16 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

Nonblocking Distributed Replication of
Versioned Files

LukaS Hejtranek, Luék Matyska
Institute of Computer Science, Masaryk University, Brno, Czech Republic
CESNET, z. s. p. 0., Praha, Czech Republic
Email: xhejtman@ics.muni.cz, ludek@ics.muni.cz

Abstract—In this paper, we propose a distributed data and text/file editing fields and is usually supported at the
storage framework that supports unrestricted offline access. application level through tools like CVS [4], SVN [5],

The system does not explicitly distinguish between connected : fo
and disconnected states. Its design is based on a lock-free or GIT [6]. Recently, file versioning has begun to be

distributed framework that avoids update conflicts through popular alsq in the field_of C_omputer graphics, with, €9,
file versioning. We propose an algorithm for replica synchro- ~ Adobe Version Cuk which is an application-level file
nization. The feasibility of this framework is confirmed by a versioning tool. These systems usually support discon-
proof-of-concept implementation. We also demonstrate that nected operations (e.g., editing a file independently and
the proposed lock-free replica synchronization algorithm — 54ing explicit synchronization with the server) and their
scales well. A future work will include also direct support . .
for non-versioned files. supported modes of operations are very similar to the use
of file systems in disconnected state.

The proposed architecture forms a part of a distributed
storage framework that is usable as the Storage Elements
that has been presented in Grid environments [7]. If a

|. INTRODUCTION computing job fails, it is usually due to unavailability

As the mobility is becoming a more and more importantof the Storage Elements thus the storage systems with
aspect of work pattern of contemporary users, the waysffline access support are most suitable here. Additionally,
in which data is processed in a distributed system thastorage systems that incorporate file versioning allow
supports mobility are gaining more practical interest.easier resuming of failed jobs that work with the Storage
When considering mobility, we expect mobile clients Elements as particular file versions can be found in some
to be connected to the network from different placesdefined state that is coherent for all the computing nodes.
However, as the network is not yet omnipresent and does The rest of this paper is organized as follows. In
have very differing properties at different places, we haveSection Il, we discuss problems related to data replication,
to consider situations when network is not available—file versioning, and problems related to offline support.
users have to work in a disconnected mode—or networlkrchitecture of the proposed framework is presented in
has very limited throughput or very high latency (e.g.,Section Ill. This is followed, in Section IV, by the
when using the GPRS or satellite links). The distributednformation about a prototype implementation and exper-
data storage must be able to support usual work patterrimental results. Section V summarizes related work and
even in such cases, hiding the actual network quality (oBection VI gives concluding remarks and work summary.
even existence) from the users as much as possible.

The primary goal of our work is to present a distributed [l. DISTRIBUTED SYSTEMS
data storage system which does not distinguish between . . .

: . In this section, we discuss some common problems

connected and disconnected states and most operat|0n§ L . L
. . . related to distributed storage systems with replication

are done only in one (the disconnected) state with ex- . . .

g o and offline support and concurrent versions system with
plicit synchronization protocols run after re-connect. Our__ .~ . .)

) ; replication. We use a distributed system model with a set
secondary goal is to present a system which does n% articipants. Each participant can communicate directl
need to use locking and we demonstrate that this is the b pan's. P P y

: . with all the others. Each participant is either running or
needed property to fulfill our primary goal. We propose . :
o 4 .~down. We allow services and data to be replicated among
fast lock-free synchronization algorithm and we avoid”" =" . : :
. T LY participants, i.e., services or data are redundantly hosted
update conflicts using file versioning.

. . by multiple participants.
sy:tlgumss [tlh]a?ri]:trgdoudcae d[zt]h:rgopggilrzgegitsf;r?r:ggltisd c;fl%_ To distinguish individual objects moving in a dis-
erations. The Coda system distinguishes whether thﬁ(IbUted system, some global unique identification is

client is connected or disconnected. The Ficus systemneeded' Three different approaches are usually used for

. C such a purpose: centralized service, peer-to-peer, and
supports primarily disconnected mode [3] but uses com- purp P P
plex synchronization algorithms and does not support file Lhttp:/Amww.adobe.com/products/creativesuite/

versioning. File versioning is popular in the programmingversioncue.html

Index Terms— lock-free distributed replication, disconnected
operations, file versioning, conflict avoidance

©2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 17

standalone. The first two approaches rely on availabilitysome elements are non-operational. If we are to secure
of either the central service or the peers at the momerd reliable service, possible way out lies in replication.
of issuing the unique identifier. This requirement is notWe can replicate elements or services in the case of
valid for our situation when new object can be createddata systems, we replicate storage servers or orthogonally
in the disconnected state. Therefore, only the standalonge can replicate stored data. We use data replication in
approach is usable for offline clients, as it does not needpproach chosen for this work.
to contact any other participant nor third party service. Data replication strategies [10] can be divided into
As a disconnected client re-connects to the networkiwo groups. The first, pessimistic replication strategy
some synchronization must happen between the client arislocks update operations until the update is spread over
the distributed system. Our synchronization algorithm isall replicas. The second, optimistic replication strategy
based on a modification of the well knowiwo-Phase does not block update operations and spreading is not
Commit Protocol[8], that is therefore described below. synchronous with update. Consequently, the pessimistic
We have a set of participants that can commit or abort aeplication strategy can have performance and data avail-
transaction. If all the participants commit then the result isability problems due to blocking operations but it guar-
to commit. If any of the participants aborts then the resultantees coherency of data. On the contrary, the optimistic
is to abort. Two-phase commit protocol (2PC) decideseplication strategy does not guarantee coherency of data
whether to abort or to commit. The 2PC consists of twoimmediately after update operation but it can be faster
parts. The first, message “prepare to commit” is broadthan the pessimistic approach and provides highly avail-
casted to all participants by one of the participants. If anyable data.
of the participants does not answer until certain timeout
(broadcast message is lost or a participant is down)
then the result is abort. After collecting answers withB. Distributed Storage with Offline Access Support

commit or abort messages, the second part is started by \ye aqopt a model which consists of online servers and
broadcasting the result. The second broadcast is SlJppOSﬁgssibly offline clients. The servers are all interconnected,

to be a reliable broadcast. If initiator of the transaction,o clients can connect to and disconnect from the net-
does not receive acknowledgement of the second phagg, . 4t any time. The disconnected clients use read-ahead
from any of. the participants than it is up to the initiator cache to be able to read data and write back cache to
to retransmit the request of the second phase. _ store updated data. Write back cache is synchronized with

Beside 2PC, we utilize the well know leader electiongeerg after the transition from disconnected to connected

algorithm [9_] that we des_cribe in the foII_owin_g, t_oo. The siate. Write back cache can serve as prefetch cache in the
leader election algorithm is concerned with bringing about.; oo of reading previously stored data.

a single leader so that everyone knows who is the Ieade_r. The systems that support parallel read/write access to

After each run, _a_s_ingle leader must be_s_elected even Hata must deal with two kind of conflicts: update and
thg protocol |s.|n|t|ated b.y muluple participants. There name conflicts. These conflicts can be either avoided or
exist many variants of this algorithm [9]. We useave resolved after they occur. In the following, we describe

Iea(tzlhe rtelﬁcltl(l))n\llarlant. dE?chtpargmpant IS %llverbvat]label these conflicts with their consequences in the systems
so that all labels are distinct and comparable. en an@th offline access support.

participant sends any message then his label is include 1) Update Conflicts:We denote a situation, when two

in the message. When a participant (initiator) decides that -)

. _or more distinct clients want to update the same data,
a new leader needs to be elected than the participant ; : .
s : - as anupdate conflictlf all the clients are online then the
initiates voting. It means that a participant sends a mes-

sage “I am the leader” to all other participants (electionUpdate conflict is usually solved by a last-writer-wins rule

wave). Each participant replies to the initiator with an or the system avoids update conflicts at all by using data

. locks.
acknowledgement. The acknowledgement is positive if the If the client has updated data while being disconnected,

participant has not yet received any message “I am th(tan dat flict fter the t ition t
leader” or if the participant received the message “I am € update confiicls may occur after the transition to

the leader” from the initiator with lower label: otherwise the connected state. In such a case, the last-writer-wins

the acknowledgement is negative. Initiator that receive£UIe is ambiguous because the time stamp bound to the

no negative acknowledgement and does not sent positi 't _da?“; re“_EIS (1n reaI-Eme_clock (Ith_the cII|erl1(t. |f—|o:/|vever,
acknowledgement to any other initiator, is considered tdt IS Infeasible o synchronize real-ime clock of afl par-
cipants in distributed environment with offline support.

be a leader. It is easy to see that participant with th : . »
highest label always can be the leader. This algorith oreover, the updates are committed after transition from
' disconnected to connected state. The time ordering of

assumes that no messages are lost. . . .
commits does not need to be the same as the time ordering
o o of updates. For usage of distributed data locking, the client
A. Distributed Data Systems and Replication must not be faulty (including disconnected state) or the
Large scale distributed systems are prone to failures. I€lient must periodically refresh soft-state locks. If we do
we are given a distributed system consisting of hundredsot impose upper bounds on duration of the disconnected
or even thousands of elements, it is almost certain thadtate then the soft-state locks cannot be used; otherwise

©2007 ACADEMY PUBLISHER

18 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

we have problems with clients that are disconnected fostorage servers. Data is stored in blocks of variable length,
too long or the soft-state locks being prematurely freed.once stored, each data block is further immutable. The
2) Name Conlflicts:Traditional file systems use a full metadata resembles standard UNIX I-Node, as it contains
file name (i.e., a file name together with the path to it)references to the particular data blocks, their offsets in the
as an unique and immutable identification of the file.file and their lengths. The metadata supports replication
Consequently, these file systems prohibit the creation off data blocks, i.e., particular offset may be referenced
two or more identical full file names for different files. by multiple data blocks. The metadata is maintained
After introducing disconnected state, the system idn a directory structure. Files may exist in several file
unable to prevent creation of multiple identical full file versions. Every file version is further immutable and an
names because full file names are generated by thgpdate of the file creates a new file version. We adopt
clients. We are unable to check full file names created inhe so called open-close semantics where metadata of
disconnected state. The name conflicts may occur aftex particular file is published to network after the file
transition from disconnected to connected state if weclosing. Consequently, a new file version us created after
allow to create and rename files in the disconnected statéhe file is closed. Every file version is given an UUID
Moreover, file creation or file renaming are synchronougUniversally Unique IDentifier, represented by 16 bytes
operations expecting to get the result of the operatiotong number) [11] at the time of version creation. Al-
immediately—which is unknown until transition to the gorithm used for UUID generation gives globally unique

connected state. identifiers with high probability. A file with all its versions
forms an independent replication unit; every file can be
C. Concurrent Versions System with Replication replicated. Replication model embodies multiple master

We use a model of a file system with versioned files(PE€r t0 peer) approach, i.e., no replica has master role,

Besides traditional directory structure, we bind a versiorfnd all replicas are read-write accessible. Each replica is
number to every file. A single file may have severa/9iven an UUID and knows all other replicas. Replication

distinct versions with each file version being immutable S Performed by a storage server.
Update made to a particular file version results in a new
file version that is further immutable. We extend thisA. Update Conflicts

model using replication: we use a file with all its versions As we presented in Section II-B.1, systems with offline
as an independent replication unit and updates may b?upport may suffer from update conflicts. Our model

pe'r:f(I)rmedl'ont.any ?f the rterglllce]ﬁ. d ¢ b is based on immutable files and updates based on file
e replication of immutable Tles does not pose pro “versioning. As immutable file cannot be changed, we

lem with con_fllctm_g updates pecause every file is unlqueCOmIOIeter avoid update conflicts.
and once written, it may receive no updates. However, the
update conflicts return as a version conflict if we introduce

file versioning together with immutable files. Replication B. Name Conflicts
algorithm must spread new file versions across replicas |n Section 11-B.2, we discussed that systems with of-
and Spreading f||e VerSionS may reSUIt in Version Conﬂictﬂine Support may have prob'ems W|th name Conﬂicts_ As
More precisely, denote a sét = {fi,...,fn} of e already mentioned, the file creation and file renaming
versions of a particular file that are spread over allare synchronous operations expecting result status to be
replicas. Assume that the versig., is created on the returned synchronously but the result status is unknown
replica R, and the versiory; ,, is created on the replica tjj| transition to the connected state. We use optimistic
Ry. Both fu11 and f; ., are versions of the same file gpproach which means that if a new file name is not
with the same version number but they may have differen¢onflicting with cached file names then it is not globally
content. We denote such a situation aswemsion conflict conflicting. Using this approach, we keep synchronous
nature of creating and renaming operations but we do not
Ill. ARCHITECTURE DESIGN completely avoid name conflicts. If a conflict occurs after
The model of our distributed file system consists oftransition to the connected state, we change the conflicting
interconnected storage servers and clients that connecame. E.g., let us assume that offline client creates a
and disconnect arbitrarily. We do not distinguish betweerfile file.1 . After transition to the connected mode, the
connected and disconnected clients. As we discussed imetadata of the fildile.1 is stored on metadata man-
the previous sections, disconnected clients should not usaer but let us assume that there already exists a file of the
data locking and thus our model avoids data lockingsame name. In such a case, file.1 submitted by the
completely. The disconnected clients use prefetch cachdient is renamed tdile.1#1 . Consequently, the client
to be able to read data and write back cache to stormay not use file names as immutable identifiers because
updated data. Write back cache is synchronized to servetse system may change the file names without notifying
after the transition from disconnected to connected statall the users. In our example, the client may not use
Prefetch and write back cache stores data blocks instedie.1 for the file identification because it was changed
of whole files. Each file consists of two parts: metadatao file.1#1 in background. We resolve such situation
and data. Both data and metadata are stored on th®y binding globally unique identifier (UUID) with each

©2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 19

file (and its particular version) using which the user mayalways contain all the file versions which is a consequence
access file directly without specifying the path and theof asynchronous version synchronization.

file name. E.g., we bind the UUIRcb8c47c-709c- We define thatg, f : k = g, f : k if and only if
40a9-906e-8383aacefl73 with file.1#1 . Using the file versiong, f : k has the same UUID as the file
this identifier, the file is always accessible regardless of itsersiong, f : k. We define that, f : {1,...,n} =g, [:
actual name. The user can always access the file using the, ... n} if and only if for all k € {1,...,n} it holds

file “name” ?uuid=ccb8c47c-709c-40a9-906e- r.f k=R, f: k. We define aCheckpoint € Ny such
8383aacefl73 . However, using UUID for accessing that for all i, it holds ,f : {1,..., Checkpoint} =
files is not user friendly and thus we support the usez, f : {1,..., Checkpoint}. Checkpoint ismaximal if

of ordinary file names for accessing files for the mostthere is no suchC > Checkpoint for which holds that
cases. In addition, we preseoheckpointswhich are Vi, j g, f : {1,...,C} = g,f : {1,...,C}. In the
abstract guarantees on immutability of the file namesfollowing text, Checkpoint denotes maximal checkpoint.
We represent the checkpoints as natural numbers boundWe define two operations that are requested by the
with every file and initially set to zero. If a checkpoint client and performed by the replica. We also denote
of any file is non-zero then we guarantee that file namencestor functionr(v}), this ancestor function is used to
(including file version) is fixed and will not be changed track history of particular file version (i.e., for each file

by the system. version, we can easily see its ancestors).
1) Create(R;)—creates initial versiong, f : 1 of a
C. Replication file on a replicaR;. The file name is automatically

changed if initial versiorg, f : 1 already exists.

We definer (g, f : 1) = nil.
2) Update(g,f : j)—creates a new file version de-
rived from a single file of versior, f : j on replica
R;. Operation Update(g,f : j) on non-existing

Using our model, the replication is done at two distinct
levels: data replication and metadata replication. For data
replication, we can easily adopt optimistic replication
strategy because our model assumes that stored data
blocks are immutable. Consequently, no update conflicts version . f : j fails
may occur. We allow updates of immutable files using We d ﬁﬁ’i]U d t. oy .
file versioning. Replication of versioned files does not € de E_m(paa e(@f-])) - Rfj _
pose update conflicts as versioned files are immutable. The Setr, f is built during synchronization or using
However, version conflicts as discussed in Section II-coPerationsCreate() and Update(). The setg, f forms a
may occur. We solve this problem by the replica Syn_tree with the rootg, f : 1 using ancestor function ().

chronization algorithm proposed in the following section. When we want to synchronize a versioned file, we
run replica synchronization algorithm. Algorithm is not

] o) required to start immediately aftéfreate() and Update()

D. Replica Synchronization Algorithm operations but we start it immediately to spread updates as

Our replica synchronization algorithm is based on thefast as possible. First, we elect only a leader that proceeds
well known 2PC algorithm and the wave leader electiorwith synchronization and then we run the two-phase
algorithm (both introduced in Section IlI). First, a leadersynchronization. Leader election is necessary to ensure
is elected using the leader election algorithm and then ththat one instance of the synchronization algorithm is only
leader performs synchronization using the 2PC algorithmrunning while synchronizing a single file. We allow to
To optimize our algorithm, we compound 2PC protocolrun multiple instances of synchronization algorithm for
messages into election messages as described below. Mdalifferent files (not a different version but a file with a
detailed description together with the proof of correctnesslifferent name).
can be found in [12]. The traditional 2PC algorithm aborts if one of the

A single versioned file with all its versions is replicated participants is down (non-operational) thus all partici-
independently of all other files, therefore we can usepants must be operational for 2PC algorithm to proceed.
abstraction of a single versioned file. Further, we suppos8imilarly, leader election algorithm supposes that all
that each file version is given system generated nameommunication channels are reliable. These properties
(UUID) which is globally unique. Using this UUID, we are usually not met in real world. Therefore, we have
can distinguish file versions albeit having different versionmodified leader election algorithm to work even with
but having the same content (thus they also should havessy channels. We have also modified 2PC algorithm

the same version number). to work with non-operational participants. As we use
For a versioned filef, we denote a setR; = only leader election to elect participant that is allowed to
{R1,...,R,} as the set of replicas that store the ver-proceed the synchronization algorithm, we do not require

sioned file f. A single versioned file is an independentthat all participants know who the leader is, they only
replication unit and a replication of a single versioned filemust not be able to became the concurrent leader.

does not depend on other versioned files. We denote file a) Leader election modificationWe have a set of
versions of a single versioned file #s {1,...,m}. We participants, each participant is labeled, all the labels are
denoter, f : {1,...,p} as a set of file versions that are distinct and comparable. We can use, e.g., UUIDs for
stored on a replic®;. The setg, f : {1,...,p} does not the labels. Each participant knows all other participants.

©2007 ACADEMY PUBLISHER

20 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

Whole leader election algorithm is related to a single file2PC. It is guaranteed that there can exist only one majority
and for any different file (a file with different name) an- group.
other instance of leader election algorithm may be running At the beginning, the synchronization algorithm checks
and elect possible different leader. Initiator (A) of electionwhether another instance of synchronization is running on
spreads a message “I am the leader” (voting messagehe same replica synchronizing the same file. If another
The voting message contains identification of the initiatolinstance is detected than after tfi&date() operation,
and time limit within which the voting message is valid. the new instance of synchronization is terminated and
When a participant receives a voting message then thetsiter theCreate() operation, the new instance renames the
exist several possible scenarios: name of versioned file and starts again. Synchronization
Igorithm continues in two parts: (1) leader is elected and
e first phase 2PC synchronization is done, (2) synchro-
nization is performed if leader election was successful and
then the leader sends her resignation to all participants.
jResignation is sent even in case of unsuccessful leader
election to release votes. Participant agrees to resign to
be the leader only if he performs phase one of 2PC.
A participant has already received message from all'nf parumpant_performs phase two of ch then he ”.‘”St
refuse to resign. Our proposed synchronization algorithm

initiator (B) with a lower label. In this case, the) .
participant sends revocation message to the initiatlas two slightly different separate parts. One part of the

tor (B). The initiator (B) decides whether he resignsalgorithm is run after th&'reate() operation and the other
or not and replies “True” or "Cancel”, resp. The part is run after thd/pdate() operation. We describe both

participant forwards the reply from the initiator (B) parts separately. o)
to the initiator (A). Goal of the_ synchronlzauon algorithm after the
Create() operation is to spread newly created version
We allow some participants to be crashed or disconacross all replicas. Name collision may occur if initial file
nected from a network. Such participants do not reply to aersion already exists on any replica. In such a case, the
voting message. Initiator that has acquired “True” repliemewly created file must be renamed. The synchronization
from majority of participants and no “Cancel” reply is algorithm has two parts: (1) election wave together with
the leader. Majority means strictly more than a half ofverifying that file version does not exist on any of replicas
all participants (we remind that each participant knowsand “locking the replicas so that file of this name cannot
all other participants). It is easy to see that only onebe created, (2) file distribution and “lock” release.
participant is able to acquire majority of “True” replies.
Voting is finished when an initiator collects replies from
all running participants. When the initiator does not want
to be the leader any more—typically after performing
synchronization algorithm—he sends his resignation to
all participants. When participant has given “True” reply
to any initiator then the participant does not start voting
until she receives resignation of the leader or time limit
bound with voting message expires (regarding a single
file).
If the elected leader crashes during leader election then
his voting messages eventually expire and another leader
election may be started. In such case, there is no leader

« A participant has not yet received any message in thi
voting or the received message is not valid any mor
(due to the time limit). In this case, the participant
replies “True”.

A participant has already received message from in
tiator with higher label. In this case, the participant
replies “Cancel”.

1) Coordinator (A) verifies whether the given file name
does not locally exist and it atomically locks the
local replica so that the given file name cannot
be created any more. Than it sends election wave
together withCreateRequesto all other replicas.

If any replica refuses to lock (due to the already
existing lock or the given file already exists), the co-
ordinator renames the file and restarts the synchro-
nization algorithm. If the coordinator has collected
majority of replies from election wave and has
received no cancel reply then it proceeds to phase
2 of the synchronization algorithm. Otherwise, it
releases all the locks, renames the file and restarts

until next leader election. This means that in this case,
our synchronization algorithm is postponed until the next
leader election.

b) Two-phase Commit modificatioWe bind time-
out with any message sent using this algorithm. If par-
ticipant does not reply within this timeout then it is
considered to be non-operational. Our modification of
2PC is based on majority approach. If initiator of 2PC
collects no “Abort” reply and the “Commit” reply from
strictly more than a half of all participants then the
result is to commit, otherwise the result is to abort. We
require majority here to be able to do global agreement
which cannot differ from agreement of a small group of

the synchronization algorithm.

A replica that receives multipl€reateRequestidet

us suppose that anoth€@reateRequests from a
coordinator (B)), behaves as follows: if an UUID
of a coordinator (A) is lower then the UUID of
the coordinator (B) then the replica repli€ance]

if the UUID of the coordinator (A) is higher then
the UUID of the coordinator (B) then the replica
asks the coordinator (B) whether its lock can be
overridden. If the lock cannot be overridden then the
replica repliesCancel The coordinator (B) allows

2The term “locking” means that a replica is only “locked” to prevent

separated participants that were also allowed to procee@ncurrent synchronization.

©2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

lock overriding if it is in phase 1; otherwise it denies
lock overriding.

At the beginning of phase 2, coordinator checks
whether any replica has requested him to release
lock, if so then it releases the lock and restarts the
synchronization algorithm in phase 1. Coordinator
spreads the newly created file between replicas
and releases locks. It may happen that spread file
already exists on some replica. This can be only
unsynchronized file as a product of Create synchro-
nization algorithm. In this case, the already existing
file on target replica is renamed to non-conflicting
name. The non-conflicting name is non-conflicting
only within particular replica. It is not necessarily
globally non-conflicting. Renaming operation con-
verges as each name conflict means that one con-
current run of renaming operation has succeeded.
The rename operation starts another instance of
synchronization algorithm using the different file
name.

2)

© O N O O b~ W NP

Goal of the synchronization algorithm after the
Update() operation is to synchronize file versions. In the
case of concurrent coordinators, the leader coordinator *3
proceeds and the others terminate. The synchronization*
algorithm has two parts: (1) election wave together with 15
shap-shooting replicas with “locks” and (2) a synchroniza- 16
tion and “lock” releasing. We assume that coordinator is *’
running from replicaR,. 18

1) Coordinator R,) checks whether another coordina- iz
tor has not already locked this replica, if so then ,;
it terminates. In phase 1, the coordinator sends
election wave together witlDbtainUpdateSete-
quest. This request returns for all, € Ry sets
B, = g,f : {Checkpoint + 1,...,n}, i.e., B;
contains all file versions with a version number

21

sets B; (see the Figure 1). All file versions which
parents that are not already synchronized nor are
in the setB;, are omitted from merging. The set
f : {Checkpoint + 1,...,n} is distributed to all
replicas. If distribution has succeeded to the ma-
jority of replicas then the coordinator sets the new
Checkpoint to all replicas. All file versions that are
not present in the sef : { Checkpoint +1,...,n}

are given a new version higher then tgeckpoint.

proc Merge(Checkpoint, By, . . .
B::B1UB2U...UBn
B =0
V=0
x := Checkpoint + 1
foreach , f : j € B do
if 3p, f:le€B |gf:j=r.f:1
then
foreach v such thatr(v) = g, f : j do
w(v) =g f:1
od

else

» Bn)

i=B'U{r,f:j}
f L= Rif 0J
Vi=VUf:z
rzi=x+1
fi
od
Checkpoint := x
return(V)
end

Figure 1. Merge operation. We defing f : j = g, f : 1 iff the file
versiong, f : j has the same UUID as the file versign f : 1.

2)

When a crashed replic®; is operational again then
higher then Checkpoint. If any of replicas has it obtains currentCheckpoint Then it renames all unsyn-
replied Cancelthen it means that another instancechronized file versions to be beyond the current global
of synchronization algorithm is running and the CheckpointThis step is required because unsynchronized
coordinator releases all its locks and terminates. versions below th&heckpointwill be overwritten in the

A replica that receives multipl®©btainUpdateSet next step. In the following step, the crashed replica fetches
(let us suppose that anoth@btainUpdateSeis and merges file versions that are missing between the last
from a coordinator &;)), behaves as follows: if synchronized version and the global checkpoint. After
an UUID of a coordinator if,) is lower then the this operation, it may happen that the sgtf contains
UUID of the coordinator ;) then the replica g,f : j and there existsg,f : k such thatt > j
repliesCance] if the UUID of the coordinatorg,) and theg,f : j has the same UUID as thg, f : k.

is higher then the UUID of the coordinatoR?{) = Then theg, f : k is removed from the seg, f. (l.e.,
then the replica asks the coordinatdt,] whether the file versions in the set, f have distinct UUIDs, the

its lock can be overridden. If the lock cannot befile versions with duplicate UUIDs are removed.) This
overridden then the replica replieSancel The case is a result of a crashed replica that has contained
coordinator (B) allows lock overriding if it is in unsynchronized file version which has been synchronized
phase 1; otherwise it denies lock overriding. by other replicas meanwhile. We remind that if two files
If coordinator has collected replies from the major-possess the same UUID then through this property the
ity of replicas and none i€ancelthen it proceeds to files have been marked by client as the same. At this point,
phase 2. At the beginning, the coordinator checkshe sety, f contains only items with different UUIDs.
whether any replica has requested him to releas@nd finally, it starts the synchronization algorithm. This
lock, if so it releases the lock and terminates. Theprocedure is required because the crashed replica could
coordinator (running on the replic;) creates a assign new version numbers to already synchronized (by
setf : {Checkpoint +1,...,n} by merging all the other online replicas) file versions. As we have mentioned,

©2007 ACADEMY PUBLISHER

22 JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007

once synchronized file version may not change its version

s [Cinear i) |
number. ,

When a coordinator of the synchronization algorithm o]
crashes then her locks eventually expires and another Gy 7
instance of the synchronization algorithm may run. It §zo— B
could happen that an update synchronized by this crashed Tl]

coordinator was the very last and no further update will

occur. It means that the last update will not be synchro-
nized. To solve this problem, each replica periodically

search its unsynchronized file versions and starts the
synchronization algorithm.

5 6 7
Number of Nodes

Figure 2. Latency of file create distribution among specified number of
IV. PROTOTYPEIMPLEMENTATION replicas with outlined linearity.

Our proof-of-concept implementation splits data stor-
age into two independent parts: data and metadata. The

2000 T T T

data is stored using logistical networking approach [13]. wol |70 ggﬁ:]
The metadata is handled by our metadata manager. The ool |2 U]
metadata manager supports the following operations: 2% S .
create , update , andlist . Thecreate operation g 1000]
creates initial version of a file and replicates metadata " e]

between replicas. Replication is done asynchronously. The
update operation creates a new version of a given file ol M]
and runs asynchronously the proposed replica synchro- i]
nization algorithm. Thdist operation returns a list of 4
files that are stored on a particular replica.

Our prototype implementation of metadata handlingFigure 3. Latency of file update distribution among specified number
that utilizes our proposed replica synchronization algo®f "eplicas with outiined linearity.
rithm, is done in Java language and provides API for
metadata storage, retrieval, and update.

Preliminary experiments have been run on several V. RELATED WORK
servers equipped with two Pentium 4@3.0 GHz proces-

sors, 3GB RAM, and 1Gbps NIC. In our testbed, we We discuss systems that provide either offline support
evaluated latency of file create and update distributionandjor file versioning. The CVS [4] system provides file
We evaluated only a single file create distribution becausgersioning and offline support, but it is not a distributed
according to our algorithm, file create distribution is system when we consider the way server storage is
never postponed. We evaluated latency of the file creatgrganized. The GIT [6] is a distributed approach to file
distribution for 2 to 10 nodes, the results are shown inersioning similar to the CVS. Instead of simple file
Figure 2. Contrary to file create distribution, the file up-versions, it uses hash values to identify particular file
date distribution can be postponed therefore, we evaluategrsions to simplify distributed design. Users can access
several numbers of the postponed update distributiongarticular file versions using the hash values which makes
In particular, we evaluated latency of the file updateit more difficult than using natural numbers. Natural num-
distribution for 2 to 10 nodes with 1 to 160 pending bers allow easier identification of particular file versions.
updates at each replica, the results are shown in Figure ®ur proposed approach uses natural numbers to identify
In both Figures, we can see that synchronization scalefle versions while preserving distributed approach and
well. The number of nodes corresponds to the number afising UUID to uniquely identify individual files. The
replicas of a file and we do not expect that there will everFicus [1] file system aims to be very large-scale replicated

be significantly more replicas. _ distributed file system, it uses optimistic replication strat-
~ Number of transfered messages aftedateoperation egy [10] and allows to operate in disconnected mode [3].
is linearly dependent on the number of replicas: However, the Ficus does not provide file versioning,

requiring rather complex synchronization algorithm to
solve the update conflicts. Another limitation of the Ficus
where themessages the total number of transfered mes- is that it does not support large files as it uses NFSv2
sages, theeplicasis the number of participating replicas, as transport and storage layer. The Coda file system [2]
and thenewversionsis the number of unsynchronized is a heir to the AFS file system, it provides full replicas
versions of the file. The number of transfered messages (sead/write), provides disconnected operations, and it is
derived from implementation of the algorithm and closelyalso using optimistic replication strategy. Update conflicts
follows its proposal which means that our implementationare detected and either automatically resolved or reported
does not send significantly different number of messageso the user. However, nor the Coda file system provides

messages = replicas * 4 + newversions — 1

©2007 ACADEMY PUBLISHER

JOURNAL OF SOFTWARE, VOL. 2, NO. 5, NOVEMBER 2007 23

file versioning, and it uses leases (which are basically[8] S. Mullender, Ed. Distributed systems (2nd Ed.) New
time-limited locks) to maintain cache coherency. York, NY, USA: ACM Press/Addison-Wesley Publishing
Similar approach has been studied to support dis- <0 1993.

. . . [9] N. A. Lynch, Distributed Algorithms San Francisco, CA,
connected operations also in AFS [14]. It is based on™" jga. Morgan Kaufmann Publishers Inc., 1996.

journaling operations performed when connection to a fil§10] v. Saito and M. Shapiro, “Replication: Optimistic Ap-
server is unavailable. When the connection is available, proaches,” HP Laboratories Palo Alto, Tech. Rep. HPL-
the journal is replayed and possible conflicts are reported ~ 2002-33, 2002.

;] P. Leach, M. Mealling, and R. Salz, “RFC4122: A Uni-
L‘;tgigsfgm Hﬂ?ﬁ:’fr’ this attempt has never been adopteti versally Unique IDentifier (UUID) URN Namespace.” July

2005, http://www.ietf.org/rfc/rfc4122.txt.
[12] L. Hejtmanek, “Distributed Storage Framework with Of-
VI. CONCLUSIONS ANDFUTURE WORK fline Support,” 2007, PhD. Thesis, Masaryk University,

. L Brno, Czech Republic.
In this paper, we propose a distributed framework capa[ls] M. Beck, T. Moore, and J. S. Plank, “An end-to-end ap-

ble Of f||e VerSioning in the Wa.y Of CVS Wh|le being fu”y proach to g|0ba||y scalable network storag@]’GCOMM
distributed and replicated. Together with file versioning, Comput. Commun. Revol. 32, no. 4, pp. 339-346, 2002.
our system possesses strong offline support, i.e., we do nB#] L. B. Huston and P. Honeyman, “Disconnected operation
distinguish between connected and disconnected state. We f0r AFS,” in Proceedings of the USENIX Mobile and
have designed a prototype implementation and performed Location-Independent Computing Symposi@ambridge,

€ desig prototype 1mp pe MA, 1993, pp. 1-10.
preliminary experiments. The results show that idea of

strong offline support qnd simple f"? Vgrsmnlng _'S feaSIbIeLudék Matyska is an Associate Professor in Informatics at
and our proposed replica synchronization algorithm scalegaculty of Informatics, and he also serves as a vice-director of
well. We have done some preliminary performance testtstitute of Computer Science, both at Masaryk University in
which show that our framework is quite comparable toBro, Czech Republic. He got a PhD in Chemical Physics from
NESV3. Technical University Bratislava, Slovakia. His research interests

L . lie in the area of large distributed computing and storage
Our further work is directed to support work with non- systems, with a specific emphasis on their management and

versioned files including algorithms for distribution of monitoring. He also works in high speed network applications,
updates and conflicts resolution. We relax open-to-closeaith a specific emphasis on collaborative work support and use
semantics of access to non-versioned files. We also plan @ all these technologies in various e-learning activities. He lead
support more operations on the metadata manager to m tional Grid infrastructure projects and participates in several

. . . U funded international projects including the EGEE and the
the requirements of fully compliant POSIX I/O interface. ~j.eGRID Network of Excellence.

ACKNOWLEDGMENTS

This research is supported by a research intent “Opticaluk 45 Hejtmanek graduated in computer science and got PhD
Network of National Research and Its New Applications”in Informatics from Faculty of Informatics, Masaryk University

(Mél\/l 6383917201) and by the CESNET Developmen'ﬂ” Brno, Czech Republic. His main research interests include:
Fund project 172/2005. We would also like to thank tohigh speeds networks, network data storage and peer to peer

. N . . storage, distributed storage with client—server semantics, data
David Antcs and Petr Holub for kindly supporting our repjicas, and replicas management. Beside data storage systems,

work and for stimulating discussions. his research interests also include HD video conference tools and
high performance and parallel computing.

REFERENCES

[1] R. G. Guy, “Ficus: A Very Large Scale Reliable Distributed
File System,” Los Angeles, CA (USA), Tech. Rep. CSD-
910018, 1991.

[2] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere, “Coda: A highly available
file system for a distributed workstation environment,”
IEEE Transactions on Computengol. 39, no. 4, pp. 447—
459, 1990.

[3] J. S. Heidemann, T. W. P. Jr, R. G. Guy, and G. J.
Popek, “Primarily Disconnected Operation: Experiences
with Ficus,” inWorkshop on the Management of Replicated
Data. |EEE, 1992, pp. 2-5.

[4] B. Berliner, “CVS II: Parallelizing software development,”
in Proceedings of the USENIX Winter 1990 Technical
Conference Berkeley, CA: USENIX Association, 1990,
pp. 341-352.

[5] M. Pilato, Version Control With Subversion Sebastopol,
CA, USA: O'Reilly & Associates, Inc., 2004.

[6] L. Torvalds, “GIT: Fast Version Control System,” 2005,
http://git.or.cz/.

[7] EGEE: Site Access Control Architecture DJRA3.2. 2005.
https://edms.cern.ch/document/523948.

©2007 ACADEMY PUBLISHER

