a minute. Thus, through-
put does not reach 100%. However, the agent and plat-
form immediately replicate themselves, and agents mi-

                                                           
4 Assuming a mesh network, the average hop count is (N+M)/3, where 
N and M denotes the number of columns and rows, respectively [13].  
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Figure 18. The Number of Agents and Platforms 

var a >=1, integer;       # the number of agents 
var p >=1, integer;       # the number of platforms 
var N >=1,  integer;     # the number of columns in a mesh network 
var M >=1, integer;      # the number of rows in a mesh network 
param requests := 9600; # the number of  user requests (input) 
var responseTime; 
var resourceEff; 

minimize objective:  0.5*responseTime-0.5*resourceEff; 
     subject to 

responseTime = (requests/(10*a)) + ( 0.01 * (N+M)/3 ); 
resourceEff = requests/(20*p + 5*a); 

  p =   ceil ( a/8 );  
p <= 49; 

  N =  ceil (p/ 7); 

  The user sends service requests to agents according to a certain rate.
  For each agent Do 
      If ( a service request(s) received )  

     Process the request(s) and gain energy. 
      End If 
      Decide whether or not to invoke regular behaviors. 
      Decide whether or not to invoke symbiotic behaviors.  
      Expend energy to the local platform.  
  End For 
  For each platform Do 
      Decide whether or not to invoke regular behaviors. 
      Decide whether or not to invoke symbiotic behaviors.  
      Update health level. 
      Evaporate energy. 
  End For 
End While 

Figure 16. Pseudo Code of Simulation Cycle 

  M =  floor ( p / N); 
M*N <=49;  
responseTime  <= 3; 

Figure 17. An Analytical Model to Evaluate Service  
and Resource Adaptation 
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grate toward the user. As a result, response time drops 
below five seconds at 1:00, and throughput reaches 
100%. After 1:00, response time is constantly around five 
seconds, and throughput is constantly almost 100%. 
When service request rate increases from 12:00 to 14:00, 
response time spikes. However, agents decrease response 
time again through replication. See also Fig. 18 for the 
changes in the number of agents from 12:00 to 14:00. 
Fig. 19 shows that agents and platforms collectively re-
tain response time and throughput performance by adapt-
ing their populations and locations to demand changes. 

Fig. 19 also shows the analytical results on the average 
response time and throughput. The average difference is 
only 2% between analytical and simulation results. Re-
sponse time is mostly same after 14:00 between analyti-
cal and simulation results.  

 

 
 

Fig. 20 shows resource efficiency. Platforms adapt re-
source efficiency according to demand changes by adjust-
ing their availability. (See also Fig. 18.) On average, dif-
ference is only 3% between analytical and simulation 
results.  

 

 
 

Figs. 18 to 20 show that SymbioticSphere yields the 
service and resource adaptation results close enough to 
the analytically optimal results. 

B.  Evaluation of Symbiotic Behaviors 
This section evaluates how symbiotic behaviors com-

plement regular behaviors and augment the adaptability 
of agents and platforms. For the experiments in this sec-
tion, no agents and platforms perform evolutionary proc-
ess. Rather, agents and platforms use the regular and 

symbiotic behavior policies that the authors manually 
found through trial and errors. (The authors spent ap-
proximately 170 hours for the trial and errors.)  

Fig. 21 shows that agent-initiated symbiotic behaviors 
(A1, A2 and A3) contribute to improve response time 
(i.e., service adaptation), compared with using regular 
behaviors only. Agents help platforms increase their 
availability near the user, and platforms help agents move 
toward the user or to healthier platforms. As a result, 
agents can process service requests more quickly.  

Fig. 22 shows that agent-initiated symbiotic behaviors 
improve resource efficiency (i.e., resource adaptation), 
compared with using regular behaviors only. Agents help 
platforms increase their availability near the user, and 
platforms help agents move toward the user or to health-
ier platforms. Then, the availability of platforms de-
creases on the hosts far from the user due to energy star-
vation. As a result, agents can process more service re-
quests in a timely manner, while platforms can reduce 
their resource consumption. This allows agents and plat-
forms to cooperatively increase resource efficiency.  

Figs. 21 and 22 show that symbiotic behaviors can im-
prove the adaptability of agents and platforms. However, 
it is not completely clear whether symbiotic behaviors 
significantly improve response time and resource avail-
ability because of high variance. Therefore, this simula-
tion study carried out an ANOVA (analysis of variance) 
method to evaluate how the response time and resource 
efficiency results are better in using symbiotic behaviors, 
compared with using regular behaviors only. The 
ANOVA results demonstrate that symbiotic behaviors 
yield better response time and resource efficiency results 
than regular behaviors with the confidence of 99.99%. 

Figs. 23, 24, 25, 26, 27 and 28 show the average re-
sults of load balancing, throughput, platform health level, 
agent energy level, platform energy level and power con-
sumption in both cases to use regular behaviors only and 
symbiotic behaviors as well as regular behaviors.  
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Figure 19. Response Time and Throughput 

Figure 23 shows the average load balancing index 
(LBI), which indicates how workload (i.e., the number of 
service requests) is distributed over available platforms. 
LBI is measured with Eq. (5). It is the standard deviation 
of workload among platforms.  
 

)5(
)( 2

N

X
IndexBalancingLoad

N

i
i∑ −

=
μ  

 

Xi denotes (the number of messages processed by 
agents running on platform i) / (the amount of resources 
utilized by platform i and agents running on platform i). μ 
is the average of Xi, which means (the total number of 
messages processed by all agents) / (the total amount of 
resources utilized by all platforms and all agents). N de-
notes the number of available platforms. Platform-
initiated symbiotic behaviors contribute to improve LBI. 
Platforms help agents to move to healthier platforms. The 
workload is distributed over available platforms. 

Fig. 24 shows the average throughput of agents. It il-
lustrates that some of symbiotic behaviors contribute to 
improve agent throughput. 
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Figure 21. Average Response Time 

Fig. 25 shows the average health level of platforms. 
All symbiotic behaviors improve health level, compared 
with using regular behaviors only. This occurs because 
platforms help agents move to healthier platforms and 
agents help platforms replicate on healthier hosts.  

Fig. 26 shows the average energy level of agents. 
Agent-initiated symbiotic behaviors increase agent en-
ergy level because platforms help agents move toward the 
user and gain more energy. 

Fig. 27 shows the average energy level of platforms. 
The P3 behavior increases platform energy level because 
agents help platforms replicate on hosts closer to the user 
and agents can migrate to the replicated platforms. This 
way, agents gain more energy and transfer more energy 
to platforms.  

Fig. 28 shows the average power consumption of 
agents and platforms. Agent-initiated symbiotic behaviors 
contribute to save power consumption. Agents help plat-
forms increase their availability near the user, and plat-
forms help agents move toward the user or to healthier 
platforms. Then, platforms die on the hosts far from the 
user due to energy starvation. As a result, power con-
sumption is reduced. 

Fig. 29 shows the total number of failed hosts during a 
simulation. This simulation study assumes that each host 
has 40% probability to crash when available memory 

space is less than 5MB for 15 minuets5. (A failed host 
resumes in 5 minutes.) Platform-initiated symbiotic be-
haviors, particularly the P2 behavior, contribute to reduce 
the number host failures because platforms help agents 
move to healthier platforms. 

Fig. 30 shows how the number of agents changes 
against a data center failure, where the link between the 
user access point to a data center fails at 14:00 for five 
minutes. Agents with regular behaviors immediately die 
off because energy transfer stops from the user to them 
due to a link failure. On the other hand, if agents have the 
A3 behavior, they can cooperate with platforms to move  

                                                           
5 Memory utilization in overload is the most common reason for host 
crashes [16]. 
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Figure 24. Throughput 

Symbiotic Behavior
Normal A1 A2 A3 P1 P2 P3

A
ve

ra
ge

 H
ea

lth
 L

ev
el

0

500

1000

1500

2000

2500

3000

3500

1448

1986

2641

1948

10
3130

1973

389 380

311
3135

29

378

248

Regular 
Behaviors

A1         A2        A3        P1        P2         P3
Symbiotic Behaviors

Regular 
Behaviors

A1         A2        A3        P1        P2         P3
Symbiotic Behaviors

Regular 
Behaviors

A1     A2       A3       P1       P2       P3
Symbiotic Behaviors

 
Figure 25. Average Health Level
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Figure 26. Average Agent Energy Level 
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Figure 28. Average Power Consumption 
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to platforms closer to a user so that they gain service re-
quests (i.e. energy) once a failed link resumes. Fig. 30 
shows that the A3 behavior contributes for agents to sur-
vive link failures and retain service availability. 

Fig. 31 shows how agents and platforms perform better 
when they perform individual (or a combination of) sym-
biotic behaviors, compared with performing regular be-
haviors only. The performance of agents and platforms is 
measured with Eq. (6) using seven metrics: response 
time, resource efficiency, LBI, throughput, platform 
health level, agent energy level and platform energy 
level. PSi denotes the performance result in terms of the 
metric i when agents and platforms perform symbiotic 
behaviors as well as regular behaviors. PRi denotes the 
performance result in terms of the metric i when agents 
and platforms perform regular behaviors only. 

Performance Ratio =
PSi − PRi

PRi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

7

∑ (6) 

Fig. 31 shows that agents and platforms yield better 
performance ratio when they perform multiple symbiotic 
behaviors, compared with performing individual symbi-
otic behaviors. Combinations of symbiotic behaviors al-
low agents and platforms to perform better in multiple 
performance metrics simultaneously. For example, P3A1 
improves response time and LBI simultaneously because 
agents can reduce response time with the A1 behavior 
and platforms can decrease LBI with the P3 behavior.  

C.  Evaluation of Evolution and Coevolution  
This section evaluates how evolution and coevolution 

contribute to the adaptability of agents and platforms. 
Each simulation was carried out for 10 days by repeating 
the daily workload trace 10 times. At the beginning of a 
simulation, an agent and a platform are deployed on each 
host (49 agents and 49 platforms in total). 

Four simulation scenarios are used to evaluate the 
adaptability of agents and platforms.  

Scenario R: This scenario is same as the one used in 
Section IV.A. Agents and platforms invoke behaviors 
(except the reproduction behavior), and do not perform 
evolution. They use the behavior policies that the authors 
manually configured.   

Scenario R+S: Agents and platforms invoke the A3 
and P3 symbiotic behaviors as well as regular behaviors 
(except the reproduction behavior). They invoke the two 
behaviors because a combination of A3 and P3 yields the 
best performance in Fig. 30. They do not perform evolu-

tion, and use the behavior policies that the authors manu-
ally configured.  

Scenario RG: This scenario is similar to the scenario 
R in that agents and platforms invoke regular behaviors. 
The difference between this scenario and the scenario R  
is that agents and platforms perform evolution. They use 
the mutation probability of 0.05. 

Scenario 4 (RG+SG): This scenario is similar to the 
scenario R+S in that agents and platforms invoke the A3 
and P3 symbiotic behaviors as well as regular behaviors. 
The difference between this scenario and the scenario 
R+S is that agents and platforms perform evolution. They 
use the mutation probability of 0.05. 

Fig. 32 shows how service availability (i.e., the num-
ber of agents) changes dynamically in the scenarios RG 
and RG+SG. Fig. 33 shows the daily average number of 
agents in the scenarios R, R+S, RG and RG+SG. At the 
beginning of a simulation, the daily average number of 
agents fluctuates in the RG and RG+SG scenarios be-
cause agents still search appropriate behavior policies by 
altering their genes through evolution. However, as the 
time goes, the RG and RG+SG results become more sta-
ble and closer to the R and R+S results. This indicates 
that agents evolve and autonomously adapt their behavior 
policies to dynamic network conditions.  

At Day 10, the daily average number of agents is 
higher in the scenario R+S than the scenario R, and it is 
also higher in the RG+SG scenario than the scenario RG. 
This demonstrates that symbiotic behaviors (A3 and P3) 
allow agents to gain more energy from the user and sur-
vive longer, thereby retaining higher service availability.  
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Figure 31. The Performance Ratio 

Fig. 34 shows how resource availability (i.e., the num-
ber of platforms) changes dynamically in the scenario RG 
and RG+SG. Fig. 35 shows the daily average number of 
platforms in the scenarios R, R+S, RG and RG+SG. At 
the beginning of a simulation, the daily average number 
of platforms fluctuates in the RG and RG+SG scenarios 
because platforms still search appropriate behavior poli-
cies by altering their genes through evolution. However, 
as the time goes, the RG and RG+SG results become 
more stable and closer to the R and R+S results. This 
indicates that platforms evolve and autonomously adapt 
their behavior policies to dynamic network conditions.  

At Day 10, the daily average number of platforms is 
higher in the scenario R+S than the scenario R, and it is 
also higher in the RG+SG scenario than the RG scenario. 
This demonstrates that symbiotic behaviors allow plat-
forms to gain more energy from agents and survive 
longer, thereby retaining higher resource availability.  

Fig. 36 shows how average response time (i.e., the 
quality of services) changes dynamically in the scenario 
RG and RG+SG. Fig. 37 shows the daily average re-
sponse time in the scenarios R, R+S, RG and RG+SG. At 
the beginning of a simulation, agents and platforms still 
search appropriate behavior policies by altering their 
genes through evolution. Thus, they do not behave adap-
tively yet; the RG and RG+SG results are higher and less 
stable than the RG and RG+SG results. However, the RG 
and RG+SG results gradually become more stable and 
closer to the R and R+G results. This indicates that agents  
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and platforms evolve and successfully adapt their behav-
ior policies to dynamic network conditions. 

At Day 10, the daily average of response time is lower 
in the scenario R+S than the scenario R, and it is also 
lower in the RG+SG scenario than the scenario RG. This 

demonstrates that symbiotic behaviors allow agents and 
platforms to make themselves available closer to the user 
and better distribute workload, thereby retaining lower 
response time.  
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Figure 35 Daily Average Number of Platforms 
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Figure 37 Daily Average Response Time 

0

5

10

15

TIME 23 47 71 95 119 143 167 191 215

RG
RG+SG

0           1           2          3          4          5          6       7           8          9        10  

R
es

ou
rc

e 
ef

fic
ie

nc
y

Simulation time (day)
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Fig. 38 shows how resource efficiency changes dy-
namically in the scenario RG and RG+SG. Fig. 39 shows 
the daily average of resource efficiency in the scenarios 
R, R+S, RG and RG+SG. At the beginning of a simula-
tion, the daily average resource efficiency fluctuates in 
the RG and RG+SG scenarios because agents and plat-
forms still search appropriate behavior policies by alter-
ing their genes through evolution. However, agents and 
platforms evolve and gradually adapt their behavior poli-
cies to dynamic network conditions. As a result, the RG 
and RG+SG results become more stable and closer to the 
R and R+G results.  

At Day 10, the daily average of resource efficiency is 
higher in the scenario R+S than the scenario R. This 
demonstrates that agents and platforms can better manage 
resource efficiency. With symbiotic behaviors, agents can 
process more service requests and platforms can reduce 
their availability on unnecessary hosts (e.g., the ones far 
from the user).  

As Figs. 32 to 39 show, similar to manually-configured 
agents/platforms, evolutionary agents/platforms take ad-
vantage of symbiotic behaviors to augment their adapta-
bility (i.e., service adaptation and resource adaptation). 
Agents and platforms successfully coevolve by finding 
appropriate behavior policies for symbiotic behaviors.  

Fig. 40 shows how throughput changes dynamically in 
the scenario RG and RG+SG. Fig. 41 shows the daily 
average throughput in the scenarios R, R+S, RG and 
RG+SG. At the beginning of a simulation, the daily aver-
age throughput fluctuates in the RG and RG+SG scenar-
ios because agents and platforms still search appropriate 
behavior policies by altering their genes through evolu-
tion. However, as the time goes, the RG and RG+SG re-
sults become more stable and closer to the R and R+G 
results. This demonstrates that agents and platforms 
evolve and autonomously adapt their behavior policies to 
dynamic network conditions.  

In order to compare evolutionary agents/platforms with 
manually-configured agents/platforms, Fig. 42 shows the 
performance ratio between evolutionary and manually-
configured agents/platforms. Similar to Eq. (6), perform-
ance ratio is measured with Eq. (7) with seven perform-
ance metrics (response time, throughput, LBI, resource 
efficiency, platform health level, agent energy level and 
platform energy level). PGi denotes the performance in 
the metric i when agents and platforms obtain their be-
havior policies through evolution. Pi denotes the perform-
ance in the metric i when agents and platforms use manu-
ally-configured behavior policies. 

Performance Ratio =
PGi − Pi

Pi
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

i=1

7

∑ (7) 

In Fig. 42, each gray bar shows the performance ratio 
that compares the scenarios R and RG. Each black bar 
shows the performance ratio that compares the R+S and 
RG+SG scenarios. At the beginning of a simulation, the 
performance of evolutionary agents/platforms is worse 
than that of manually-configured ones. They do not be-
have adaptively yet because they still search appropriate 

behavior policies through evolution. As the evolution 
progresses, evolutionary agents/platforms outperform 
manually-configured ones. At Day 10, the performance of 
evolutionary agents/platforms in the RG scenario is 12% 
better than that of manually-configured ones in the R 
scenario. Also, evolutionary agents/platforms in the 
RG+SG scenario perform 63% better than manually-
configured ones in the R+S scenario. This result demon-
strates that agents and platforms can successfully improve 
the quality of their behavior policies by themselves. In 
fact, evolution produces higher quality of behavior poli-
cies than the ones that the authors manually configured 
through trial and errors for 340 hours. In the Symbiotic-
Sphere simulator, it takes six hours to run a 10 days simu-
lation. Thus, via offline simulation, a quality set of be-
havior policies can be obtained though evolution in much 
shorter time than trial and errors.  
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Figure 42. Performance Ratio 

Figs. 43 and 44 show the standard deviations of energy 
utility and behavior invocation efficiency in the agent 
population, respectively. Note that energy utility and be-
havior invocation efficiency are two objectives to rank 
agents. (See Section III.F.) Figs. 43 and 44 demonstrates  
that the standard deviation of each objective value de-
creases over time in the agent population. This means that 
most agents gain appropriate behavior policies through 
evolution and behave well (adaptively). Agents success-
fully evolve as a population as well as individuals.  
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Figure 43. Standard Deviation of Energy Utility 

St
an

da
rd

 d
ev

ia
tio

n 
of

 
be

ha
vi

or
 in

vo
ca

tio
n 

ef
fic

ie
nc

y

Simulation time (day)

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

RG RG+SG

 
Figure 44. Standard Deviation of Behavior Invocation Efficiency 

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 41

© 2007 ACADEMY PUBLISHER



V.  RELATED WORK 

This work is an extension to the authors’ prior work 
[17, 18]. [17] shows that agents and platforms improve 
their adaptability with their regular behaviors; however, 
the work did not investigate symbiotic behaviors and evo-
lutionary adaptation. [18] shows that symbiotic behaviors 
improve the adaptability of agents and platforms;  how-
ever, the work did not study the evolution of 
agents/platforms. To the best of the authors’ knowledge, 
this paper is the first attempt to investigate how applica-
tion services (agents) and middleware (platforms) can 
evolve and coevolve across network layers in order to 
adapt to dynamic network conditions in a decentralized 
manner.   

[9, 19] propose biologically-inspired agents to achieve 
service adaptation in a decentralized manner. However, 
[9, 17] do not consider resource adaptation because plat-
forms are static and non-biological entities. In Symbiot-
icSphere, both agents and platforms are designed as bio-
logical entities, and they achieve service adaptation and 
resource adaptation simultaneously. In addition, Symbiot-
icSphere considers symbiosis between agents and plat-
forms to augment their adaptability. 

[19] studies an evolutionary adaptation mechanism in 
agents. However, the threshold values of behavior poli-
cies are not included in genes. This means that agent de-
signers need to manually configure them through trial and 
errors.  In contrast, no manual work is necessary to con-
figure thresholds in SymbioticSphere because they are 
included in genes. Also, [19] uses a fitness function to 
rank agents in mating partner selection. It has a weight 
value for each objective. Agent designers need to manu-
ally configure these weight values as well. In Symbiotic-
Sphere, no parameters exist for ranking agents/platforms 
because of a domination ranking mechanism. As a result, 
SymbioticSphere incurs much less configuration cost.  

[20] is designed after population ecology and intended 
to adapt agent availability to the availability of hosts in a 
decentralized way. Agent behaviors are governed with 
the concept of food, which is similar to energy in Symbi-
oticSphere. While [20] follows a single species popula-
tion model, SymbioticSphere considers two species: 
agents and platforms. The two species coevolve to aug-
ment their adaptability. Unlike [20], which focuses only 
on the adaptation of agent availability, SymbioticSphere 
exhibits many other types of adaptation such as the adap-
tation of response time, throughput, resource availability, 
resource efficiency and workload distribution. 

Rainbow achieves both service adaptation and resource 
adaptation for grid computing [21]. A centralized server 
periodically monitors the current network conditions and 
performs an adaptation strategy such as service migration 
and platform replication/death. SymbioticSphere provides 
a wider range of adaptation strategies: more 
agent/platform regular behaviors (e.g., agent replication 
and death) and symbiotic behaviors. In SymbioticSphere, 
agents/platforms perform their behaviors in a decentral-
ized manner. In addition, agents and platforms evolve to 
adjust their behavior policies even for unanticipated net-
work conditions. However, Rainbow predefines static 

adaptation strategies for anticipated network conditions; 
they do not work for unanticipated conditions.  

[22] proposes a decentralized design for adaptive data 
centers that guarantee response time. SymbioticSphere 
does not guarantee any performance measures because 
performance improvement (i.e., adaptation) is an emer-
gent and evolutionary product of collective behavior in-
vocations and interactions of agents/platforms. As a re-
sult, agents and platforms can adapt to unanticipated net-
work conditions. [22] does not consider to adapt to unan-
ticipated conditions. Unlike [22], which focuses only on 
response time, SymbioticSphere exhibits many other 
types of adaptation, such as the adaptation of response 
time, throughput, resource availability, resource effi-
ciency and workload distribution.  

 [23] proposes to a centralized evolutionary mechanism 
to adapt network topology to a given QoS requirement 
(end-to-end delay of packet transmission). It uses a fit-
ness function to rank genes in its evolution process. The 
function has a weight value for each objective. Network 
designers need to manually configure these weight val-
ues. SymbioticSphere requires no manual parameter con-
figuration because of its domination ranking. [23] guaran-
tees a required QoS; however, SymbioticSphere does not. 
It focuses on satisfying service adaptation and resource 
adaptation simultaneously through coevolution.  

[24] implements the concept of symbiosis between dif-
ferent groups of peers (hosts) in peer-to-peer networks. 
Peer groups symbiotically connect or disconnect with 
each other to improve search speed and quality. A special 
type of peers, cooperative peers, implement the symbiotic 
behaviors and invoke them with fixed policies. In Symbi-
oticSphere, all agents and platforms invoke symbiotic 
behaviors. They coevolve to dynamically adapt their be-
havior policies to unanticipated network conditions. 

VI.  CONCLUSION 

This paper describes the biologically-inspired mecha-
nisms in SymbioticSphere, such as evolution and coevo-
lution as well as regular/symbiotic behaviors, and evalu-
ates their impacts on the adaptability of data centers. 
Simulation results show that agents and platforms evolve 
and autonomously adapt to dynamic network conditions 
Simulation results also show that agents and platforms 
augment their adaptability through coevolution.  

Several extensions to SymbioticSphere are planed. For 
example, multiple types of agents will be deployed to 
implement different functional services. (Currently, Sym-
bioticSphere considers a single type of agents.)  In order 
to stabilize energy flows in SymbioticSphere, a certain 
mechanism will be investigated to assign appropriate 
service price (in energy units) for each agent type.  
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